/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include #include bool Bitmap::Erase(const Color& rFillColor) { if (IsEmpty()) return true; BitmapScopedWriteAccess pWriteAcc(*this); bool bRet = false; if (pWriteAcc) { const ScanlineFormat nFormat = pWriteAcc->GetScanlineFormat(); sal_uInt8 cIndex = 0; bool bFast = false; switch (nFormat) { case ScanlineFormat::N1BitMsbPal: case ScanlineFormat::N1BitLsbPal: { cIndex = static_cast(pWriteAcc->GetBestPaletteIndex(rFillColor)); cIndex = (cIndex ? 255 : 0); bFast = true; } break; case ScanlineFormat::N4BitMsnPal: case ScanlineFormat::N4BitLsnPal: { cIndex = static_cast(pWriteAcc->GetBestPaletteIndex(rFillColor)); cIndex = cIndex | (cIndex << 4); bFast = true; } break; case ScanlineFormat::N8BitPal: { cIndex = static_cast(pWriteAcc->GetBestPaletteIndex(rFillColor)); bFast = true; } break; case ScanlineFormat::N24BitTcBgr: case ScanlineFormat::N24BitTcRgb: { if (rFillColor.GetRed() == rFillColor.GetGreen() && rFillColor.GetRed() == rFillColor.GetBlue()) { cIndex = rFillColor.GetRed(); bFast = true; } else { bFast = false; } } break; default: bFast = false; break; } if (bFast) { const sal_uLong nBufSize = pWriteAcc->GetScanlineSize() * pWriteAcc->Height(); memset(pWriteAcc->GetBuffer(), cIndex, nBufSize); } else { const tools::Rectangle aRect(Point(), Size(pWriteAcc->Width(), pWriteAcc->Height())); pWriteAcc->SetFillColor(rFillColor); pWriteAcc->FillRect(aRect); } bRet = true; } return bRet; } bool Bitmap::Invert() { BitmapScopedWriteAccess pAcc(*this); bool bRet = false; if (pAcc) { if (pAcc->HasPalette()) { BitmapPalette aBmpPal(pAcc->GetPalette()); const sal_uInt16 nCount = aBmpPal.GetEntryCount(); for (sal_uInt16 i = 0; i < nCount; i++) { aBmpPal[i].Invert(); } pAcc->SetPalette(aBmpPal); } else { const long nWidth = pAcc->Width(); const long nHeight = pAcc->Height(); for (long nY = 0; nY < nHeight; nY++) { Scanline pScanline = pAcc->GetScanline(nY); for (long nX = 0; nX < nWidth; nX++) { BitmapColor aBmpColor = pAcc->GetPixelFromData(pScanline, nX); aBmpColor.Invert(); pAcc->SetPixelOnData(pScanline, nX, aBmpColor); } } } mxSalBmp->InvalidateChecksum(); pAcc.reset(); bRet = true; } return bRet; } bool Bitmap::Mirror(BmpMirrorFlags nMirrorFlags) { bool bHorz(nMirrorFlags & BmpMirrorFlags::Horizontal); bool bVert(nMirrorFlags & BmpMirrorFlags::Vertical); bool bRet = false; if (bHorz && !bVert) { BitmapScopedWriteAccess pAcc(*this); if (pAcc) { const long nWidth = pAcc->Width(); const long nHeight = pAcc->Height(); const long nWidth1 = nWidth - 1; const long nWidth_2 = nWidth >> 1; for (long nY = 0; nY < nHeight; nY++) { Scanline pScanline = pAcc->GetScanline(nY); for (long nX = 0, nOther = nWidth1; nX < nWidth_2; nX++, nOther--) { const BitmapColor aTemp(pAcc->GetPixelFromData(pScanline, nX)); pAcc->SetPixelOnData(pScanline, nX, pAcc->GetPixelFromData(pScanline, nOther)); pAcc->SetPixelOnData(pScanline, nOther, aTemp); } } pAcc.reset(); bRet = true; } } else if (bVert && !bHorz) { BitmapScopedWriteAccess pAcc(*this); if (pAcc) { const long nScanSize = pAcc->GetScanlineSize(); std::unique_ptr pBuffer(new sal_uInt8[nScanSize]); const long nHeight = pAcc->Height(); const long nHeight1 = nHeight - 