/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include "sal/config.h" #include #include #include #include #include #include "quartz/salbmp.h" #include "quartz/salgdi.h" #include "fontsubset.hxx" #include "sft.hxx" #ifdef IOS #include "saldatabasic.hxx" #include "headless/svpbmp.hxx" #include #endif using namespace vcl; typedef std::vector ByteVector; static const basegfx::B2DPoint aHalfPointOfs ( 0.5, 0.5 ); static void AddPolygonToPath( CGMutablePathRef xPath, const ::basegfx::B2DPolygon& rPolygon, bool bClosePath, bool bPixelSnap, bool bLineDraw ) { // short circuit if there is nothing to do const int nPointCount = rPolygon.count(); if( nPointCount <= 0 ) { return; } (void)bPixelSnap; // TODO const CGAffineTransform* pTransform = NULL; const bool bHasCurves = rPolygon.areControlPointsUsed(); for( int nPointIdx = 0, nPrevIdx = 0;; nPrevIdx = nPointIdx++ ) { int nClosedIdx = nPointIdx; if( nPointIdx >= nPointCount ) { // prepare to close last curve segment if needed if( bClosePath && (nPointIdx == nPointCount) ) { nClosedIdx = 0; } else { break; } } ::basegfx::B2DPoint aPoint = rPolygon.getB2DPoint( nClosedIdx ); if( bPixelSnap) { // snap device coordinates to full pixels aPoint.setX( basegfx::fround( aPoint.getX() ) ); aPoint.setY( basegfx::fround( aPoint.getY() ) ); } if( bLineDraw ) { aPoint += aHalfPointOfs; } if( !nPointIdx ) { // first point => just move there CGPathMoveToPoint( xPath, pTransform, aPoint.getX(), aPoint.getY() ); continue; } bool bPendingCurve = false; if( bHasCurves ) { bPendingCurve = rPolygon.isNextControlPointUsed( nPrevIdx ); bPendingCurve |= rPolygon.isPrevControlPointUsed( nClosedIdx ); } if( !bPendingCurve ) // line segment { CGPathAddLineToPoint( xPath, pTransform, aPoint.getX(), aPoint.getY() ); } else // cubic bezier segment { basegfx::B2DPoint aCP1 = rPolygon.getNextControlPoint( nPrevIdx ); basegfx::B2DPoint aCP2 = rPolygon.getPrevControlPoint( nClosedIdx ); if( bLineDraw ) { aCP1 += aHalfPointOfs; aCP2 += aHalfPointOfs; } CGPathAddCurveToPoint( xPath, pTransform, aCP1.getX(), aCP1.getY(), aCP2.getX(), aCP2.getY(), aPoint.getX(), aPoint.getY() ); } } if( bClosePath ) { CGPathCloseSubpath( xPath ); } } static void AddPolyPolygonToPath( CGMutablePathRef xPath, const ::basegfx::B2DPolyPolygon& rPolyPoly, bool bPixelSnap, bool bLineDraw ) { // short circuit if there is nothing to do const int nPolyCount = rPolyPoly.count(); if( nPolyCount <= 0 ) { return; } for( int nPolyIdx = 0; nPolyIdx < nPolyCount; ++nPolyIdx ) { const ::basegfx::B2DPolygon rPolygon = rPolyPoly.getB2DPolygon( nPolyIdx ); AddPolygonToPath( xPath, rPolygon, true, bPixelSnap, bLineDraw ); } } bool AquaSalGraphics::CreateFontSubset( const OUString& rToFile, const PhysicalFontFace* pFontData, sal_GlyphId* pGlyphIds, sal_uInt8* pEncoding, sal_Int32* pGlyphWidths, int nGlyphCount, FontSubsetInfo& rInfo ) { // TODO: move more of the functionality here into the generic subsetter code // prepare the requested file name for writing the font-subset file OUString aSysPath; if( osl_File_E_None != osl_getSystemPathFromFileURL( rToFile.pData, &aSysPath.pData ) ) return false; const rtl_TextEncoding aThreadEncoding = osl_getThreadTextEncoding(); const OString aToFile( OUStringToOString( aSysPath, aThreadEncoding ) ); // get the raw-bytes from the font to be subset ByteVector aBuffer; bool bCffOnly = false; if( !GetRawFontData( pFontData, aBuffer, &bCffOnly ) ) return false; // handle CFF-subsetting if( bCffOnly ) { // provide the raw-CFF data to the subsetter ByteCount nCffLen = aBuffer.size(); rInfo.LoadFont( FontSubsetInfo::CFF_FONT, &aBuffer[0], nCffLen ); // NOTE: assuming that all glyphids requested on Aqua are fully translated // make the subsetter provide the requested subset FILE* pOutFile = fopen( aToFile.getStr(), "wb" ); bool bRC = rInfo.CreateFontSubset( FontSubsetInfo::TYPE1_PFB, pOutFile, NULL, pGlyphIds, pEncoding, nGlyphCount, pGlyphWidths ); fclose( pOutFile ); return bRC; } // TODO: modernize psprint's horrible fontsubset C-API // this probably only makes sense after the switch to another SCM // that can preserve change history after file renames // prepare data for psprint's font subsetter TrueTypeFont* pSftFont = NULL; int nRC = ::OpenTTFontBuffer( (void*)&aBuffer[0], aBuffer.size(), 0, &pSftFont); if( nRC != SF_OK ) return false; // get details about the subsetted font TTGlobalFontInfo aTTInfo; ::GetTTGlobalFontInfo( pSftFont, &aTTInfo ); rInfo.m_nFontType = FontSubsetInfo::SFNT_TTF; rInfo.m_aPSName = OUString( aTTInfo.psname, std::strlen(aTTInfo.psname), RTL_TEXTENCODING_UTF8 ); rInfo.m_aFontBBox = Rectangle( Point( aTTInfo.xMin, aTTInfo.yMin ), Point( aTTInfo.xMax, aTTInfo.yMax ) ); rInfo.m_nCapHeight = aTTInfo.yMax; // Well ... rInfo.m_nAscent = aTTInfo.winAscent; rInfo.m_nDescent = aTTInfo.winDescent; // mac fonts usually do not have an OS2-table // => get valid ascent/descent values from other tables if( !rInfo.m_nAscent ) rInfo.m_nAscent = +aTTInfo.typoAscender; if( !rInfo.m_nAscent ) rInfo.m_nAscent = +aTTInfo.ascender; if( !rInfo.m_nDescent ) rInfo.m_nDescent = +aTTInfo.typoDescender; if( !rInfo.m_nDescent ) rInfo.m_nDescent = -aTTInfo.descender; // subset glyphs and get their properties // take care that subset fonts require the NotDef glyph in pos 0 int nOrigCount = nGlyphCount; sal_uInt16 aShortIDs[ 256 ]; sal_uInt8 aTempEncs[ 256 ]; int nNotDef = -1; for( int i = 0; i < nGlyphCount; ++i ) { aTempEncs[i] = pEncoding[i]; sal_GlyphId aGlyphId(pGlyphIds[i] & GF_IDXMASK); if( pGlyphIds[i] & GF_ISCHAR ) { bool bVertical = (pGlyphIds[i] & GF_ROTMASK) != 0; aGlyphId = ::MapChar( pSftFont, static_cast(aGlyphId), bVertical ); if( aGlyphId == 0 && pFontData->IsSymbolFont() ) { // #i12824# emulate symbol aliasing U+FXXX <-> U+0XXX aGlyphId = pGlyphIds[i] & GF_IDXMASK; aGlyphId = (aGlyphId & 0xF000) ? (aGlyphId & 0x00FF) : (aGlyphId | 0xF000 ); aGlyphId = ::MapChar( pSftFont, static_cast(aGlyphId), bVertical ); } } aShortIDs[i] = static_cast( aGlyphId ); if( !aGlyphId ) if( nNotDef < 0 ) nNotDef = i; // first NotDef glyph found } if( nNotDef != 0 ) { // add fake NotDef glyph if needed if( nNotDef < 0 ) nNotDef = nGlyphCount++; // NotDef glyph must be in pos 0 => swap glyphids aShortIDs[ nNotDef ] = aShortIDs[0]; aTempEncs[ nNotDef ] = aTempEncs[0]; aShortIDs[0] = 0; aTempEncs[0] = 0; } DBG_ASSERT( nGlyphCount < 257, "too many glyphs for subsetting" ); // TODO: where to get bVertical? const bool bVertical = false; // fill the pGlyphWidths array // while making sure that the NotDef glyph is at index==0 TTSimpleGlyphMetrics* pGlyphMetrics = ::GetTTSimpleGlyphMetrics( pSftFont, aShortIDs, nGlyphCount, bVertical ); if( !pGlyphMetrics ) return false; sal_uInt16 nNotDefAdv = pGlyphMetrics[0].adv; pGlyphMetrics[0].adv = pGlyphMetrics[nNotDef].adv; pGlyphMetrics[nNotDef].adv = nNotDefAdv; for( int i = 0; i < nOrigCount; ++i ) pGlyphWidths[i] = pGlyphMetrics[i].adv; free( pGlyphMetrics ); // write subset into destination file nRC = ::CreateTTFromTTGlyphs( pSftFont, aToFile.getStr(), aShortIDs, aTempEncs, nGlyphCount, 0, NULL, 0 ); ::CloseTTFont(pSftFont); return (nRC == SF_OK); } static inline void alignLinePoint( const SalPoint* i_pIn, float& o_fX, float& o_fY ) { o_fX = static_cast(i_pIn->mnX ) + 0.5; o_fY = static_cast(i_pIn->mnY ) + 0.5; } void AquaSalGraphics::copyBits( const SalTwoRect& rPosAry, SalGraphics *pSrcGraphics ) { if( !pSrcGraphics ) { pSrcGraphics = this; } //from unix salgdi2.cxx //[FIXME] find a better way to prevent calc from crashing when width and height are negative if( rPosAry.mnSrcWidth <= 0 || rPosAry.mnSrcHeight <= 0 || rPosAry.mnDestWidth <= 0 || rPosAry.mnDestHeight <= 0 ) { return; } // accelerate trivial operations /*const*/ AquaSalGraphics* pSrc = static_cast(pSrcGraphics); const bool bSameGraphics = (this == pSrc) #ifdef MACOSX || (mbWindow && mpFrame && pSrc->mbWindow && (mpFrame == pSrc->mpFrame)) #endif ; if( bSameGraphics && (rPosAry.mnSrcWidth == rPosAry.mnDestWidth) && (rPosAry.mnSrcHeight == rPosAry.mnDestHeight)) { // short circuit if there is nothing to do if( (rPosAry.mnSrcX == rPosAry.mnDestX) && (rPosAry.mnSrcY == rPosAry.mnDestY)) return; // use copyArea() if source and destination context are identical copyArea( rPosAry.mnDestX, rPosAry.mnDestY, rPosAry.mnSrcX, rPosAry.mnSrcY, rPosAry.mnSrcWidth, rPosAry.mnSrcHeight, 0 ); return; } ApplyXorContext(); pSrc->ApplyXorContext(); DBG_ASSERT( pSrc->mxLayer!=NULL, "AquaSalGraphics::copyBits() from non-layered graphics" ); const CGPoint aDstPoint = CGPointMake(+rPosAry.mnDestX - rPosAry.mnSrcX, rPosAry.mnDestY - rPosAry.mnSrcY); if( (rPosAry.mnSrcWidth == rPosAry.mnDestWidth && rPosAry.mnSrcHeight == rPosAry.mnDestHeight) && (!mnBitmapDepth || (aDstPoint.x + pSrc->mnWidth) <= mnWidth) && pSrc->mxLayer ) // workaround a Quartz crasher { // in XOR mode the drawing context is redirected to the XOR mask // if source and target are identical then copyBits() paints onto the target context though CGContextRef xCopyContext = mrContext; if( mpXorEmulation && mpXorEmulation->IsEnabled() ) { if( pSrcGraphics == this ) { xCopyContext = mpXorEmulation->GetTargetContext(); } } CGContextSaveGState( xCopyContext ); const CGRect aDstRect = CGRectMake(rPosAry.mnDestX, rPosAry.mnDestY, rPosAry.mnDestWidth, rPosAry.mnDestHeight); CGContextClipToRect( xCopyContext, aDstRect ); // draw at new destination // NOTE: flipped drawing gets disabled for this, else the subimage would be drawn upside down if( pSrc->IsFlipped() ) { CGContextTranslateCTM( xCopyContext, 0, +mnHeight ); CGContextScaleCTM( xCopyContext, +1, -1 ); } // TODO: pSrc->size() != this->size() CGContextDrawLayerAtPoint( xCopyContext, aDstPoint, pSrc->mxLayer ); CGContextRestoreGState( xCopyContext ); // mark the destination rectangle as updated RefreshRect( aDstRect ); } else { SalBitmap* pBitmap = pSrc->getBitmap( rPosAry.mnSrcX, rPosAry.mnSrcY, rPosAry.mnSrcWidth, rPosAry.mnSrcHeight ); if( pBitmap ) { SalTwoRect aPosAry( rPosAry ); aPosAry.mnSrcX = 0; aPosAry.mnSrcY = 0; drawBitmap( aPosAry, *pBitmap ); delete pBitmap; } } } static void DrawPattern50( void*, CGContextRef rContext ) { static const CGRect aRects[2] = { { {0,0}, { 2, 2 } }, { { 2, 2 }, { 2, 2 } } }; CGContextAddRects( rContext, aRects, 2 ); CGContextFillPath( rContext ); } static void getBoundRect( sal_uInt32 nPoints, const SalPoint *pPtAry, long &rX, long& rY, long& rWidth, long& rHeight ) { long nX1 = pPtAry->mnX; long nX2 = nX1; long nY1 = pPtAry->mnY; long nY2 = nY1; for( sal_uInt32 n = 1; n < nPoints; n++ ) { if( pPtAry[n].mnX < nX1 ) { nX1 = pPtAry[n].mnX; } else if( pPtAry[n].mnX > nX2 ) { nX2 = pPtAry[n].mnX; } if( pPtAry[n].mnY < nY1 ) { nY1 = pPtAry[n].mnY; } else if( pPtAry[n].mnY > nY2 ) { nY2 = pPtAry[n].mnY; } } rX = nX1; rY = nY1; rWidth = nX2 - nX1 + 1; rHeight = nY2 - nY1 + 1; } static SalColor ImplGetROPSalColor( SalROPColor nROPColor ) { SalColor nSalColor; if ( nROPColor == SAL_ROP_0 ) { nSalColor = MAKE_SALCOLOR( 0, 0, 0 ); } else { nSalColor = MAKE_SALCOLOR( 255, 255, 255 ); } return nSalColor; } // apply the XOR mask to the target context if active and dirty void AquaSalGraphics::ApplyXorContext() { if( !mpXorEmulation ) { return; } if( mpXorEmulation->UpdateTarget() ) { RefreshRect( 0, 0, mnWidth, mnHeight ); // TODO: refresh minimal changerect } } void AquaSalGraphics::copyArea( long nDstX, long nDstY,long nSrcX, long nSrcY, long nSrcWidth, long nSrcHeight, sal_uInt16 /*nFlags*/ ) { #ifdef IOS if( !mxLayer ) return; #endif ApplyXorContext(); DBG_ASSERT( mxLayer!=NULL, "AquaSalGraphics::copyArea() for non-layered graphics" ); // in XOR mode the drawing context is redirected to the XOR mask // copyArea() always works on the target context though CGContextRef xCopyContext = mrContext; if( mpXorEmulation && mpXorEmulation->IsEnabled() ) { xCopyContext = mpXorEmulation->GetTargetContext(); } // drawing a layer onto its own context causes trouble on OSX => copy it first // TODO: is it possible to get rid of this unneeded copy more often? // e.g. on OSX>=10.5 only this situation causes problems: // mnBitmapDepth && (aDstPoint.x + pSrc->mnWidth) > mnWidth CGLayerRef xSrcLayer = mxLayer; // TODO: if( mnBitmapDepth > 0 ) { const CGSize aSrcSize = CGSizeMake(nSrcWidth, nSrcHeight); xSrcLayer = CGLayerCreateWithContext( xCopyContext, aSrcSize, NULL ); const CGContextRef xSrcContext = CGLayerGetContext( xSrcLayer ); CGPoint aSrcPoint = CGPointMake(-nSrcX, -nSrcY); if( IsFlipped() ) { CGContextTranslateCTM( xSrcContext, 0, +nSrcHeight ); CGContextScaleCTM( xSrcContext, +1, -1 ); aSrcPoint.y = (nSrcY + nSrcHeight) - mnHeight; } CGContextDrawLayerAtPoint( xSrcContext, aSrcPoint, mxLayer ); } // draw at new destination const CGPoint aDstPoint = CGPointMake(+nDstX, +nDstY); CGContextDrawLayerAtPoint( xCopyContext, aDstPoint, xSrcLayer ); // cleanup if( xSrcLayer != mxLayer ) { CGLayerRelease( xSrcLayer ); } // mark the destination rectangle as updated RefreshRect( nDstX, nDstY, nSrcWidth, nSrcHeight ); } #ifndef IOS void AquaSalGraphics::copyResolution( AquaSalGraphics& rGraphics ) { if( !rGraphics.mnRealDPIY && rGraphics.mbWindow && rGraphics.mpFrame ) { rGraphics.initResolution( rGraphics.mpFrame->getNSWindow() ); } mnRealDPIX = rGraphics.mnRealDPIX; mnRealDPIY = rGraphics.mnRealDPIY; } #endif bool AquaSalGraphics::drawAlphaBitmap( const SalTwoRect& rTR, const SalBitmap& rSrcBitmap, const SalBitmap& rAlphaBmp ) { // An image mask can't have a depth > 8 bits (should be 1 to 8 bits) if( rAlphaBmp.GetBitCount() > 8 ) { return false; } // are these two tests really necessary? (see vcl/unx/source/gdi/salgdi2.cxx) // horizontal/vertical mirroring not implemented yet if( rTR.mnDestWidth < 0 || rTR.mnDestHeight < 0 ) { return false; } const QuartzSalBitmap& rSrcSalBmp = static_cast(rSrcBitmap); const QuartzSalBitmap& rMaskSalBmp = static_cast(rAlphaBmp); CGImageRef xMaskedImage = rSrcSalBmp.CreateWithMask( rMaskSalBmp, rTR.mnSrcX, rTR.mnSrcY, rTR.mnSrcWidth, rTR.mnSrcHeight ); if( !xMaskedImage ) { return false; } if ( CheckContext() ) { const CGRect aDstRect = CGRectMake( rTR.mnDestX, rTR.mnDestY, rTR.mnDestWidth, rTR.mnDestHeight); CGContextDrawImage( mrContext, aDstRect, xMaskedImage ); RefreshRect( aDstRect ); } CGImageRelease(xMaskedImage); return true; } bool AquaSalGraphics::drawTransformedBitmap( const basegfx::B2DPoint& rNull, const basegfx::B2DPoint& rX, const basegfx::B2DPoint& rY, const SalBitmap& rSrcBitmap, const SalBitmap* pAlphaBmp ) { if( !CheckContext() ) return true; // get the Quartz image CGImageRef xImage = NULL; const Size aSize = rSrcBitmap.GetSize(); const QuartzSalBitmap& rSrcSalBmp = static_cast(rSrcBitmap); const QuartzSalBitmap* pMaskSalBmp = static_cast(pAlphaBmp); if( !pMaskSalBmp) xImage = rSrcSalBmp.CreateCroppedImage( 0, 0, (int)aSize.Width(), (int)aSize.Height() ); else xImage = rSrcSalBmp.CreateWithMask( *pMaskSalBmp, 0, 0, (int)aSize.Width(), (int)aSize.Height() ); if( !xImage ) return false; // setup the image transformation // using the rNull,rX,rY points as destinations for the (0,0),(0,Width),(Height,0) source points CGContextSaveGState( mrContext ); const basegfx::B2DVector aXRel = rX - rNull; const basegfx::B2DVector aYRel = rY - rNull; const CGAffineTransform aCGMat = CGAffineTransformMake( aXRel.getX()/aSize.Width(), aXRel.getY()/aSize.Width(), aYRel.getX()/aSize.Height(), aYRel.getY()/aSize.Height(), rNull.getX(), rNull.getY()); CGContextConcatCTM( mrContext, aCGMat ); // draw the transformed image const CGRect aSrcRect = CGRectMake(0, 0, aSize.Width(), aSize.Height()); CGContextDrawImage( mrContext, aSrcRect, xImage ); CGImageRelease( xImage ); // restore the Quartz graphics state CGContextRestoreGState(mrContext); // mark the destination as painted const CGRect aDstRect = CGRectApplyAffineTransform( aSrcRect, aCGMat ); RefreshRect( aDstRect ); return true; } bool AquaSalGraphics::drawAlphaRect( long nX, long nY, long nWidth, long nHeight, sal_uInt8 nTransparency ) { if( !CheckContext() ) { return true; } // save the current state CGContextSaveGState( mrContext ); CGContextSetAlpha( mrContext, (100-nTransparency) * (1.0/100) ); CGRect aRect = CGRectMake(nX, nY, nWidth-1, nHeight-1); if( IsPenVisible() ) { aRect.origin.x += 0.5; aRect.origin.y += 0.5; } CGContextBeginPath( mrContext ); CGContextAddRect( mrContext, aRect ); CGContextDrawPath( mrContext, kCGPathFill ); // restore state CGContextRestoreGState(mrContext); RefreshRect( aRect ); return true; } void AquaSalGraphics::drawBitmap( const SalTwoRect& rPosAry, const SalBitmap& rSalBitmap ) { if( !CheckContext() ) { return; } const QuartzSalBitmap& rBitmap = static_cast(rSalBitmap); CGImageRef xImage = rBitmap.CreateCroppedImage( (int)rPosAry.mnSrcX, (int)rPosAry.mnSrcY, (int)rPosAry.mnSrcWidth, (int)rPosAry.mnSrcHeight ); if( !xImage ) { return; } const CGRect aDstRect = CGRectMake(rPosAry.mnDestX, rPosAry.mnDestY, rPosAry.mnDestWidth, rPosAry.mnDestHeight); CGContextDrawImage( mrContext, aDstRect, xImage ); CGImageRelease( xImage ); RefreshRect( aDstRect ); } void AquaSalGraphics::drawBitmap( const SalTwoRect& rPosAry, const SalBitmap& rSalBitmap,SalColor ) { OSL_FAIL("not implemented for color masking!"); drawBitmap( rPosAry, rSalBitmap ); } void AquaSalGraphics::drawBitmap( const SalTwoRect& rPosAry, const SalBitmap& rSalBitmap, const SalBitmap& rTransparentBitmap ) { if( !CheckContext() ) { return; } const QuartzSalBitmap& rBitmap = static_cast(rSalBitmap); const QuartzSalBitmap& rMask = static_cast(rTransparentBitmap); CGImageRef xMaskedImage( rBitmap.CreateWithMask( rMask, rPosAry.mnSrcX, rPosAry.mnSrcY, rPosAry.mnSrcWidth, rPosAry.mnSrcHeight ) ); if( !xMaskedImage ) { return; } const CGRect aDstRect = CGRectMake(rPosAry.mnDestX, rPosAry.mnDestY, rPosAry.mnDestWidth, rPosAry.mnDestHeight); CGContextDrawImage( mrContext, aDstRect, xMaskedImage ); CGImageRelease( xMaskedImage ); RefreshRect( aDstRect ); } #ifndef IOS bool AquaSalGraphics::drawEPS( long nX, long nY, long nWidth, long nHeight, void* pEpsData, sal_uLong nByteCount ) { // convert the raw data to an NSImageRef NSData* xNSData = [NSData dataWithBytes:(void*)pEpsData length:(int)nByteCount]; NSImageRep* xEpsImage = [NSEPSImageRep imageRepWithData: xNSData]; if( !xEpsImage ) { return false; } // get the target context if( !CheckContext() ) { return false; } // NOTE: flip drawing, else the nsimage would be drawn upside down CGContextSaveGState( mrContext ); // CGContextTranslateCTM( mrContext, 0, +mnHeight ); CGContextScaleCTM( mrContext, +1, -1 ); nY = /*mnHeight*/ - (nY + nHeight); // prepare the target context NSGraphicsContext* pOrigNSCtx = [NSGraphicsContext currentContext]; [pOrigNSCtx retain]; // create new context NSGraphicsContext* pDrawNSCtx = [NSGraphicsContext graphicsContextWithGraphicsPort: mrContext flipped: IsFlipped()]; // set it, setCurrentContext also releases the prviously set one [NSGraphicsContext setCurrentContext: pDrawNSCtx]; // draw the EPS const NSRect aDstRect = NSMakeRect( nX, nY, nWidth, nHeight); const BOOL bOK = [xEpsImage drawInRect: aDstRect]; // restore the NSGraphicsContext [NSGraphicsContext setCurrentContext: pOrigNSCtx]; [pOrigNSCtx release]; // restore the original retain count CGContextRestoreGState( mrContext ); // mark the destination rectangle as updated RefreshRect( aDstRect ); return bOK; } #endif void AquaSalGraphics::drawLine( long nX1, long nY1, long nX2, long nY2 ) { if( nX1 == nX2 && nY1 == nY2 ) { // #i109453# platform independent code expects at least one pixel to be drawn drawPixel( nX1, nY1 ); return; } if( !CheckContext() ) { return; } CGContextBeginPath( mrContext ); CGContextMoveToPoint( mrContext, static_cast(nX1)+0.5, static_cast(nY1)+0.5 ); CGContextAddLineToPoint( mrContext, static_cast(nX2)+0.5, static_cast(nY2)+0.5 ); CGContextDrawPath( mrContext, kCGPathStroke ); Rectangle aRefreshRect( nX1, nY1, nX2, nY2 ); (void) aRefreshRect; // Is a call to RefreshRect( aRefreshRect ) missing here? } void AquaSalGraphics::drawMask( const SalTwoRect& rPosAry, const SalBitmap& rSalBitmap, SalColor nMaskColor ) { if( !CheckContext() ) { return; } const QuartzSalBitmap& rBitmap = static_cast(rSalBitmap); CGImageRef xImage = rBitmap.CreateColorMask( rPosAry.mnSrcX, rPosAry.mnSrcY, rPosAry.mnSrcWidth, rPosAry.mnSrcHeight, nMaskColor ); if( !xImage ) { return; } const CGRect aDstRect = CGRectMake(rPosAry.mnDestX, rPosAry.mnDestY, rPosAry.mnDestWidth, rPosAry.mnDestHeight); CGContextDrawImage( mrContext, aDstRect, xImage ); CGImageRelease( xImage ); RefreshRect( aDstRect ); } void AquaSalGraphics::drawPixel( long nX, long nY ) { // draw pixel with current line color ImplDrawPixel( nX, nY, maLineColor ); } void AquaSalGraphics::drawPixel( long nX, long nY, SalColor nSalColor ) { const RGBAColor aPixelColor( nSalColor ); ImplDrawPixel( nX, nY, aPixelColor ); } bool AquaSalGraphics::drawPolyLine( const ::basegfx::B2DPolygon& rPolyLine, double fTransparency, const ::basegfx::B2DVector& rLineWidths, basegfx::B2DLineJoin eLineJoin, com::sun::star::drawing::LineCap eLineCap) { // short circuit if there is nothing to do const int nPointCount = rPolyLine.count(); if( nPointCount <= 0 ) { return true; } // reject requests that cannot be handled yet if( rLineWidths.getX() != rLineWidths.getY() ) { return false; } // #i101491# Aqua does not support B2DLINEJOIN_NONE; return false to use // the fallback (own geometry preparation) // #i104886# linejoin-mode and thus the above only applies to "fat" lines if( (basegfx::B2DLINEJOIN_NONE == eLineJoin) && (rLineWidths.getX() > 1.3) ) { return false; } // setup line attributes CGLineJoin aCGLineJoin = kCGLineJoinMiter; switch( eLineJoin ) { case ::basegfx::B2DLINEJOIN_NONE: aCGLineJoin = /*TODO?*/kCGLineJoinMiter; break; case ::basegfx::B2DLINEJOIN_MIDDLE: aCGLineJoin = /*TODO?*/kCGLineJoinMiter; break; case ::basegfx::B2DLINEJOIN_BEVEL: aCGLineJoin = kCGLineJoinBevel; break; case ::basegfx::B2DLINEJOIN_MITER: aCGLineJoin = kCGLineJoinMiter; break; case ::basegfx::B2DLINEJOIN_ROUND: aCGLineJoin = kCGLineJoinRound; break; } // setup cap attribute CGLineCap aCGLineCap(kCGLineCapButt); switch(eLineCap) { default: // com::sun::star::drawing::LineCap_BUTT: { aCGLineCap = kCGLineCapButt; break; } case com::sun::star::drawing::LineCap_ROUND: { aCGLineCap = kCGLineCapRound; break; } case com::sun::star::drawing::LineCap_SQUARE: { aCGLineCap = kCGLineCapSquare; break; } } // setup poly-polygon path CGMutablePathRef xPath = CGPathCreateMutable(); AddPolygonToPath( xPath, rPolyLine, rPolyLine.isClosed(), !getAntiAliasB2DDraw(), true ); const CGRect aRefreshRect = CGPathGetBoundingBox( xPath ); // #i97317# workaround for Quartz having problems with drawing small polygons if( ! ((aRefreshRect.size.width <= 0.125) && (aRefreshRect.size.height <= 0.125)) ) { // use the path to prepare the graphics context CGContextSaveGState( mrContext ); CGContextAddPath( mrContext, xPath ); // draw path with antialiased line CGContextSetShouldAntialias( mrContext, true ); CGContextSetAlpha( mrContext, 1.0 - fTransparency ); CGContextSetLineJoin( mrContext, aCGLineJoin ); CGContextSetLineCap( mrContext, aCGLineCap ); CGContextSetLineWidth( mrContext, rLineWidths.getX() ); CGContextDrawPath( mrContext, kCGPathStroke ); CGContextRestoreGState( mrContext ); // mark modified rectangle as updated RefreshRect( aRefreshRect ); } CGPathRelease( xPath ); return true; } bool AquaSalGraphics::drawPolyLineBezier( sal_uInt32, const SalPoint*, const sal_uInt8* ) { return false; } bool AquaSalGraphics::drawPolyPolygon( const ::basegfx::B2DPolyPolygon& rPolyPoly, double fTransparency ) { // short circuit if there is nothing to do const int nPolyCount = rPolyPoly.count(); if( nPolyCount <= 0 ) { return true; } // ignore invisible polygons if( (fTransparency >= 1.0) || (fTransparency < 0) ) { return true; } // setup poly-polygon path CGMutablePathRef xPath = CGPathCreateMutable(); for( int nPolyIdx = 0; nPolyIdx < nPolyCount; ++nPolyIdx ) { const ::basegfx::B2DPolygon rPolygon = rPolyPoly.getB2DPolygon( nPolyIdx ); AddPolygonToPath( xPath, rPolygon, true, !getAntiAliasB2DDraw(), IsPenVisible() ); } const CGRect aRefreshRect = CGPathGetBoundingBox( xPath ); // #i97317# workaround for Quartz having problems with drawing small polygons if( ! ((aRefreshRect.size.width <= 0.125) && (aRefreshRect.size.height <= 0.125)) ) { // prepare drawing mode CGPathDrawingMode eMode; if( IsBrushVisible() && IsPenVisible() ) { eMode = kCGPathEOFillStroke; } else if( IsPenVisible() ) { eMode = kCGPathStroke; } else if( IsBrushVisible() ) { eMode = kCGPathEOFill; } else { return true; } // use the path to prepare the graphics context CGContextSaveGState( mrContext ); CGContextBeginPath( mrContext ); CGContextAddPath( mrContext, xPath ); // draw path with antialiased polygon CGContextSetShouldAntialias( mrContext, true ); CGContextSetAlpha( mrContext, 1.0 - fTransparency ); CGContextDrawPath( mrContext, eMode ); CGContextRestoreGState( mrContext ); // mark modified rectangle as updated RefreshRect( aRefreshRect ); } CGPathRelease( xPath ); return true; } void AquaSalGraphics::drawPolyPolygon( sal_uInt32 nPolyCount, const sal_uInt32 *pPoints, PCONSTSALPOINT *ppPtAry ) { if( nPolyCount <= 0 ) return; if( !CheckContext() ) return; // find bound rect long leftX = 0, topY = 0, maxWidth = 0, maxHeight = 0; getBoundRect( pPoints[0], ppPtAry[0], leftX, topY, maxWidth, maxHeight ); for( sal_uInt32 n = 1; n < nPolyCount; n++ ) { long nX = leftX, nY = topY, nW = maxWidth, nH = maxHeight; getBoundRect( pPoints[n], ppPtAry[n], nX, nY, nW, nH ); if( nX < leftX ) { maxWidth += leftX - nX; leftX = nX; } if( nY < topY ) { maxHeight += topY - nY; topY = nY; } if( nX + nW > leftX + maxWidth ) { maxWidth = nX + nW - leftX; } if( nY + nH > topY + maxHeight ) { maxHeight = nY + nH - topY; } } // prepare drawing mode CGPathDrawingMode eMode; if( IsBrushVisible() && IsPenVisible() ) { eMode = kCGPathEOFillStroke; } else if( IsPenVisible() ) { eMode = kCGPathStroke; } else if( IsBrushVisible() ) { eMode = kCGPathEOFill; } else { return; } // convert to CGPath CGContextBeginPath( mrContext ); if( IsPenVisible() ) { for( sal_uInt32 nPoly = 0; nPoly < nPolyCount; nPoly++ ) { const sal_uInt32 nPoints = pPoints[nPoly]; if( nPoints > 1 ) { const SalPoint *pPtAry = ppPtAry[nPoly]; float fX, fY; alignLinePoint( pPtAry, fX, fY ); CGContextMoveToPoint( mrContext, fX, fY ); pPtAry++; for( sal_uInt32 nPoint = 1; nPoint < nPoints; nPoint++, pPtAry++ ) { alignLinePoint( pPtAry, fX, fY ); CGContextAddLineToPoint( mrContext, fX, fY ); } CGContextClosePath(mrContext); } } } else { for( sal_uInt32 nPoly = 0; nPoly < nPolyCount; nPoly++ ) { const sal_uInt32 nPoints = pPoints[nPoly]; if( nPoints > 1 ) { const SalPoint *pPtAry = ppPtAry[nPoly]; CGContextMoveToPoint( mrContext, pPtAry->mnX, pPtAry->mnY ); pPtAry++; for( sal_uInt32 nPoint = 1; nPoint < nPoints; nPoint++, pPtAry++ ) { CGContextAddLineToPoint( mrContext, pPtAry->mnX, pPtAry->mnY ); } CGContextClosePath(mrContext); } } } CGContextDrawPath( mrContext, eMode ); RefreshRect( leftX, topY, maxWidth, maxHeight ); } void AquaSalGraphics::drawPolygon( sal_uInt32 nPoints, const SalPoint *pPtAry ) { if( nPoints <= 1 ) return; if( !CheckContext() ) return; long nX = 0, nY = 0, nWidth = 0, nHeight = 0; getBoundRect( nPoints, pPtAry, nX, nY, nWidth, nHeight ); CGPathDrawingMode eMode; if( IsBrushVisible() && IsPenVisible() ) { eMode = kCGPathEOFillStroke; } else if( IsPenVisible() ) { eMode = kCGPathStroke; } else if( IsBrushVisible() ) { eMode = kCGPathEOFill; } else { return; } CGContextBeginPath( mrContext ); if( IsPenVisible() ) { float fX, fY; alignLinePoint( pPtAry, fX, fY ); CGContextMoveToPoint( mrContext, fX, fY ); pPtAry++; for( sal_uInt32 nPoint = 1; nPoint < nPoints; nPoint++, pPtAry++ ) { alignLinePoint( pPtAry, fX, fY ); CGContextAddLineToPoint( mrContext, fX, fY ); } } else { CGContextMoveToPoint( mrContext, pPtAry->mnX, pPtAry->mnY ); pPtAry++; for( sal_uInt32 nPoint = 1; nPoint < nPoints; nPoint++, pPtAry++ ) { CGContextAddLineToPoint( mrContext, pPtAry->mnX, pPtAry->mnY ); } } CGContextClosePath( mrContext ); CGContextDrawPath( mrContext, eMode ); RefreshRect( nX, nY, nWidth, nHeight ); } bool AquaSalGraphics::drawPolygonBezier( sal_uInt32, const SalPoint*, const sal_uInt8* ) { return false; } bool AquaSalGraphics::drawPolyPolygonBezier( sal_uInt32, const sal_uInt32*, const SalPoint* const*, const sal_uInt8* const* ) { return false; } void AquaSalGraphics::drawRect( long nX, long nY, long nWidth, long nHeight ) { if( !CheckContext() ) { return; } CGRect aRect( CGRectMake(nX, nY, nWidth, nHeight) ); if( IsPenVisible() ) { aRect.origin.x += 0.5; aRect.origin.y += 0.5; aRect.size.width -= 1; aRect.size.height -= 1; } if( IsBrushVisible() ) { CGContextFillRect( mrContext, aRect ); } if( IsPenVisible() ) { CGContextStrokeRect( mrContext, aRect ); } RefreshRect( nX, nY, nWidth, nHeight ); } void AquaSalGraphics::drawPolyLine( sal_uInt32 nPoints, const SalPoint *pPtAry ) { if( nPoints < 1 ) { return; } if( !CheckContext() ) { return; } long nX = 0, nY = 0, nWidth = 0, nHeight = 0; getBoundRect( nPoints, pPtAry, nX, nY, nWidth, nHeight ); float fX, fY; CGContextBeginPath( mrContext ); alignLinePoint( pPtAry, fX, fY ); CGContextMoveToPoint( mrContext, fX, fY ); pPtAry++; for( sal_uInt32 nPoint = 1; nPoint < nPoints; nPoint++, pPtAry++ ) { alignLinePoint( pPtAry, fX, fY ); CGContextAddLineToPoint( mrContext, fX, fY ); } CGContextDrawPath( mrContext, kCGPathStroke ); RefreshRect( nX, nY, nWidth, nHeight ); } sal_uInt16 AquaSalGraphics::GetBitCount() const { sal_uInt16 nBits = mnBitmapDepth ? mnBitmapDepth : 32;//24; return nBits; } SalBitmap* AquaSalGraphics::getBitmap( long nX, long nY, long nDX, long nDY ) { #ifdef IOS if (!mbForeignContext && m_aDevice != NULL) { // on ios virtual device are Svp so use Svp bitmap to get the content basegfx::B2IBox aRect( nX, nY, nX+nDX, nY+nDY ); basebmp::BitmapDeviceSharedPtr aSubSet = basebmp::subsetBitmapDevice(m_aDevice , aRect ); SvpSalBitmap* pSalBitmap = new SvpSalBitmap; pSalBitmap->setBitmap(aSubSet); BitmapBuffer* pBuffer = pSalBitmap->AcquireBuffer(true); QuartzSalBitmap* pBitmap = new QuartzSalBitmap; if( !pBitmap->Create(*pBuffer)) { delete pBitmap; pBitmap = NULL; } pSalBitmap->ReleaseBuffer(pBuffer, true); delete pSalBitmap; return pBitmap; } else if (mbForeignContext) { //if using external context like on ios, check if we can get a backing image and copy it CGImageRef backImage = CGBitmapContextCreateImage(mrContext); if (backImage) { QuartzSalBitmap* pBitmap = new QuartzSalBitmap; if( !pBitmap->Create(backImage, mnBitmapDepth, nX, nY, nDX, nDY)) { delete pBitmap; pBitmap = NULL; } CGImageRelease(backImage); return pBitmap; } return NULL; } #endif DBG_ASSERT( mxLayer, "AquaSalGraphics::getBitmap() with no layer" ); ApplyXorContext(); QuartzSalBitmap* pBitmap = new QuartzSalBitmap; if( !pBitmap->Create( mxLayer, mnBitmapDepth, nX, nY, nDX, nDY) ) { delete pBitmap; pBitmap = NULL; } return pBitmap; } #ifndef IOS SystemGraphicsData AquaSalGraphics::GetGraphicsData() const { SystemGraphicsData aRes; aRes.nSize = sizeof(aRes); aRes.rCGContext = mrContext; return aRes; } long AquaSalGraphics::GetGraphicsWidth() const { long w = 0; if( mrContext && (mbWindow || mbVirDev) ) { w = mnWidth; } if( w == 0 ) { if( mbWindow && mpFrame ) { w = mpFrame->maGeometry.nWidth; } } return w; } SalColor AquaSalGraphics::getPixel( long nX, long nY ) { // return default value on printers or when out of bounds if( !mxLayer || (nX < 0) || (nX >= mnWidth) || (nY < 0) || (nY >= mnHeight)) { return COL_BLACK; } // prepare creation of matching a CGBitmapContext CGColorSpaceRef aCGColorSpace = GetSalData()->mxRGBSpace; CGBitmapInfo aCGBmpInfo = kCGImageAlphaNoneSkipFirst | kCGBitmapByteOrder32Big; #if defined OSL_BIGENDIAN struct{ unsigned char b, g, r, a; } aPixel; #else struct{ unsigned char a, r, g, b; } aPixel; #endif // create a one-pixel bitmap context // TODO: is it worth to cache it? CGContextRef xOnePixelContext = CGBitmapContextCreate( &aPixel, 1, 1, 8, sizeof(aPixel), aCGColorSpace, aCGBmpInfo ); // update this graphics layer ApplyXorContext(); // copy the requested pixel into the bitmap context if( IsFlipped() ) { nY = mnHeight - nY; } const CGPoint aCGPoint = CGPointMake(-nX, -nY); CGContextDrawLayerAtPoint( xOnePixelContext, aCGPoint, mxLayer ); CGContextRelease( xOnePixelContext ); SalColor nSalColor = MAKE_SALCOLOR( aPixel.r, aPixel.g, aPixel.b ); return nSalColor; } void AquaSalGraphics::GetResolution( sal_Int32& rDPIX, sal_Int32& rDPIY ) { if( !mnRealDPIY ) { initResolution( (mbWindow && mpFrame) ? mpFrame->getNSWindow() : nil ); } rDPIX = mnRealDPIX; rDPIY = mnRealDPIY; } #endif void AquaSalGraphics::ImplDrawPixel( long nX, long nY, const RGBAColor& rColor ) { if( !CheckContext() ) { return; } // overwrite the fill color CGContextSetFillColor( mrContext, rColor.AsArray() ); // draw 1x1 rect, there is no pixel drawing in Quartz const CGRect aDstRect = CGRectMake(nX, nY, 1, 1); CGContextFillRect( mrContext, aDstRect ); RefreshRect( aDstRect ); // reset the fill color CGContextSetFillColor( mrContext, maFillColor.AsArray() ); } #ifndef IOS void AquaSalGraphics::initResolution( NSWindow* ) { // #i100617# read DPI only once; there is some kind of weird caching going on // if the main screen changes // FIXME: this is really unfortunate and needs to be investigated SalData* pSalData = GetSalData(); if( pSalData->mnDPIX == 0 || pSalData->mnDPIY == 0 ) { NSScreen* pScreen = nil; /* #i91301# many woes went into the try to have different resolutions on different screens. The result of these trials is that OOo is not ready for that yet, vcl and applications would need to be adapted. Unfortunately this is not possible in the 3.0 timeframe. So let's stay with one resolution for all Windows and VirtualDevices which is the resolution of the main screen This of course also means that measurements are exact only on the main screen. For activating different resolutions again just comment out the two lines below. if( pWin ) pScreen = [pWin screen]; */ if( pScreen == nil ) { NSArray* pScreens = [NSScreen screens]; if( pScreens ) pScreen = [pScreens objectAtIndex: 0]; } mnRealDPIX = mnRealDPIY = 96; if( pScreen ) { NSDictionary* pDev = [pScreen deviceDescription]; if( pDev ) { NSNumber* pVal = [pDev objectForKey: @"NSScreenNumber"]; if( pVal ) { // FIXME: casting a long to CGDirectDisplayID is evil, but // Apple suggest to do it this way const CGDirectDisplayID nDisplayID = (CGDirectDisplayID)[pVal longValue]; const CGSize aSize = CGDisplayScreenSize( nDisplayID ); // => result is in millimeters mnRealDPIX = static_cast((CGDisplayPixelsWide( nDisplayID ) * 25.4) / aSize.width); mnRealDPIY = static_cast((CGDisplayPixelsHigh( nDisplayID ) * 25.4) / aSize.height); } else { OSL_FAIL( "no resolution found in device description" ); } } else { OSL_FAIL( "no device description" ); } } else { OSL_FAIL( "no screen found" ); } // #i107076# maintaining size-WYSIWYG-ness causes many problems for // low-DPI, high-DPI or for mis-reporting devices // => it is better to limit the calculation result then static const int nMinDPI = 72; if( (mnRealDPIX < nMinDPI) || (mnRealDPIY < nMinDPI) ) { mnRealDPIX = mnRealDPIY = nMinDPI; } static const int nMaxDPI = 200; if( (mnRealDPIX > nMaxDPI) || (mnRealDPIY > nMaxDPI) ) { mnRealDPIX = mnRealDPIY = nMaxDPI; } // for OSX any anisotropy reported for the display resolution is best ignored (e.g. TripleHead2Go) mnRealDPIX = mnRealDPIY = (mnRealDPIX + mnRealDPIY + 1) / 2; pSalData->mnDPIX = mnRealDPIX; pSalData->mnDPIY = mnRealDPIY; } else { mnRealDPIX = pSalData->mnDPIX; mnRealDPIY = pSalData->mnDPIY; } } #endif void AquaSalGraphics::invert( long nX, long nY, long nWidth, long nHeight, SalInvert nFlags ) { if ( CheckContext() ) { CGRect aCGRect = CGRectMake( nX, nY, nWidth, nHeight); CGContextSaveGState(mrContext); if ( nFlags & SAL_INVERT_TRACKFRAME ) { const CGFloat dashLengths[2] = { 4.0, 4.0 }; // for drawing dashed line CGContextSetBlendMode( mrContext, kCGBlendModeDifference ); CGContextSetRGBStrokeColor ( mrContext, 1.0, 1.0, 1.0, 1.0 ); CGContextSetLineDash ( mrContext, 0, dashLengths, 2 ); CGContextSetLineWidth( mrContext, 2.0); CGContextStrokeRect ( mrContext, aCGRect ); } else if ( nFlags & SAL_INVERT_50 ) { //CGContextSetAllowsAntialiasing( mrContext, false ); CGContextSetBlendMode(mrContext, kCGBlendModeDifference); CGContextAddRect( mrContext, aCGRect ); Pattern50Fill(); } else // just invert { CGContextSetBlendMode(mrContext, kCGBlendModeDifference); CGContextSetRGBFillColor ( mrContext,1.0, 1.0, 1.0 , 1.0 ); CGContextFillRect ( mrContext, aCGRect ); } CGContextRestoreGState( mrContext); RefreshRect( aCGRect ); } } void AquaSalGraphics::invert( sal_uInt32 nPoints, const SalPoint* pPtAry, SalInvert nSalFlags ) { CGPoint* CGpoints ; if ( CheckContext() ) { CGContextSaveGState(mrContext); CGpoints = makeCGptArray(nPoints,pPtAry); CGContextAddLines ( mrContext, CGpoints, nPoints ); if ( nSalFlags & SAL_INVERT_TRACKFRAME ) { const CGFloat dashLengths[2] = { 4.0, 4.0 }; // for drawing dashed line CGContextSetBlendMode( mrContext, kCGBlendModeDifference ); CGContextSetRGBStrokeColor ( mrContext, 1.0, 1.0, 1.0, 1.0 ); CGContextSetLineDash ( mrContext, 0, dashLengths, 2 ); CGContextSetLineWidth( mrContext, 2.0); CGContextStrokePath ( mrContext ); } else if ( nSalFlags & SAL_INVERT_50 ) { CGContextSetBlendMode(mrContext, kCGBlendModeDifference); Pattern50Fill(); } else // just invert { CGContextSetBlendMode( mrContext, kCGBlendModeDifference ); CGContextSetRGBFillColor( mrContext, 1.0, 1.0, 1.0, 1.0 ); CGContextFillPath( mrContext ); } const CGRect aRefreshRect = CGContextGetClipBoundingBox(mrContext); CGContextRestoreGState( mrContext); delete [] CGpoints; RefreshRect( aRefreshRect ); } } void AquaSalGraphics::Pattern50Fill() { static const CGFloat aFillCol[4] = { 1,1,1,1 }; static const CGPatternCallbacks aCallback = { 0, &DrawPattern50, NULL }; static const CGColorSpaceRef mxP50Space = CGColorSpaceCreatePattern( GetSalData()->mxRGBSpace ); static const CGPatternRef mxP50Pattern = CGPatternCreate( NULL, CGRectMake( 0, 0, 4, 4 ), CGAffineTransformIdentity, 4, 4, kCGPatternTilingConstantSpacing, false, &aCallback ); CGContextSetFillColorSpace( mrContext, mxP50Space ); CGContextSetFillPattern( mrContext, mxP50Pattern, aFillCol ); CGContextFillPath( mrContext ); } void AquaSalGraphics::ResetClipRegion() { // release old path and indicate no clipping if( mxClipPath ) { CGPathRelease( mxClipPath ); mxClipPath = NULL; } if( CheckContext() ) { SetState(); } } void AquaSalGraphics::SetLineColor() { maLineColor.SetAlpha( 0.0 ); // transparent if( CheckContext() ) { CGContextSetRGBStrokeColor( mrContext, maLineColor.GetRed(), maLineColor.GetGreen(), maLineColor.GetBlue(), maLineColor.GetAlpha() ); } } void AquaSalGraphics::SetLineColor( SalColor nSalColor ) { maLineColor = RGBAColor( nSalColor ); if( CheckContext() ) { CGContextSetRGBStrokeColor( mrContext, maLineColor.GetRed(), maLineColor.GetGreen(), maLineColor.GetBlue(), maLineColor.GetAlpha() ); } } void AquaSalGraphics::SetFillColor() { maFillColor.SetAlpha( 0.0 ); // transparent if( CheckContext() ) { CGContextSetRGBFillColor( mrContext, maFillColor.GetRed(), maFillColor.GetGreen(), maFillColor.GetBlue(), maFillColor.GetAlpha() ); } } void AquaSalGraphics::SetFillColor( SalColor nSalColor ) { maFillColor = RGBAColor( nSalColor ); if( CheckContext() ) { CGContextSetRGBFillColor( mrContext, maFillColor.GetRed(), maFillColor.GetGreen(), maFillColor.GetBlue(), maFillColor.GetAlpha() ); } } bool AquaSalGraphics::supportsOperation( OutDevSupportType eType ) const { bool bRet = false; switch( eType ) { case OutDevSupport_TransparentRect: case OutDevSupport_B2DClip: case OutDevSupport_B2DDraw: bRet = true; break; default: break; } return bRet; } bool AquaSalGraphics::setClipRegion( const Region& i_rClip ) { // release old clip path if( mxClipPath ) { CGPathRelease( mxClipPath ); mxClipPath = NULL; } mxClipPath = CGPathCreateMutable(); // set current path, either as polypolgon or sequence of rectangles if(i_rClip.HasPolyPolygonOrB2DPolyPolygon()) { const basegfx::B2DPolyPolygon aClip(i_rClip.GetAsB2DPolyPolygon()); AddPolyPolygonToPath( mxClipPath, aClip, !getAntiAliasB2DDraw(), false ); } else { RectangleVector aRectangles; i_rClip.GetRegionRectangles(aRectangles); for(RectangleVector::const_iterator aRectIter(aRectangles.begin()); aRectIter != aRectangles.end(); ++aRectIter) { const long nW(aRectIter->Right() - aRectIter->Left() + 1); // uses +1 logic in original if(nW) { const long nH(aRectIter->Bottom() - aRectIter->Top() + 1); // uses +1 logic in original if(nH) { const CGRect aRect = CGRectMake( aRectIter->Left(), aRectIter->Top(), nW, nH); CGPathAddRect( mxClipPath, NULL, aRect ); } } } } // set the current path as clip region if( CheckContext() ) { SetState(); } return true; } void AquaSalGraphics::SetROPFillColor( SalROPColor nROPColor ) { if( ! mbPrinter ) SetFillColor( ImplGetROPSalColor( nROPColor ) ); } void AquaSalGraphics::SetROPLineColor( SalROPColor nROPColor ) { if( ! mbPrinter ) SetLineColor( ImplGetROPSalColor( nROPColor ) ); } void AquaSalGraphics::SetXORMode( bool bSet, bool bInvertOnly ) { // return early if XOR mode remains unchanged if( mbPrinter ) { return; } if( ! bSet && mnXorMode == 2 ) { CGContextSetBlendMode( mrContext, kCGBlendModeNormal ); mnXorMode = 0; return; } else if( bSet && bInvertOnly && mnXorMode == 0) { CGContextSetBlendMode( mrContext, kCGBlendModeDifference ); mnXorMode = 2; return; } if( (mpXorEmulation == NULL) && !bSet ) { return; } if( (mpXorEmulation != NULL) && (bSet == mpXorEmulation->IsEnabled()) ) { return; } if( !CheckContext() ) { return; } // prepare XOR emulation if( !mpXorEmulation ) { mpXorEmulation = new XorEmulation(); mpXorEmulation->SetTarget( mnWidth, mnHeight, mnBitmapDepth, mrContext, mxLayer ); } // change the XOR mode if( bSet ) { mpXorEmulation->Enable(); mrContext = mpXorEmulation->GetMaskContext(); mnXorMode = 1; } else { mpXorEmulation->UpdateTarget(); mpXorEmulation->Disable(); mrContext = mpXorEmulation->GetTargetContext(); mnXorMode = 0; } } #ifndef IOS void AquaSalGraphics::updateResolution() { DBG_ASSERT( mbWindow, "updateResolution on inappropriate graphics" ); initResolution( (mbWindow && mpFrame) ? mpFrame->getNSWindow() : nil ); } #endif XorEmulation::XorEmulation() : m_xTargetLayer( NULL ) , m_xTargetContext( NULL ) , m_xMaskContext( NULL ) , m_xTempContext( NULL ) , m_pMaskBuffer( NULL ) , m_pTempBuffer( NULL ) , m_nBufferLongs( 0 ) , m_bIsEnabled( false ) {} XorEmulation::~XorEmulation() { Disable(); SetTarget( 0, 0, 0, NULL, NULL ); } void XorEmulation::SetTarget( int nWidth, int nHeight, int nTargetDepth, CGContextRef xTargetContext, CGLayerRef xTargetLayer ) { // prepare to replace old mask+temp context if( m_xMaskContext ) { // cleanup the mask context CGContextRelease( m_xMaskContext ); delete[] m_pMaskBuffer; m_xMaskContext = NULL; m_pMaskBuffer = NULL; // cleanup the temp context if needed if( m_xTempContext ) { CGContextRelease( m_xTempContext ); delete[] m_pTempBuffer; m_xTempContext = NULL; m_pTempBuffer = NULL; } } // return early if there is nothing more to do if( !xTargetContext ) { return; } // retarget drawing operations to the XOR mask m_xTargetLayer = xTargetLayer; m_xTargetContext = xTargetContext; // prepare creation of matching CGBitmaps CGColorSpaceRef aCGColorSpace = GetSalData()->mxRGBSpace; CGBitmapInfo aCGBmpInfo = kCGImageAlphaNoneSkipFirst; int nBitDepth = nTargetDepth; if( !nBitDepth ) { nBitDepth = 32; } int nBytesPerRow = (nBitDepth == 16) ? 2 : 4; const size_t nBitsPerComponent = (nBitDepth == 16) ? 5 : 8; if( nBitDepth <= 8 ) { aCGColorSpace = GetSalData()->mxGraySpace; aCGBmpInfo = kCGImageAlphaNone; nBytesPerRow = 1; } nBytesPerRow *= nWidth; m_nBufferLongs = (nHeight * nBytesPerRow + sizeof(sal_uLong)-1) / sizeof(sal_uLong); // create a XorMask context m_pMaskBuffer = new sal_uLong[ m_nBufferLongs ]; m_xMaskContext = CGBitmapContextCreate( m_pMaskBuffer, nWidth, nHeight, nBitsPerComponent, nBytesPerRow, aCGColorSpace, aCGBmpInfo ); // reset the XOR mask to black memset( m_pMaskBuffer, 0, m_nBufferLongs * sizeof(sal_uLong) ); // a bitmap context will be needed for manual XORing // create one unless the target context is a bitmap context if( nTargetDepth ) m_pTempBuffer = (sal_uLong*)CGBitmapContextGetData( m_xTargetContext ); if( !m_pTempBuffer ) { // create a bitmap context matching to the target context m_pTempBuffer = new sal_uLong[ m_nBufferLongs ]; m_xTempContext = CGBitmapContextCreate( m_pTempBuffer, nWidth, nHeight, nBitsPerComponent, nBytesPerRow, aCGColorSpace, aCGBmpInfo ); } // initialize XOR mask context for drawing CGContextSetFillColorSpace( m_xMaskContext, aCGColorSpace ); CGContextSetStrokeColorSpace( m_xMaskContext, aCGColorSpace ); CGContextSetShouldAntialias( m_xMaskContext, false ); // improve the XorMask's XOR emulation a litte // NOTE: currently only enabled for monochrome contexts if( aCGColorSpace == GetSalData()->mxGraySpace ) { CGContextSetBlendMode( m_xMaskContext, kCGBlendModeDifference ); } // intialize the transformation matrix to the drawing target const CGAffineTransform aCTM = CGContextGetCTM( xTargetContext ); CGContextConcatCTM( m_xMaskContext, aCTM ); if( m_xTempContext ) { CGContextConcatCTM( m_xTempContext, aCTM ); } // initialize the default XorMask graphics state CGContextSaveGState( m_xMaskContext ); } bool XorEmulation::UpdateTarget() { if( !IsEnabled() ) { return false; } // update the temp bitmap buffer if needed if( m_xTempContext ) { CGContextDrawLayerAtPoint( m_xTempContext, CGPointZero, m_xTargetLayer ); } // do a manual XOR with the XorMask // this approach suffices for simple color manipulations // and also the complex-clipping-XOR-trick used in metafiles const sal_uLong* pSrc = m_pMaskBuffer; sal_uLong* pDst = m_pTempBuffer; for( int i = m_nBufferLongs; --i >= 0;) { *(pDst++) ^= *(pSrc++); } // write back the XOR results to the target context if( m_xTempContext ) { CGImageRef xXorImage = CGBitmapContextCreateImage( m_xTempContext ); const int nWidth = (int)CGImageGetWidth( xXorImage ); const int nHeight = (int)CGImageGetHeight( xXorImage ); // TODO: update minimal changerect const CGRect aFullRect = CGRectMake(0, 0, nWidth, nHeight); CGContextDrawImage( m_xTargetContext, aFullRect, xXorImage ); CGImageRelease( xXorImage ); } // reset the XorMask to black again // TODO: not needed for last update memset( m_pMaskBuffer, 0, m_nBufferLongs * sizeof(sal_uLong) ); // TODO: return FALSE if target was not changed return true; } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */