Visual Components Library is responsible for the widgets (windowing, buttons, controls, file-pickers etc.) operating system abstraction, including basic rendering (e.g. the output device). VCL provides a graphical toolkit similar to gtk+, Qt, SWING etc. source/ + the main cross-platform chunk of source inc/ + cross-platform abstraction headers generic/ + shared helper code for *some* of the backends, actually built into vcl. headless/ + a backend renderer that draws to bitmaps android/ + Android backend osx/ + OS X backend ios/ + iOS backend quartz/ + code common to OS X and iOS win/ + Windows backend unx/ + X11 backend and its sub-platforms plugadapt/ + pluggable framework to select correct unx backend gtk/ + GTK2 support gtk3/ + GTK3.2+ support kde/ + KDE3 support kde4/ + KDE4 support generic/ + raw X11 support dtrans/ + "data transfer" - clipboard handling + http://stackoverflow.com/questions/3261379/getting-html-source-or-rich-text-from-the-x-clipboard for tips how to show the current content of the clipboard How the platform abstraction works + InitVCL calls 'CreateSalInstance' + ths is implemented by the compiled-in platform backend + it stores various bits of global state in the 'SalData' (inc/saldatabasic.hxx) structure but: + the SalInstance vtable is the primary outward facing gateway API for platform backends + It is a factory for: SalFrames, SalVirtualDevices, SalPrinters, Timers, the SolarMutexe, Drag&Drop and other objects, as well as the primary event loop wrapper. Note: references to "SV" in the code mean StarView, which was a portable C++ class library for GUIs, with very old roots, that was developed by StarDivision. Nowadays it is not used by anything except LibreOffice (and OpenOffice). == COM threading == The way COM is used in LO generally: - vcl InitSalData() puts main thread into Single-threaded Apartment (STA) - oslWorkerWrapperFunction() puts every thread spawned via oslCreateThread() into MTA (free-threaded) == EMF+ == emf+ is vector file format used by MSO and is successor of wmf and emf formats. see http://msdn.microsoft.com/en-us/library/cc230724.aspx for documentation. note that we didn't have this documentation from start, so part of the code predates to the time when we had guessed some parts and can be enhanced today. there also still many thing not complete emf+ is handled a bit differently compared to original emf/wmf files, because GDIMetafile is missing features we need (mostly related to transparency, argb colors, etc.) emf/wmf is translated to GDIMetafile in import filter vcl/source/filter/wmf and so special handling ends here emf+ is encapsulated into GDIMetafile inside comment records and parsed/rendered later, when it reaches cppcanvas. it is parsed and rendered in cppcanvas/source/mtfrenderer. also note that there are emf+-only and emf+-dual files. dual files contains both types of records (emf and emf+) for rendering the images. these can used also in applications which don't know emf+. in that case we must ignore emf records and use emf+ for rendering. for more details see documentation parsing: wmf/emf filter --> GDI metafile with emf+ in comments --> cppcanvas metafile renderer lately the GDIMetafile rendering path changed which also influenced emf+ rendering. now many things happen in drawing layer, where GDIMetafile is translated into drawing layer primitives. for metafiles with emf+ we let the mtfrenderer render them into bitmap (with transparency) and use this bitmap in drawinlayer. cleaner solution for current state would be to extend the drawing layer for missing features and move parsing into drawing layer (might be quite a lot of work). intermediary enhancement would be to know better the needed size/resolution of the bitmap, before we render emf+ into bitmap in drawing layer. Thorsten is working on the same problem with svg rendering, so hopefully his approach could be extended for emf+ as well. the places in drawing layer where we use canvas mtfrenderer to render into bitmaps can be found when you grep for GetUseCanvas. also look at vcl/source/gdi/gdimetafile.cxx where you can look for UseCanvas again. moving the parsing into drawinglayer might also have nice side effect for emf+-dual metafiles. in case the emf+ records are broken, it would be easier to use the duplicit emf rendering. fortunately we didn't run into such a broken emf+ file yet. but there were already few cases where we first though that the problem might be because of broken emf+ part. so far it always turned out to be another problem. rendering: before vcl --> cppcanvas metafile renderer --> vcl now drawing layer --> vcl --> cppcanvas metafile renderer --> vcl --> drawing layer another interesting part is actual rendering into canvas bitmap and using that bitmap later in code using vcl API.