1; const long nHeight_2 = nHeight >> 1; for (long nY = 0, nOther = nHeight1; nY < nHeight_2; nY++, nOther--) { memcpy(pBuffer.get(), pAcc->GetScanline(nY), nScanSize); memcpy(pAcc->GetScanline(nY), pAcc->GetScanline(nOther), nScanSize); memcpy(pAcc->GetScanline(nOther), pBuffer.get(), nScanSize); } pAcc.reset(); bRet = true; } } else if (bHorz && bVert) { BitmapScopedWriteAccess pAcc(*this); if (pAcc) { const long nWidth = pAcc->Width(); const long nWidth1 = nWidth - 1; const long nHeight = pAcc->Height(); long nHeight_2 = nHeight >> 1; for (long nY = 0, nOtherY = nHeight - 1; nY < nHeight_2; nY++, nOtherY--) { Scanline pScanline = pAcc->GetScanline(nY); Scanline pScanlineOther = pAcc->GetScanline(nOtherY); for (long nX = 0, nOtherX = nWidth1; nX < nWidth; nX++, nOtherX--) { const BitmapColor aTemp(pAcc->GetPixelFromData(pScanline, nX)); pAcc->SetPixelOnData(pScanline, nX, pAcc->GetPixelFromData(pScanlineOther, nOtherX)); pAcc->SetPixelOnData(pScanlineOther, nOtherX, aTemp); } } // if necessary, also mirror the middle line horizontally if (nHeight & 1) { Scanline pScanline = pAcc->GetScanline(nHeight_2); for (long nX = 0, nOtherX = nWidth1, nWidth_2 = nWidth >> 1; nX < nWidth_2; nX++, nOtherX--) { const BitmapColor aTemp(pAcc->GetPixelFromData(pScanline, nX)); pAcc->SetPixelOnData(pScanline, nX, pAcc->GetPixelFromData(pScanline, nOtherX)); pAcc->SetPixelOnData(pScanline, nOtherX, aTemp); } } pAcc.reset(); bRet = true; } } else bRet = true; return bRet; } bool Bitmap::Rotate(long nAngle10, const Color& rFillColor) { bool bRet = false; nAngle10 %= 3600; nAngle10 = (nAngle10 < 0) ? (3599L + nAngle10) : nAngle10; if (!nAngle10) bRet = true; else if (nAngle10 == 1800) bRet = Mirror(BmpMirrorFlags::Horizontal | BmpMirrorFlags::Vertical); else { ScopedReadAccess pReadAcc(*this); Bitmap aRotatedBmp; if (pReadAcc) { const Size aSizePix(GetSizePixel()); if (nAngle10 == 900 || nAngle10 == 2700) { const Size aNewSizePix(aSizePix.Height(), aSizePix.Width()); Bitmap aNewBmp(aNewSizePix, GetBitCount(), &pReadAcc->GetPalette()); BitmapScopedWriteAccess pWriteAcc(aNewBmp); if (pWriteAcc) { const long nWidth = aSizePix.Width(); const long nWidth1 = nWidth - 1; const long nHeight = aSizePix.Height(); const long nHeight1 = nHeight - 1; const long nNewWidth = aNewSizePix.Width(); const long nNewHeight = aNewSizePix.Height(); if (nAngle10 == 900) { for (long nY = 0, nOtherX = nWidth1; nY < nNewHeight; nY++, nOtherX--) { Scanline pScanline = pWriteAcc->GetScanline(nY); for (long nX = 0, nOtherY = 0; nX < nNewWidth; nX++) { pWriteAcc->SetPixelOnData(pScanline, nX, pReadAcc->GetPixel(nOtherY++, nOtherX)); } } } else if (nAngle10 == 2700) { for (long nY = 0, nOtherX = 0; nY < nNewHeight; nY++, nOtherX++) { Scanline pScanline = pWriteAcc->GetScanline(nY); for (long nX = 0, nOtherY = nHeight1; nX < nNewWidth; nX++) { pWriteAcc->SetPixelOnData(pScanline, nX, pReadAcc->GetPixel(nOtherY--, nOtherX)); } } } pWriteAcc.reset(); } aRotatedBmp = aNewBmp; } else { Point aTmpPoint; tools::Rectangle aTmpRectangle(aTmpPoint, aSizePix); tools::Polygon aPoly(aTmpRectangle); aPoly.Rotate(aTmpPoint, static_cast(nAngle10)); tools::Rectangle aNewBound(aPoly.GetBoundRect()); const Size aNewSizePix(aNewBound.GetSize()); Bitmap aNewBmp(aNewSizePix, GetBitCount(), &pReadAcc->GetPalette()); BitmapScopedWriteAccess pWriteAcc(aNewBmp); if (pWriteAcc) { const BitmapColor aFillColor(pWriteAcc->GetBestMatchingColor(rFillColor)); const double fCosAngle = cos(nAngle10 * F_PI1800); const double fSinAngle = sin(nAngle10 * F_PI1800); const double fXMin = aNewBound.Left(); const double fYMin = aNewBound.Top(); const long nWidth = aSizePix.Width(); const long nHeight = aSizePix.Height(); const long nNewWidth = aNewSizePix.Width(); const long nNewHeight = aNewSizePix.Height(); long nX; long nY; long nRotX; long nRotY; std::unique_ptr pCosX(new long[nNewWidth]); std::unique_ptr pSinX(new long[nNewWidth]); std::unique_ptr pCosY(new long[nNewHeight]); std::unique_ptr pSinY(new long[nNewHeight]); for (nX = 0; nX < nNewWidth; nX++) { const double fTmp = (fXMin + nX) * 64.; pCosX[nX] = FRound(fCosAngle * fTmp); pSinX[nX] = FRound(fSinAngle * fTmp); } for (nY = 0; nY < nNewHeight; nY++) { const double fTmp = (fYMin + nY) * 64.; pCosY[nY] = FRound(fCosAngle * fTmp); pSinY[nY] = FRound(fSinAngle * fTmp); } for (nY = 0; nY < nNewHeight; nY++) { long nSinY = pSinY[nY]; long nCosY = pCosY[nY]; Scanline pScanline = pWriteAcc->GetScanline(nY); for (nX = 0; nX < nNewWidth; nX++) { nRotX = (pCosX[nX] - nSinY) >> 6; nRotY = (pSinX[nX] + nCosY) >> 6; if ((nRotX > -1) && (nRotX < nWidth) && (nRotY > -1) && (nRotY < nHeight)) { pWriteAcc->SetPixelOnData(pScanline, nX, pReadAcc->GetPixel(nRotY, nRotX)); } else { pWriteAcc->SetPixelOnData(pScanline, nX, aFillColor); } } } pWriteAcc.reset(); } aRotatedBmp = aNewBmp; } pReadAcc.reset(); } bRet = !!aRotatedBmp; if (bRet) ReassignWithSize(aRotatedBmp); } return bRet; }; Bitmap Bitmap::CreateMask(const Color& rTransColor, sal_uInt8 nTol) const { ScopedReadAccess pReadAcc(const_cast(*this)); if (!nTol && pReadAcc && (pReadAcc->GetScanlineFormat() == ScanlineFormat::N1BitLsbPal || pReadAcc->GetScanlineFormat() == ScanlineFormat::N1BitMsbPal) && pReadAcc->GetBestMatchingColor(COL_WHITE) == pReadAcc->GetBestMatchingColor(rTransColor)) { // if we're a 1 bit pixel already, and the transcolor matches the color that would replace it // already, then just return a copy return *this; } Bitmap aNewBmp(GetSizePixel(), 1); BitmapScopedWriteAccess pWriteAcc(aNewBmp); bool bRet = false; if (pWriteAcc && pReadAcc) { const long nWidth = pReadAcc->Width(); const long nHeight = pReadAcc->Height(); const BitmapColor aBlack(pWriteAcc->GetBestMatchingColor(COL_BLACK)); const BitmapColor aWhite(pWriteAcc->GetBestMatchingColor(COL_WHITE)); if (!nTol) { const BitmapColor aTest(pReadAcc->GetBestMatchingColor(rTransColor)); if (pReadAcc->GetScanlineFormat() == ScanlineFormat::N4BitMsnPal || pReadAcc->GetScanlineFormat() == ScanlineFormat::N4BitLsnPal) { // optimized for 4Bit-MSN/LSN source palette const sal_uInt8 cTest = aTest.GetIndex(); const long nShiftInit = ((pReadAcc->GetScanlineFormat() == ScanlineFormat::N4BitMsnPal) ? 4 : 0); if (pWriteAcc->GetScanlineFormat() == ScanlineFormat::N1BitMsbPal && aWhite.GetIndex() == 1) { // optimized for 1Bit-MSB destination palette for (long nY = 0; nY < nHeight; ++nY) { Scanline pSrc = pReadAcc->GetScanline(nY); Scanline pDst = pWriteAcc->GetScanline(nY); for (long nX = 0, nShift = nShiftInit; nX < nWidth; nX++, nShift ^= 4) { if (cTest == ((pSrc[nX >> 1] >> nShift) & 0x0f)) pDst[nX >> 3] |= 1 << (7 - (nX & 7)); else pDst[nX >> 3] &= ~(1 << (7 - (nX & 7))); } } } else { for (long nY = 0; nY < nHeight; ++nY) { Scanline pSrc = pReadAcc->GetScanline(nY); Scanline pDst = pWriteAcc->GetScanline(nY); for (long nX = 0, nShift = nShiftInit; nX < nWidth; nX++, nShift ^= 4) { if (cTest == ((pSrc[nX >> 1] >> nShift) & 0x0f)) pWriteAcc->SetPixelOnData(pDst, nX, aWhite); else pWriteAcc->SetPixelOnData(pDst, nX, aBlack); } } } } else if (pReadAcc->GetScanlineFormat() == ScanlineFormat::N8BitPal) { // optimized for 8Bit source palette const sal_uInt8 cTest = aTest.GetIndex(); if (pWriteAcc->GetScanlineFormat() == ScanlineFormat::N1BitMsbPal && aWhite.GetIndex() == 1) { // optimized for 1Bit-MSB destination palette for (long nY = 0; nY < nHeight; ++nY) { Scanline pSrc = pReadAcc->GetScanline(nY); Scanline pDst = pWriteAcc->GetScanline(nY); for (long nX = 0; nX < nWidth; ++nX) { if (cTest == pSrc[nX]) pDst[nX >> 3] |= 1 << (7 - (nX & 7)); else pDst[nX >> 3] &= ~(1 << (7 - (nX & 7))); } } } else { for (long nY = 0; nY < nHeight; ++nY) { Scanline pSrc = pReadAcc->GetScanline(nY); Scanline pDst = pWriteAcc->GetScanline(nY); for (long nX = 0; nX < nWidth; ++nX) { if (cTest == pSrc[nX]) pWriteAcc->SetPixelOnData(pDst, nX, aWhite); else pWriteAcc->SetPixelOnData(pDst, nX, aBlack); } } } } else if (pWriteAcc->GetScanlineFormat() == pReadAcc->GetScanlineFormat() && aWhite.GetIndex() == 1 && (pReadAcc->GetScanlineFormat() == ScanlineFormat::N1BitLsbPal || pReadAcc->GetScanlineFormat() == ScanlineFormat::N1BitMsbPal)) { for (long nY = 0; nY < nHeight; ++nY) { Scanline pSrc = pReadAcc->GetScanline(nY); Scanline pDst = pWriteAcc->GetScanline(nY); assert(pWriteAcc->GetScanlineSize() == pReadAcc->GetScanlineSize()); const long nScanlineSize = pWriteAcc->GetScanlineSize(); for (long nX = 0; nX < nScanlineSize; ++nX) pDst[nX] = ~pSrc[nX]; } } else { // not optimized for (long nY = 0; nY < nHeight; ++nY) { Scanline pScanline = pWriteAcc->GetScanline(nY); Scanline pScanlineRead = pReadAcc->GetScanline(nY); for (long nX = 0; nX < nWidth; ++nX) { if (aTest == pReadAcc->GetPixelFromData(pScanlineRead, nX)) pWriteAcc->SetPixelOnData(pScanline, nX, aWhite); else pWriteAcc->SetPixelOnData(pScanline, nX, aBlack); } } } } else { BitmapColor aCol; long nR, nG, nB; const long nMinR = MinMax(rTransColor.GetRed() - nTol, 0, 255); const long nMaxR = MinMax(rTransColor.GetRed() + nTol, 0, 255); const long nMinG = MinMax(rTransColor.GetGreen() - nTol, 0, 255); const long nMaxG = MinMax(rTransColor.GetGreen() + nTol, 0, 255); const long nMinB = MinMax(rTransColor.GetBlue() - nTol, 0, 255); const long nMaxB = MinMax(rTransColor.GetBlue() + nTol, 0, 255); if (pReadAcc->HasPalette()) { for (long nY = 0; nY < nHeight; nY++) { Scanline pScanline = pWriteAcc->GetScanline(nY); Scanline pScanlineRead = pReadAcc->GetScanline(nY); for (long nX = 0; nX < nWidth; nX++) { aCol = pReadAcc->GetPaletteColor( pReadAcc->GetIndexFromData(pScanlineRead, nX)); nR = aCol.GetRed(); nG = aCol.GetGreen(); nB = aCol.GetBlue(); if (nMinR <= nR && nMaxR >= nR && nMinG <= nG && nMaxG >= nG && nMinB <= nB && nMaxB >= nB) { pWriteAcc->SetPixelOnData(pScanline, nX, aWhite); } else { pWriteAcc->SetPixelOnData(pScanline, nX, aBlack); } } } } else { for (long nY = 0; nY < nHeight; nY++) { Scanline pScanline = pWriteAcc->GetScanline(nY); Scanline pScanlineRead = pReadAcc->GetScanline(nY); for (long nX = 0; nX < nWidth; nX++) { aCol = pReadAcc->GetPixelFromData(pScanlineRead, nX); nR = aCol.GetRed(); nG = aCol.GetGreen(); nB = aCol.GetBlue(); if (nMinR <= nR && nMaxR >= nR && nMinG <= nG && nMaxG >= nG && nMinB <= nB && nMaxB >= nB) { pWriteAcc->SetPixelOnData(pScanline, nX, aWhite); } else { pWriteAcc->SetPixelOnData(pScanline, nX, aBlack); } } } } } bRet = true; } pWriteAcc.reset(); pReadAcc.reset(); if (bRet) { aNewBmp.maPrefSize = maPrefSize; aNewBmp.maPrefMapMode = maPrefMapMode; } else aNewBmp = Bitmap(); return aNewBmp; } vcl::Region Bitmap::CreateRegion(const Color& rColor, const tools::Rectangle& rRect) const { vcl::Region aRegion; tools::Rectangle aRect(rRect); ScopedReadAccess pReadAcc(const_cast(*this)); aRect.Intersection(tools::Rectangle(Point(), GetSizePixel())); aRect.Justify(); if (pReadAcc) { const long nLeft = aRect.Left(); const long nTop = aRect.Top(); const long nRight = aRect.Right(); const long nBottom = aRect.Bottom(); const BitmapColor aMatch(pReadAcc->GetBestMatchingColor(rColor)); std::vector aLine; long nYStart(nTop); long nY(nTop); for (; nY <= nBottom; nY++) { std::vector aNewLine; long nX(nLeft); Scanline pScanlineRead = pReadAcc->GetScanline(nY); for (; nX <= nRight;) { while ((nX <= nRight) && (aMatch != pReadAcc->GetPixelFromData(pScanlineRead, nX))) nX++; if (nX <= nRight) { aNewLine.push_back(nX); while ((nX <= nRight) && (aMatch == pReadAcc->GetPixelFromData(pScanlineRead, nX))) { nX++; } aNewLine.push_back(nX - 1); } } if (aNewLine != aLine) { // need to write aLine, it's different from the next line if (!aLine.empty()) { tools::Rectangle aSubRect; // enter y values and proceed ystart aSubRect.SetTop(nYStart); aSubRect.SetBottom(nY ? nY - 1 : 0); for (size_t a(0); a < aLine.size();) { aSubRect.SetLeft(aLine[a++]); aSubRect.SetRight(aLine[a++]); aRegion.Union(aSubRect); } } // copy line as new line aLine = aNewLine; nYStart = nY; } } // write last line if used if (!aLine.empty()) { tools::Rectangle aSubRect; // enter y values aSubRect.SetTop(nYStart); aSubRect.SetBottom(nY ? nY - 1 : 0); for (size_t a(0); a < aLine.size();) { aSubRect.SetLeft(aLine[a++]); aSubRect.SetRight(aLine[a++]); aRegion.Union(aSubRect); } } pReadAcc.reset(); } else { aRegion = aRect; } return aRegion; } bool Bitmap::Replace(const Bitmap& rMask, const Color& rReplaceColor) { ScopedReadAccess pMaskAcc(const_cast(rMask)); BitmapScopedWriteAccess pAcc(*this); bool bRet = false; if (pMaskAcc && pAcc) { const long nWidth = std::min(pMaskAcc->Width(), pAcc->Width()); const long nHeight = std::min(pMaskAcc->Height(), pAcc->Height()); const BitmapColor aMaskWhite(pMaskAcc->GetBestMatchingColor(COL_WHITE)); BitmapColor aReplace; if (pAcc->HasPalette()) { const sal_uInt16 nActColors = pAcc->GetPaletteEntryCount(); const sal_uInt16 nMaxColors = 1 << pAcc->GetBitCount(); // default to the nearest color aReplace = pAcc->GetBestMatchingColor(rReplaceColor); // for paletted images without a matching palette entry // look for an unused palette entry (NOTE: expensive!) if (pAcc->GetPaletteColor(aReplace.GetIndex()) != BitmapColor(rReplaceColor)) { // if the palette has empty entries use the last one if (nActColors < nMaxColors) { pAcc->SetPaletteEntryCount(nActColors + 1); pAcc->SetPaletteColor(nActColors, rReplaceColor); aReplace = BitmapColor(static_cast(nActColors)); } else { std::unique_ptr pFlags(new bool[nMaxColors]); // Set all entries to false std::fill(pFlags.get(), pFlags.get() + nMaxColors, false); for (long nY = 0; nY < nHeight; nY++) { Scanline pScanline = pAcc->GetScanline(nY); for (long nX = 0; nX < nWidth; nX++) pFlags[pAcc->GetIndexFromData(pScanline, nX)] = true; } for (sal_uInt16 i = 0; i < nMaxColors; i++) { // Hurray, we do have an unused entry if (!pFlags[i]) { pAcc->SetPaletteColor(i, rReplaceColor); aReplace = BitmapColor(static_cast(i)); } } } } } else aReplace = rReplaceColor; for (long nY = 0; nY < nHeight; nY++) { Scanline pScanline = pAcc->GetScanline(nY); Scanline pScanlineMask = pMaskAcc->GetScanline(nY); for (long nX = 0; nX < nWidth; nX++) { if (pMaskAcc->GetPixelFromData(pScanlineMask, nX) == aMaskWhite) pAcc->SetPixelOnData(pScanline, nX, aReplace); } } bRet = true; } return bRet; } bool Bitmap::Replace(const AlphaMask& rAlpha, const Color& rMergeColor) { Bitmap aNewBmp(GetSizePixel(), 24); ScopedReadAccess pAcc(*this); AlphaMask::ScopedReadAccess pAlphaAcc(const_cast(rAlpha)); BitmapScopedWriteAccess pNewAcc(aNewBmp); bool bRet = false; if (pAcc && pAlphaAcc && pNewAcc) { BitmapColor aCol; const long nWidth = std::min(pAlphaAcc->Width(), pAcc->Width()); const long nHeight = std::min(pAlphaAcc->Height(), pAcc->Height()); for (long nY = 0; nY < nHeight; nY++) { Scanline pScanline = pNewAcc->GetScanline(nY); Scanline pScanlineAlpha = pAlphaAcc->GetScanline(nY); for (long nX = 0; nX < nWidth; nX++) { aCol = pAcc->GetColor(nY, nX); aCol.Merge(rMergeColor, 255 - pAlphaAcc->GetIndexFromData(pScanlineAlpha, nX)); pNewAcc->SetPixelOnData(pScanline, nX, aCol); } } bRet = true; } pAcc.reset(); pAlphaAcc.reset(); pNewAcc.reset(); if (bRet) { const MapMode aMap(maPrefMapMode); const Size aSize(maPrefSize); *this = aNewBmp; maPrefMapMode = aMap; maPrefSize = aSize; } return bRet; } bool Bitmap::Replace(const Color& rSearchColor, const Color& rReplaceColor, sal_uInt8 nTol) { if (mxSalBmp) { // implementation specific replace std::shared_ptr xImpBmp(ImplGetSVData()->mpDefInst->CreateSalBitmap()); if (xImpBmp->Create(*mxSalBmp) && xImpBmp->Replace(rSearchColor, rReplaceColor, nTol)) { ImplSetSalBitmap(xImpBmp); maPrefMapMode = MapMode(MapUnit::MapPixel); maPrefSize = xImpBmp->GetSize(); return true; } } // Bitmaps with 1 bit color depth can cause problems if they have other entries than black/white // in their palette if (GetBitCount() == 1) Convert(BmpConversion::N4BitColors); BitmapScopedWriteAccess pAcc(*this); bool bRet = false; if (pAcc) { const long nMinR = MinMax(rSearchColor.GetRed() - nTol, 0, 255); const long nMaxR = MinMax(rSearchColor.GetRed() + nTol, 0, 255); const long nMinG = MinMax(rSearchColor.GetGreen() - nTol, 0, 255); const long nMaxG = MinMax(rSearchColor.GetGreen() + nTol, 0, 255); const long nMinB = MinMax(rSearchColor.GetBlue() - nTol, 0, 255); const long nMaxB = MinMax(rSearchColor.GetBlue() + nTol, 0, 255); if (pAcc->HasPalette()) { for (sal_uInt16 i = 0, nPalCount = pAcc->GetPaletteEntryCount(); i < nPalCount; i++) { const BitmapColor& rCol = pAcc->GetPaletteColor(i); if (nMinR <= rCol.GetRed() && nMaxR >= rCol.GetRed() && nMinG <= rCol.GetGreen() && nMaxG >= rCol.GetGreen() && nMinB <= rCol.GetBlue() && nMaxB >= rCol.GetBlue()) { pAcc->SetPaletteColor(i, rReplaceColor); } } } else { BitmapColor aCol; const BitmapColor aReplace(pAcc->GetBestMatchingColor(rReplaceColor)); for (long nY = 0, nHeight = pAcc->Height(); nY < nHeight; nY++) { Scanline pScanline = pAcc->GetScanline(nY); for (long nX = 0, nWidth = pAcc->Width(); nX < nWidth; nX++) { aCol = pAcc->GetPixelFromData(pScanline, nX); if (nMinR <= aCol.GetRed() && nMaxR >= aCol.GetRed() && nMinG <= aCol.GetGreen() && nMaxG >= aCol.GetGreen() && nMinB <= aCol.GetBlue() && nMaxB >= aCol.GetBlue()) { pAcc->SetPixelOnData(pScanline, nX, aReplace); } } } } pAcc.reset(); bRet = true; } return bRet; } bool Bitmap::Replace(const Color* pSearchColors, const Color* pReplaceColors, sal_uLong nColorCount, sal_uInt8 const* pTols) { // Bitmaps with 1 bit color depth can cause problems if they have other entries than black/white // in their palette if (GetBitCount() == 1) Convert(BmpConversion::N4BitColors); BitmapScopedWriteAccess pAcc(*this); bool bRet = false; if (pAcc) { std::unique_ptr pMinR(new long[nColorCount]); std::unique_ptr pMaxR(new long[nColorCount]); std::unique_ptr pMinG(new long[nColorCount]); std::unique_ptr pMaxG(new long[nColorCount]); std::unique_ptr pMinB(new long[nColorCount]); std::unique_ptr pMaxB(new long[nColorCount]); if (pTols) { for (sal_uLong i = 0; i < nColorCount; i++) { const Color& rCol = pSearchColors[i]; const sal_uInt8 nTol = pTols[i]; pMinR[i] = MinMax(rCol.GetRed() - nTol, 0, 255); pMaxR[i] = MinMax(rCol.GetRed() + nTol, 0, 255); pMinG[i] = MinMax(rCol.GetGreen() - nTol, 0, 255); pMaxG[i] = MinMax(rCol.GetGreen() + nTol, 0, 255); pMinB[i] = MinMax(rCol.GetBlue() - nTol, 0, 255); pMaxB[i] = MinMax(rCol.GetBlue() + nTol, 0, 255); } } else { for (sal_uLong i = 0; i < nColorCount; i++) { const Color& rCol = pSearchColors[i]; pMinR[i] = rCol.GetRed(); pMaxR[i] = rCol.GetRed(); pMinG[i] = rCol.GetGreen(); pMaxG[i] = rCol.GetGreen(); pMinB[i] = rCol.GetBlue(); pMaxB[i] = rCol.GetBlue(); } } if (pAcc->HasPalette()) { for (sal_uInt16 nEntry = 0, nPalCount = pAcc->GetPaletteEntryCount(); nEntry < nPalCount; nEntry++) { const BitmapColor& rCol = pAcc->GetPaletteColor(nEntry); for (sal_uLong i = 0; i < nColorCount; i++) { if (pMinR[i] <= rCol.GetRed() && pMaxR[i] >= rCol.GetRed() && pMinG[i] <= rCol.GetGreen() && pMaxG[i] >= rCol.GetGreen() && pMinB[i] <= rCol.GetBlue() && pMaxB[i] >= rCol.GetBlue()) { pAcc->SetPaletteColor(nEntry, pReplaceColors[i]); break; } } } } else { BitmapColor aCol; std::unique_ptr pReplaces(new BitmapColor[nColorCount]); for (sal_uLong i = 0; i < nColorCount; i++) pReplaces[i] = pAcc->GetBestMatchingColor(pReplaceColors[i]); for (long nY = 0, nHeight = pAcc->Height(); nY < nHeight; nY++) { Scanline pScanline = pAcc->GetScanline(nY); for (long nX = 0, nWidth = pAcc->Width(); nX < nWidth; nX++) { aCol = pAcc->GetPixelFromData(pScanline, nX); for (sal_uLong i = 0; i < nColorCount; i++) { if (pMinR[i] <= aCol.GetRed() && pMaxR[i] >= aCol.GetRed() && pMinG[i] <= aCol.GetGreen() && pMaxG[i] >= aCol.GetGreen() && pMinB[i] <= aCol.GetBlue() && pMaxB[i] >= aCol.GetBlue()) { pAcc->SetPixelOnData(pScanline, nX, pReplaces[i]); break; } } } } } pAcc.reset(); bRet = true; } return bRet; } bool Bitmap::CombineSimple(const Bitmap& rMask, BmpCombine eCombine) { ScopedReadAccess pMaskAcc(const_cast(rMask)); BitmapScopedWriteAccess pAcc(*this); bool bRet = false; if (pMaskAcc && pAcc) { const long nWidth = std::min(pMaskAcc->Width(), pAcc->Width()); const long nHeight = std::min(pMaskAcc->Height(), pAcc->Height()); const Color aColBlack(COL_BLACK); const BitmapColor aWhite(pAcc->GetBestMatchingColor(COL_WHITE)); const BitmapColor aBlack(pAcc->GetBestMatchingColor(aColBlack)); const BitmapColor aMaskBlack(pMaskAcc->GetBestMatchingColor(aColBlack)); switch (eCombine) { case BmpCombine::And: { for (long nY = 0; nY < nHeight; nY++) { Scanline pScanline = pAcc->GetScanline(nY); Scanline pScanlineMask = pMaskAcc->GetScanline(nY); for (long nX = 0; nX < nWidth; nX++) { if (pMaskAcc->GetPixelFromData(pScanlineMask, nX) != aMaskBlack && pAcc->GetPixelFromData(pScanline, nX) != aBlack) { pAcc->SetPixelOnData(pScanline, nX, aWhite); } else { pAcc->SetPixelOnData(pScanline, nX, aBlack); } } } } break; case BmpCombine::Or: { for (long nY = 0; nY < nHeight; nY++) { Scanline pScanline = pAcc->GetScanline(nY); Scanline pScanlineMask = pMaskAcc->GetScanline(nY); for (long nX = 0; nX < nWidth; nX++) { if (pMaskAcc->GetPixelFromData(pScanlineMask, nX) != aMaskBlack || pAcc->GetPixelFromData(pScanline, nX) != aBlack) { pAcc->SetPixelOnData(pScanline, nX, aWhite); } else { pAcc->SetPixelOnData(pScanline, nX, aBlack); } } } } break; } bRet = true; } return bRet; } // TODO: Have a look at OutputDevice::ImplDrawAlpha() for some // optimizations. Might even consolidate the code here and there. bool Bitmap::Blend(const AlphaMask& rAlpha, const Color& rBackgroundColor) { // Convert to a truecolor bitmap, if we're a paletted one. There's room for tradeoff decision here, // maybe later for an overload (or a flag) if (GetBitCount() <= 8) Convert(BmpConversion::N24Bit); AlphaMask::ScopedReadAccess pAlphaAcc(const_cast(rAlpha)); BitmapScopedWriteAccess pAcc(*this); bool bRet = false; if (pAlphaAcc && pAcc) { const long nWidth = std::min(pAlphaAcc->Width(), pAcc->Width()); const long nHeight = std::min(pAlphaAcc->Height(), pAcc->Height()); for (long nY = 0; nY < nHeight; ++nY) { Scanline pScanline = pAcc->GetScanline(nY); Scanline pScanlineAlpha = pAlphaAcc->GetScanline(nY); for (long nX = 0; nX < nWidth; ++nX) { BitmapColor aBmpColor = pAcc->GetPixelFromData(pScanline, nX); aBmpColor.Merge(rBackgroundColor, 255 - pAlphaAcc->GetIndexFromData(pScanlineAlpha, nX)); pAcc->SetPixelOnData(pScanline, nX, aBmpColor); } } bRet = true; } return bRet; } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */