/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include #include #include template static boost::rational rational_FromDouble(double dVal); template static void rational_ReduceInaccurate(boost::rational& rRational, unsigned nSignificantBits); struct Fraction::Impl : boost::noncopyable { bool valid; boost::rational value; }; Fraction::Fraction() : mpImpl(new Impl) { mpImpl->valid = true; } Fraction::Fraction( const Fraction& rFrac ) : mpImpl(new Impl) { mpImpl->valid = rFrac.mpImpl->valid; if (mpImpl->valid) mpImpl->value.assign( rFrac.mpImpl->value.numerator(), rFrac.mpImpl->value.denominator() ); } // Initialized by setting nNum as nominator and nDen as denominator // Negative values in the denominator are invalid and cause the // inversion of both nominator and denominator signs // in order to return the correct value. Fraction::Fraction( long nNum, long nDen ) : mpImpl(new Impl) { if ( nDen == 0 ) { mpImpl->valid = false; SAL_WARN( "tools.fraction", "'Fraction(" << nNum << ",0)' invalid fraction created" ); return; } mpImpl->value.assign( nNum, nDen); mpImpl->valid = true; } Fraction::Fraction( double dVal ) : mpImpl(new Impl) { try { mpImpl->value = rational_FromDouble( dVal ); if ( HasOverflowValue() ) throw boost::bad_rational(); mpImpl->valid = true; } catch (const boost::bad_rational&) { mpImpl->valid = false; SAL_WARN( "tools.fraction", "'Fraction(" << dVal << ")' invalid fraction created" ); } } Fraction::~Fraction() { delete mpImpl; } bool Fraction::HasOverflowValue() { //coverity[result_independent_of_operands] return mpImpl->value.numerator() < std::numeric_limits::min() || mpImpl->value.numerator() > std::numeric_limits::max() || mpImpl->value.denominator() < std::numeric_limits::min() || mpImpl->value.denominator() > std::numeric_limits::max(); } Fraction::operator double() const { if (!mpImpl->valid) { SAL_WARN( "tools.fraction", "'double()' on invalid fraction" ); return 0.0; } return boost::rational_cast(mpImpl->value); } // This methods first validates both values. // If one of the arguments is invalid, the whole operation is invalid. // After computation detect if result overflows a long value // which cause the operation to be marked as invalid Fraction& Fraction::operator += ( const Fraction& rVal ) { if ( !rVal.mpImpl->valid ) mpImpl->valid = false; if ( !mpImpl->valid ) { SAL_WARN( "tools.fraction", "'operator +=' with invalid fraction" ); return *this; } mpImpl->value += rVal.mpImpl->value; if ( HasOverflowValue() ) { mpImpl->valid = false; SAL_WARN( "tools.fraction", "'operator +=' detected overflow" ); } return *this; } Fraction& Fraction::operator -= ( const Fraction& rVal ) { if ( !rVal.mpImpl->valid ) mpImpl->valid = false; if ( !mpImpl->valid ) { SAL_WARN( "tools.fraction", "'operator -=' with invalid fraction" ); return *this; } mpImpl->value -= rVal.mpImpl->value; if ( HasOverflowValue() ) { mpImpl->valid = false; SAL_WARN( "tools.fraction", "'operator -=' detected overflow" ); } return *this; } Fraction& Fraction::operator *= ( const Fraction& rVal ) { if ( !rVal.mpImpl->valid ) mpImpl->valid = false; if ( !mpImpl->valid ) { SAL_WARN( "tools.fraction", "'operator *=' with invalid fraction" ); return *this; } mpImpl->value *= rVal.mpImpl->value; if ( HasOverflowValue() ) { mpImpl->valid = false; SAL_WARN( "tools.fraction", "'operator *=' detected overflow" ); } return *this; } Fraction& Fraction::operator /= ( const Fraction& rVal ) { if ( !rVal.mpImpl->valid ) mpImpl->valid = false; if ( !mpImpl->valid ) { SAL_WARN( "tools.fraction", "'operator /=' with invalid fraction" ); return *this; } mpImpl->value /= rVal.mpImpl->value; if ( HasOverflowValue() ) { mpImpl->valid = false; SAL_WARN( "tools.fraction", "'operator /=' detected overflow" ); } return *this; } /** Inaccurate cancellation for a fraction. Clip both nominator and denominator to said number of bits. If either of those already have equal or less number of bits used, this method does nothing. @param nSignificantBits denotes, how many significant binary digits to maintain, in both nominator and denominator. @example ReduceInaccurate(8) has an error <1% [1/2^(8-1)] - the largest error occurs with the following pair of values: binary 1000000011111111111111111111111b/1000000000000000000000000000000b = 1082130431/1073741824 = approx. 1.007812499 A ReduceInaccurate(8) yields 1/1. */ void Fraction::ReduceInaccurate( unsigned nSignificantBits ) { if ( !mpImpl->valid ) { SAL_WARN( "tools.fraction", "'ReduceInaccurate' on invalid fraction" ); return; } if ( !mpImpl->value.numerator() ) return; rational_ReduceInaccurate(mpImpl->value, nSignificantBits); } long Fraction::GetNumerator() const { if ( !mpImpl->valid ) { SAL_WARN( "tools.fraction", "'GetNumerator()' on invalid fraction" ); return 0; } return mpImpl->value.numerator(); } long Fraction::GetDenominator() const { if ( !mpImpl->valid ) { SAL_WARN( "tools.fraction", "'GetDenominator()' on invalid fraction" ); return -1; } return mpImpl->value.denominator(); } Fraction& Fraction::operator=( const Fraction& rFrac ) { if (this == &rFrac) return *this; Fraction tmp(rFrac); std::swap(mpImpl, tmp.mpImpl); return *this; } bool Fraction::IsValid() const { return mpImpl->valid; } Fraction::operator long() const { if ( !mpImpl->valid ) { SAL_WARN( "tools.fraction", "'operator long()' on invalid fraction" ); return 0; } return boost::rational_cast(mpImpl->value); } Fraction operator+( const Fraction& rVal1, const Fraction& rVal2 ) { Fraction aErg( rVal1 ); aErg += rVal2; return aErg; } Fraction operator-( const Fraction& rVal1, const Fraction& rVal2 ) { Fraction aErg( rVal1 ); aErg -= rVal2; return aErg; } Fraction operator*( const Fraction& rVal1, const Fraction& rVal2 ) { Fraction aErg( rVal1 ); aErg *= rVal2; return aErg; } Fraction operator/( const Fraction& rVal1, const Fraction& rVal2 ) { Fraction aErg( rVal1 ); aErg /= rVal2; return aErg; } bool operator !=( const Fraction& rVal1, const Fraction& rVal2 ) { return !(rVal1 == rVal2); } bool operator <=( const Fraction& rVal1, const Fraction& rVal2 ) { return !(rVal1 > rVal2); } bool operator >=( const Fraction& rVal1, const Fraction& rVal2 ) { return !(rVal1 < rVal2); } bool operator == ( const Fraction& rVal1, const Fraction& rVal2 ) { if ( !rVal1.mpImpl->valid || !rVal2.mpImpl->valid ) { SAL_WARN( "tools.fraction", "'operator ==' with an invalid fraction" ); return false; } return rVal1.mpImpl->value == rVal2.mpImpl->value; } bool operator < ( const Fraction& rVal1, const Fraction& rVal2 ) { if ( !rVal1.mpImpl->valid || !rVal2.mpImpl->valid ) { SAL_WARN( "tools.fraction", "'operator <' with an invalid fraction" ); return false; } return rVal1.mpImpl->value < rVal2.mpImpl->value; } bool operator > ( const Fraction& rVal1, const Fraction& rVal2 ) { if ( !rVal1.mpImpl->valid || !rVal2.mpImpl->valid ) { SAL_WARN( "tools.fraction", "'operator >' with an invalid fraction" ); return false; } return rVal1.mpImpl->value > rVal2.mpImpl->value; } SvStream& ReadFraction( SvStream& rIStream, Fraction& rFract ) { sal_Int32 num(0), den(0); rIStream.ReadInt32( num ); rIStream.ReadInt32( den ); if ( den <= 0 ) { SAL_WARN( "tools.fraction", "'ReadFraction()' read an invalid fraction" ); rFract.mpImpl->valid = false; } else { rFract.mpImpl->value.assign( num, den ); rFract.mpImpl->valid = true; } return rIStream; } SvStream& WriteFraction( SvStream& rOStream, const Fraction& rFract ) { if ( !rFract.mpImpl->valid ) { SAL_WARN( "tools.fraction", "'WriteFraction()' write an invalid fraction" ); rOStream.WriteInt32( 0 ); rOStream.WriteInt32( -1 ); } else { #if OSL_DEBUG_LEVEL > 0 // can only write 32 bits - check that no data is lost! boost::rational copy(rFract.mpImpl->value); rational_ReduceInaccurate(copy, 32); assert(copy == rFract.mpImpl->value && "data loss in WriteFraction!"); #endif rOStream.WriteInt32( rFract.mpImpl->value.numerator() ); rOStream.WriteInt32( rFract.mpImpl->value.denominator() ); } return rOStream; } // If dVal > LONG_MAX or dVal < LONG_MIN, the rational throws a boost::bad_rational. // Otherwise, dVal and denominator are multiplied by 10, until one of them // is larger than (LONG_MAX / 10). // // NOTE: here we use 'long' due that only values in long range are valid. template static boost::rational rational_FromDouble(double dVal) { if ( dVal > std::numeric_limits::max() || dVal < std::numeric_limits::min() ) throw boost::bad_rational(); const long nMAX = std::numeric_limits::max() / 10; long nDen = 1; while ( std::abs( dVal ) < nMAX && nDen < nMAX ) { dVal *= 10; nDen *= 10; } return boost::rational( long(dVal), nDen ); } // Similar to clz_table that can be googled const char nbits_table[32] = { 32, 1, 23, 2, 29, 24, 14, 3, 30, 27, 25, 18, 20, 15, 10, 4, 31, 22, 28, 13, 26, 17, 19, 9, 21, 12, 16, 8, 11, 7, 6, 5 }; static int impl_NumberOfBits( unsigned long nNum ) { // http://en.wikipedia.org/wiki/De_Bruijn_sequence // background paper: Using de Bruijn Sequences to Index a 1 in a // Computer Word (1998) Charles E. Leiserson, // Harald Prokop, Keith H. Randall // (e.g. http://citeseer.ist.psu.edu/leiserson98using.html) const sal_uInt32 nDeBruijn = 0x7DCD629; if ( nNum == 0 ) return 0; // Get it to form like 0000001111111111b nNum |= ( nNum >> 1 ); nNum |= ( nNum >> 2 ); nNum |= ( nNum >> 4 ); nNum |= ( nNum >> 8 ); nNum |= ( nNum >> 16 ); sal_uInt32 nNumber; int nBonus = 0; #if SAL_TYPES_SIZEOFLONG == 4 nNumber = nNum; #elif SAL_TYPES_SIZEOFLONG == 8 nNum |= ( nNum >> 32 ); if ( nNum & 0x80000000 ) { nNumber = sal_uInt32( nNum >> 32 ); nBonus = 32; if ( nNumber == 0 ) return 32; } else nNumber = sal_uInt32( nNum & 0xFFFFFFFF ); #else #error "Unknown size of long!" #endif // De facto shift left of nDeBruijn using multiplication (nNumber // is all ones from topmost bit, thus nDeBruijn + (nDeBruijn * // nNumber) => nDeBruijn * (nNumber+1) clears all those bits to // zero, sets the next bit to one, and thus effectively shift-left // nDeBruijn by lg2(nNumber+1). This generates a distinct 5bit // sequence in the msb for each distinct position of the last // leading 0 bit - that's the property of a de Bruijn number. nNumber = nDeBruijn + ( nDeBruijn * nNumber ); // 5-bit window indexes the result return ( nbits_table[nNumber >> 27] ) + nBonus; } /** Inaccurate cancellation for a fraction. Clip both nominator and denominator to said number of bits. If either of those already have equal or less number of bits used, this method does nothing. @param nSignificantBits denotes, how many significant binary digits to maintain, in both nominator and denominator. @example ReduceInaccurate(8) has an error <1% [1/2^(8-1)] - the largest error occurs with the following pair of values: binary 1000000011111111111111111111111b/1000000000000000000000000000000b = 1082130431/1073741824 = approx. 1.007812499 A ReduceInaccurate(8) yields 1/1. */ template static void rational_ReduceInaccurate(boost::rational& rRational, unsigned nSignificantBits) { if ( !rRational ) return; // http://www.boost.org/doc/libs/release/libs/rational/rational.html#Internal%20representation const bool bNeg = ( rRational.numerator() < 0 ); T nMul = bNeg? -rRational.numerator(): rRational.numerator(); T nDiv = rRational.denominator(); DBG_ASSERT(nSignificantBits<65, "More than 64 bit of significance is overkill!"); // How much bits can we lose? const int nMulBitsToLose = std::max( ( impl_NumberOfBits( nMul ) - int( nSignificantBits ) ), 0 ); const int nDivBitsToLose = std::max( ( impl_NumberOfBits( nDiv ) - int( nSignificantBits ) ), 0 ); const int nToLose = std::min( nMulBitsToLose, nDivBitsToLose ); // Remove the bits nMul >>= nToLose; nDiv >>= nToLose; if ( !nMul || !nDiv ) { // Return without reduction OSL_FAIL( "Oops, we reduced too much..." ); return; } rRational.assign( bNeg? -T( nMul ): T( nMul ), nDiv ); } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */