/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #if HAVE_FEATURE_OPENGL #include #endif #if HAVE_FEATURE_SKIA #include #endif #include #include #include #include #include #include #include #include #include #include #include #include "impvect.hxx" #include #define GAMMA( _def_cVal, _def_InvGamma ) (static_cast(MinMax(FRound(pow( _def_cVal/255.0,_def_InvGamma)*255.0),0,255))) #define CALC_ERRORS \ nTemp = p1T[nX++] >> 12; \ nBErr = MinMax( nTemp, 0, 255 ); \ nBErr = nBErr - FloydIndexMap[ nBC = FloydMap[nBErr] ]; \ nTemp = p1T[nX++] >> 12; \ nGErr = MinMax( nTemp, 0, 255 ); \ nGErr = nGErr - FloydIndexMap[ nGC = FloydMap[nGErr] ]; \ nTemp = p1T[nX] >> 12; \ nRErr = MinMax( nTemp, 0, 255 ); \ nRErr = nRErr - FloydIndexMap[ nRC = FloydMap[nRErr] ]; #define CALC_TABLES3 \ p2T[nX++] += FloydError3[nBErr]; \ p2T[nX++] += FloydError3[nGErr]; \ p2T[nX++] += FloydError3[nRErr]; #define CALC_TABLES5 \ p2T[nX++] += FloydError5[nBErr]; \ p2T[nX++] += FloydError5[nGErr]; \ p2T[nX++] += FloydError5[nRErr]; #define CALC_TABLES7 \ p1T[++nX] += FloydError7[nBErr]; \ p2T[nX++] += FloydError1[nBErr]; \ p1T[nX] += FloydError7[nGErr]; \ p2T[nX++] += FloydError1[nGErr]; \ p1T[nX] += FloydError7[nRErr]; \ p2T[nX] += FloydError1[nRErr]; const extern sal_uLong nVCLRLut[ 6 ] = { 16, 17, 18, 19, 20, 21 }; const extern sal_uLong nVCLGLut[ 6 ] = { 0, 6, 12, 18, 24, 30 }; const extern sal_uLong nVCLBLut[ 6 ] = { 0, 36, 72, 108, 144, 180 }; const extern sal_uLong nVCLDitherLut[ 256 ] = { 0, 49152, 12288, 61440, 3072, 52224, 15360, 64512, 768, 49920, 13056, 62208, 3840, 52992, 16128, 65280, 32768, 16384, 45056, 28672, 35840, 19456, 48128, 31744, 33536, 17152, 45824, 29440, 36608, 20224, 48896, 32512, 8192, 57344, 4096, 53248, 11264, 60416, 7168, 56320, 8960, 58112, 4864, 54016, 12032, 61184, 7936, 57088, 40960, 24576, 36864, 20480, 44032, 27648, 39936, 23552, 41728, 25344, 37632, 21248, 44800, 28416, 40704, 24320, 2048, 51200, 14336, 63488, 1024, 50176, 13312, 62464, 2816, 51968, 15104, 64256, 1792, 50944, 14080, 63232, 34816, 18432, 47104, 30720, 33792, 17408, 46080, 29696, 35584, 19200, 47872, 31488, 34560, 18176, 46848, 30464, 10240, 59392, 6144, 55296, 9216, 58368, 5120, 54272, 11008, 60160, 6912, 56064, 9984, 59136, 5888, 55040, 43008, 26624, 38912, 22528, 41984, 25600, 37888, 21504, 43776, 27392, 39680, 23296, 42752, 26368, 38656, 22272, 512, 49664, 12800, 61952, 3584, 52736, 15872, 65024, 256, 49408, 12544, 61696, 3328, 52480, 15616, 64768, 33280, 16896, 45568, 29184, 36352, 19968, 48640, 32256, 33024, 16640, 45312, 28928, 36096, 19712, 48384, 32000, 8704, 57856, 4608, 53760, 11776, 60928, 7680, 56832, 8448, 57600, 4352, 53504, 11520, 60672, 7424, 56576, 41472, 25088, 37376, 20992, 44544, 28160, 40448, 24064, 41216, 24832, 37120, 20736, 44288, 27904, 40192, 23808, 2560, 51712, 14848, 64000, 1536, 50688, 13824, 62976, 2304, 51456, 14592, 63744, 1280, 50432, 13568, 62720, 35328, 18944, 47616, 31232, 34304, 17920, 46592, 30208, 35072, 18688, 47360, 30976, 34048, 17664, 46336, 29952, 10752, 59904, 6656, 55808, 9728, 58880, 5632, 54784, 10496, 59648, 6400, 55552, 9472, 58624, 5376, 54528, 43520, 27136, 39424, 23040, 42496, 26112, 38400, 22016, 43264, 26880, 39168, 22784, 42240, 25856, 38144, 21760 }; const extern sal_uLong nVCLLut[ 256 ] = { 0, 1286, 2572, 3858, 5144, 6430, 7716, 9002, 10288, 11574, 12860, 14146, 15432, 16718, 18004, 19290, 20576, 21862, 23148, 24434, 25720, 27006, 28292, 29578, 30864, 32150, 33436, 34722, 36008, 37294, 38580, 39866, 41152, 42438, 43724, 45010, 46296, 47582, 48868, 50154, 51440, 52726, 54012, 55298, 56584, 57870, 59156, 60442, 61728, 63014, 64300, 65586, 66872, 68158, 69444, 70730, 72016, 73302, 74588, 75874, 77160, 78446, 79732, 81018, 82304, 83590, 84876, 86162, 87448, 88734, 90020, 91306, 92592, 93878, 95164, 96450, 97736, 99022,100308,101594, 102880,104166,105452,106738,108024,109310,110596,111882, 113168,114454,115740,117026,118312,119598,120884,122170, 123456,124742,126028,127314,128600,129886,131172,132458, 133744,135030,136316,137602,138888,140174,141460,142746, 144032,145318,146604,147890,149176,150462,151748,153034, 154320,155606,156892,158178,159464,160750,162036,163322, 164608,165894,167180,168466,169752,171038,172324,173610, 174896,176182,177468,178754,180040,181326,182612,183898, 185184,186470,187756,189042,190328,191614,192900,194186, 195472,196758,198044,199330,200616,201902,203188,204474, 205760,207046,208332,209618,210904,212190,213476,214762, 216048,217334,218620,219906,221192,222478,223764,225050, 226336,227622,228908,230194,231480,232766,234052,235338, 236624,237910,239196,240482,241768,243054,244340,245626, 246912,248198,249484,250770,252056,253342,254628,255914, 257200,258486,259772,261058,262344,263630,264916,266202, 267488,268774,270060,271346,272632,273918,275204,276490, 277776,279062,280348,281634,282920,284206,285492,286778, 288064,289350,290636,291922,293208,294494,295780,297066, 298352,299638,300924,302210,303496,304782,306068,307354, 308640,309926,311212,312498,313784,315070,316356,317642, 318928,320214,321500,322786,324072,325358,326644,327930 }; const long FloydMap[256] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 }; const long FloydError1[61] = { -7680, -7424, -7168, -6912, -6656, -6400, -6144, -5888, -5632, -5376, -5120, -4864, -4608, -4352, -4096, -3840, -3584, -3328, -3072, -2816, -2560, -2304, -2048, -1792, -1536, -1280, -1024, -768, -512, -256, 0, 256, 512, 768, 1024, 1280, 1536, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 3584, 3840, 4096, 4352, 4608, 4864, 5120, 5376, 5632, 5888, 6144, 6400, 6656, 6912, 7168, 7424, 7680 }; const long FloydError3[61] = { -23040, -22272, -21504, -20736, -19968, -19200, -18432, -17664, -16896, -16128, -15360, -14592, -13824, -13056, -12288, -11520, -10752, -9984, -9216, -8448, -7680, -6912, -6144, -5376, -4608, -3840, -3072, -2304, -1536, -768, 0, 768, 1536, 2304, 3072, 3840, 4608, 5376, 6144, 6912, 7680, 8448, 9216, 9984, 10752, 11520, 12288, 13056, 13824, 14592, 15360, 16128, 16896, 17664, 18432, 19200, 19968, 20736, 21504, 22272, 23040 }; const long FloydError5[61] = { -38400, -37120, -35840, -34560, -33280, -32000, -30720, -29440, -28160, -26880, -25600, -24320, -23040, -21760, -20480, -19200, -17920, -16640, -15360, -14080, -12800, -11520, -10240, -8960, -7680, -6400, -5120, -3840, -2560, -1280, 0, 1280, 2560, 3840, 5120, 6400, 7680, 8960, 10240, 11520, 12800, 14080, 15360, 16640, 17920, 19200, 20480, 21760, 23040, 24320, 25600, 26880, 28160, 29440, 30720, 32000, 33280, 34560, 35840, 37120, 38400 }; const long FloydError7[61] = { -53760, -51968, -50176, -48384, -46592, -44800, -43008, -41216, -39424, -37632, -35840, -34048, -32256, -30464, -28672, -26880, -25088, -23296, -21504, -19712, -17920, -16128, -14336, -12544, -10752, -8960, -7168, -5376, -3584, -1792, 0, 1792, 3584, 5376, 7168, 8960, 10752, 12544, 14336, 16128, 17920, 19712, 21504, 23296, 25088, 26880, 28672, 30464, 32256, 34048, 35840, 37632, 39424, 41216, 43008, 44800, 46592, 48384, 50176, 51968, 53760 }; const long FloydIndexMap[6] = { -30, 21, 72, 123, 174, 225 }; bool Bitmap::Convert( BmpConversion eConversion ) { // try to convert in backend if (mxSalBmp) { // avoid large chunk of obsolete and hopefully rarely used conversions. if (eConversion == BmpConversion::N8BitNoConversion) { std::shared_ptr xImpBmp(ImplGetSVData()->mpDefInst->CreateSalBitmap()); // frequently used conversion for creating alpha masks if (xImpBmp->Create(*mxSalBmp) && xImpBmp->InterpretAs8Bit()) { ImplSetSalBitmap(xImpBmp); SAL_INFO( "vcl.opengl", "Ref count: " << mxSalBmp.use_count() ); return true; } } if (eConversion == BmpConversion::N8BitGreys) { std::shared_ptr xImpBmp(ImplGetSVData()->mpDefInst->CreateSalBitmap()); if (xImpBmp->Create(*mxSalBmp) && xImpBmp->ConvertToGreyscale()) { ImplSetSalBitmap(xImpBmp); SAL_INFO( "vcl.opengl", "Ref count: " << mxSalBmp.use_count() ); return true; } } } const sal_uInt16 nBitCount = GetBitCount (); bool bRet = false; switch( eConversion ) { case BmpConversion::N1BitThreshold: { BitmapEx aBmpEx(*this); bRet = BitmapFilter::Filter(aBmpEx, BitmapMonochromeFilter(128)); *this = aBmpEx.GetBitmap(); } break; case BmpConversion::N4BitGreys: bRet = ImplMakeGreyscales( 16 ); break; case BmpConversion::N4BitColors: { if( nBitCount < 4 ) bRet = ImplConvertUp( 4 ); else if( nBitCount > 4 ) bRet = ImplConvertDown( 4 ); else bRet = true; } break; case BmpConversion::N8BitGreys: case BmpConversion::N8BitNoConversion: bRet = ImplMakeGreyscales( 256 ); break; case BmpConversion::N8BitColors: { if( nBitCount < 8 ) bRet = ImplConvertUp( 8 ); else if( nBitCount > 8 ) bRet = ImplConvertDown( 8 ); else bRet = true; } break; case BmpConversion::N8BitTrans: { Color aTrans( BMP_COL_TRANS ); if( nBitCount < 8 ) bRet = ImplConvertUp( 8, &aTrans ); else bRet = ImplConvertDown( 8, &aTrans ); } break; case BmpConversion::N24Bit: { if( nBitCount < 24 ) bRet = ImplConvertUp( 24 ); else bRet = true; } break; case BmpConversion::N32Bit: { if( nBitCount < 32 ) bRet = ImplConvertUp( 32 ); else bRet = true; } break; default: OSL_FAIL( "Bitmap::Convert(): Unsupported conversion" ); break; } return bRet; } bool Bitmap::ImplMakeGreyscales( sal_uInt16 nGreys ) { SAL_WARN_IF( nGreys != 16 && nGreys != 256, "vcl", "Only 16 or 256 greyscales are supported!" ); ScopedReadAccess pReadAcc(*this); bool bRet = false; if( pReadAcc ) { const BitmapPalette& rPal = GetGreyPalette( nGreys ); sal_uLong nShift = ( ( nGreys == 16 ) ? 4UL : 0UL ); bool bPalDiffers = !pReadAcc->HasPalette() || ( rPal.GetEntryCount() != pReadAcc->GetPaletteEntryCount() ); if( !bPalDiffers ) bPalDiffers = ( rPal != pReadAcc->GetPalette() ); if( bPalDiffers ) { Bitmap aNewBmp( GetSizePixel(), ( nGreys == 16 ) ? 4 : 8, &rPal ); BitmapScopedWriteAccess pWriteAcc(aNewBmp); if( pWriteAcc ) { const long nWidth = pWriteAcc->Width(); const long nHeight = pWriteAcc->Height(); if( pReadAcc->HasPalette() ) { for( long nY = 0; nY < nHeight; nY++ ) { Scanline pScanline = pWriteAcc->GetScanline(nY); Scanline pScanlineRead = pReadAcc->GetScanline(nY); for( long nX = 0; nX < nWidth; nX++ ) { const sal_uInt8 cIndex = pReadAcc->GetIndexFromData( pScanlineRead, nX ); pWriteAcc->SetPixelOnData( pScanline, nX, BitmapColor(pReadAcc->GetPaletteColor( cIndex ).GetLuminance() >> nShift) ); } } } else if( pReadAcc->GetScanlineFormat() == ScanlineFormat::N24BitTcBgr && pWriteAcc->GetScanlineFormat() == ScanlineFormat::N8BitPal ) { nShift += 8; for( long nY = 0; nY < nHeight; nY++ ) { Scanline pReadScan = pReadAcc->GetScanline( nY ); Scanline pWriteScan = pWriteAcc->GetScanline( nY ); for( long nX = 0; nX < nWidth; nX++ ) { const sal_uLong nB = *pReadScan++; const sal_uLong nG = *pReadScan++; const sal_uLong nR = *pReadScan++; *pWriteScan++ = static_cast( ( nB * 28UL + nG * 151UL + nR * 77UL ) >> nShift ); } } } else if( pReadAcc->GetScanlineFormat() == ScanlineFormat::N24BitTcRgb && pWriteAcc->GetScanlineFormat() == ScanlineFormat::N8BitPal ) { nShift += 8; for( long nY = 0; nY < nHeight; nY++ ) { Scanline pReadScan = pReadAcc->GetScanline( nY ); Scanline pWriteScan = pWriteAcc->GetScanline( nY ); for( long nX = 0; nX < nWidth; nX++ ) { const sal_uLong nR = *pReadScan++; const sal_uLong nG = *pReadScan++; const sal_uLong nB = *pReadScan++; *pWriteScan++ = static_cast( ( nB * 28UL + nG * 151UL + nR * 77UL ) >> nShift ); } } } else { for( long nY = 0; nY < nHeight; nY++ ) { Scanline pScanline = pWriteAcc->GetScanline(nY); Scanline pScanlineRead = pReadAcc->GetScanline(nY); for( long nX = 0; nX < nWidth; nX++ ) pWriteAcc->SetPixelOnData( pScanline, nX, BitmapColor(pReadAcc->GetPixelFromData( pScanlineRead, nX ).GetLuminance() >> nShift) ); } } pWriteAcc.reset(); bRet = true; } pReadAcc.reset(); if( bRet ) { const MapMode aMap( maPrefMapMode ); const Size aSize( maPrefSize ); *this = aNewBmp; maPrefMapMode = aMap; maPrefSize = aSize; } } else { pReadAcc.reset(); bRet = true; } } return bRet; } bool Bitmap::ImplConvertUp(sal_uInt16 nBitCount, Color const * pExtColor) { SAL_WARN_IF( nBitCount <= GetBitCount(), "vcl", "New BitCount must be greater!" ); Bitmap::ScopedReadAccess pReadAcc(*this); bool bRet = false; if (pReadAcc) { BitmapPalette aPalette; Bitmap aNewBmp(GetSizePixel(), nBitCount, pReadAcc->HasPalette() ? &pReadAcc->GetPalette() : &aPalette); BitmapScopedWriteAccess pWriteAcc(aNewBmp); if (pWriteAcc) { const long nWidth = pWriteAcc->Width(); const long nHeight = pWriteAcc->Height(); if (pWriteAcc->HasPalette()) { const BitmapPalette& rOldPalette = pReadAcc->GetPalette(); const sal_uInt16 nOldCount = rOldPalette.GetEntryCount(); assert(nOldCount <= (1 << GetBitCount())); aPalette.SetEntryCount(1 << nBitCount); for (sal_uInt16 i = 0; i < nOldCount; i++) aPalette[i] = rOldPalette[i]; if (pExtColor) aPalette[aPalette.GetEntryCount() - 1] = *pExtColor; pWriteAcc->SetPalette(aPalette); for (long nY = 0; nY < nHeight; nY++) { Scanline pScanline = pWriteAcc->GetScanline(nY); Scanline pScanlineRead = pReadAcc->GetScanline(nY); for (long nX = 0; nX < nWidth; nX++) { pWriteAcc->SetPixelOnData(pScanline, nX, pReadAcc->GetPixelFromData(pScanlineRead, nX)); } } } else { if (pReadAcc->HasPalette()) { for (long nY = 0; nY < nHeight; nY++) { Scanline pScanline = pWriteAcc->GetScanline(nY); Scanline pScanlineRead = pReadAcc->GetScanline(nY); for (long nX = 0; nX < nWidth; nX++) { pWriteAcc->SetPixelOnData(pScanline, nX, pReadAcc->GetPaletteColor(pReadAcc->GetIndexFromData(pScanlineRead, nX))); } } } else { for (long nY = 0; nY < nHeight; nY++) { Scanline pScanline = pWriteAcc->GetScanline(nY); Scanline pScanlineRead = pReadAcc->GetScanline(nY); for (long nX = 0; nX < nWidth; nX++) { pWriteAcc->SetPixelOnData(pScanline, nX, pReadAcc->GetPixelFromData(pScanlineRead, nX)); } } } } bRet = true; } if (bRet) { const MapMode aMap(maPrefMapMode); const Size aSize(maPrefSize); *this = aNewBmp; maPrefMapMode = aMap; maPrefSize = aSize; } } return bRet; } bool Bitmap::ImplConvertDown(sal_uInt16 nBitCount, Color const * pExtColor) { SAL_WARN_IF(nBitCount > GetBitCount(), "vcl", "New BitCount must be lower ( or equal when pExtColor is set )!"); Bitmap::ScopedReadAccess pReadAcc(*this); bool bRet = false; if (pReadAcc) { BitmapPalette aPalette; Bitmap aNewBmp(GetSizePixel(), nBitCount, &aPalette); BitmapScopedWriteAccess pWriteAcc(aNewBmp); if (pWriteAcc) { const sal_uInt16 nCount = 1 << nBitCount; const long nWidth = pWriteAcc->Width(); const long nWidth1 = nWidth - 1; const long nHeight = pWriteAcc->Height(); Octree aOctree(*pReadAcc, pExtColor ? (nCount - 1) : nCount); aPalette = aOctree.GetPalette(); InverseColorMap aColorMap(aPalette); BitmapColor aColor; ImpErrorQuad aErrQuad; std::vector aErrQuad1(nWidth); std::vector aErrQuad2(nWidth); ImpErrorQuad* pQLine1 = aErrQuad1.data(); ImpErrorQuad* pQLine2 = nullptr; long nYTmp = 0; sal_uInt8 cIndex; bool bQ1 = true; if (pExtColor) { aPalette.SetEntryCount(aPalette.GetEntryCount() + 1); aPalette[aPalette.GetEntryCount() - 1] = *pExtColor; } // set Black/White always, if we have enough space if (aPalette.GetEntryCount() < (nCount - 1)) { aPalette.SetEntryCount(aPalette.GetEntryCount() + 2); aPalette[aPalette.GetEntryCount() - 2] = COL_BLACK; aPalette[aPalette.GetEntryCount() - 1] = COL_WHITE; } pWriteAcc->SetPalette(aPalette); for (long nY = 0; nY < std::min(nHeight, 2L); nY++, nYTmp++) { pQLine2 = !nY ? aErrQuad1.data() : aErrQuad2.data(); Scanline pScanlineRead = pReadAcc->GetScanline(nYTmp); for (long nX = 0; nX < nWidth; nX++) { if (pReadAcc->HasPalette()) pQLine2[nX] = pReadAcc->GetPaletteColor(pReadAcc->GetIndexFromData(pScanlineRead, nX)); else pQLine2[nX] = pReadAcc->GetPixelFromData(pScanlineRead, nX); } } assert(pQLine2 || nHeight == 0); for (long nY = 0; nY < nHeight; nY++, nYTmp++) { // first pixel in the line cIndex = static_cast(aColorMap.GetBestPaletteIndex(pQLine1[0].ImplGetColor())); Scanline pScanline = pWriteAcc->GetScanline(nY); pWriteAcc->SetPixelOnData(pScanline, 0, BitmapColor(cIndex)); long nX; for (nX = 1; nX < nWidth1; nX++) { aColor = pQLine1[nX].ImplGetColor(); cIndex = static_cast(aColorMap.GetBestPaletteIndex(aColor)); aErrQuad = (ImpErrorQuad(aColor) -= pWriteAcc->GetPaletteColor(cIndex)); pQLine1[++nX].ImplAddColorError7(aErrQuad); pQLine2[nX--].ImplAddColorError1(aErrQuad); pQLine2[nX--].ImplAddColorError5(aErrQuad); pQLine2[nX++].ImplAddColorError3(aErrQuad); pWriteAcc->SetPixelOnData(pScanline, nX, BitmapColor(cIndex)); } // Last RowPixel if (nX < nWidth) { cIndex = static_cast(aColorMap.GetBestPaletteIndex(pQLine1[nWidth1].ImplGetColor())); pWriteAcc->SetPixelOnData(pScanline, nX, BitmapColor(cIndex)); } // Refill/copy row buffer pQLine1 = pQLine2; bQ1 = !bQ1; pQLine2 = bQ1 ? aErrQuad2.data() : aErrQuad1.data(); if (nYTmp < nHeight) { Scanline pScanlineRead = pReadAcc->GetScanline(nYTmp); for (nX = 0; nX < nWidth; nX++) { if (pReadAcc->HasPalette()) pQLine2[nX] = pReadAcc->GetPaletteColor(pReadAcc->GetIndexFromData(pScanlineRead, nX)); else pQLine2[nX] = pReadAcc->GetPixelFromData(pScanlineRead, nX); } } } bRet = true; } pWriteAcc.reset(); if(bRet) { const MapMode aMap(maPrefMapMode); const Size aSize(maPrefSize); *this = aNewBmp; maPrefMapMode = aMap; maPrefSize = aSize; } } return bRet; } bool Bitmap::Scale( const double& rScaleX, const double& rScaleY, BmpScaleFlag nScaleFlag ) { if(basegfx::fTools::equalZero(rScaleX) || basegfx::fTools::equalZero(rScaleY)) { // no scale return true; } if(basegfx::fTools::equal(rScaleX, 1.0) && basegfx::fTools::equal(rScaleY, 1.0)) { // no scale return true; } const sal_uInt16 nStartCount(GetBitCount()); if (mxSalBmp && mxSalBmp->ScalingSupported()) { // implementation specific scaling std::shared_ptr xImpBmp(ImplGetSVData()->mpDefInst->CreateSalBitmap()); if (xImpBmp->Create(*mxSalBmp) && xImpBmp->Scale(rScaleX, rScaleY, nScaleFlag)) { ImplSetSalBitmap(xImpBmp); SAL_INFO( "vcl.opengl", "Ref count: " << mxSalBmp.use_count() ); maPrefMapMode = MapMode( MapUnit::MapPixel ); maPrefSize = xImpBmp->GetSize(); return true; } } // fdo#33455 // // If we start with a 1 bit image, then after scaling it in any mode except // BmpScaleFlag::Fast we have a 24bit image which is perfectly correct, but we // are going to down-shift it to mono again and Bitmap::MakeMonochrome just // has "Bitmap aNewBmp( GetSizePixel(), 1 );" to create a 1 bit bitmap which // will default to black/white and the colors mapped to which ever is closer // to black/white // // So the easiest thing to do to retain the colors of 1 bit bitmaps is to // just use the fast scale rather than attempting to count unique colors in // the other converters and pass all the info down through // Bitmap::MakeMonochrome if (nStartCount == 1) nScaleFlag = BmpScaleFlag::Fast; BitmapEx aBmpEx(*this); bool bRetval(false); switch(nScaleFlag) { case BmpScaleFlag::Default: if (GetSizePixel().Width() < 2 || GetSizePixel().Height() < 2) bRetval = BitmapFilter::Filter(aBmpEx, BitmapFastScaleFilter(rScaleX, rScaleY)); else bRetval = BitmapFilter::Filter(aBmpEx, BitmapScaleSuperFilter(rScaleX, rScaleY)); break; case BmpScaleFlag::Fast: case BmpScaleFlag::NearestNeighbor: bRetval = BitmapFilter::Filter(aBmpEx, BitmapFastScaleFilter(rScaleX, rScaleY)); break; case BmpScaleFlag::Interpolate: bRetval = BitmapFilter::Filter(aBmpEx, BitmapInterpolateScaleFilter(rScaleX, rScaleY)); break; case BmpScaleFlag::Super: bRetval = BitmapFilter::Filter(aBmpEx, BitmapScaleSuperFilter(rScaleX, rScaleY)); break; case BmpScaleFlag::BestQuality: case BmpScaleFlag::Lanczos: bRetval = BitmapFilter::Filter(aBmpEx, vcl::BitmapScaleLanczos3Filter(rScaleX, rScaleY)); break; case BmpScaleFlag::BiCubic: bRetval = BitmapFilter::Filter(aBmpEx, vcl::BitmapScaleBicubicFilter(rScaleX, rScaleY)); break; case BmpScaleFlag::BiLinear: bRetval = BitmapFilter::Filter(aBmpEx, vcl::BitmapScaleBilinearFilter(rScaleX, rScaleY)); break; } if (bRetval) *this = aBmpEx.GetBitmap(); OSL_ENSURE(!bRetval || nStartCount == GetBitCount(), "Bitmap::Scale has changed the ColorDepth, this should *not* happen (!)"); return bRetval; } bool Bitmap::Scale( const Size& rNewSize, BmpScaleFlag nScaleFlag ) { const Size aSize( GetSizePixel() ); bool bRet; if( aSize.Width() && aSize.Height() ) { bRet = Scale( static_cast(rNewSize.Width()) / aSize.Width(), static_cast(rNewSize.Height()) / aSize.Height(), nScaleFlag ); } else bRet = true; return bRet; } bool Bitmap::HasFastScale() { #if HAVE_FEATURE_SKIA if( SkiaHelper::isVCLSkiaEnabled() && SkiaHelper::renderMethodToUse() != SkiaHelper::RenderRaster) return true; #endif #if HAVE_FEATURE_OPENGL if( OpenGLHelper::isVCLOpenGLEnabled()) return true; #endif return false; } void Bitmap::AdaptBitCount(Bitmap& rNew) const { // aNew is the result of some operation; adapt it's BitCount to the original (this) if(GetBitCount() != rNew.GetBitCount()) { switch(GetBitCount()) { case 1: { rNew.Convert(BmpConversion::N1BitThreshold); break; } case 4: { if(HasGreyPalette()) { rNew.Convert(BmpConversion::N4BitGreys); } else { rNew.Convert(BmpConversion::N4BitColors); } break; } case 8: { if(HasGreyPalette()) { rNew.Convert(BmpConversion::N8BitGreys); } else { rNew.Convert(BmpConversion::N8BitColors); } break; } case 24: { rNew.Convert(BmpConversion::N24Bit); break; } case 32: { rNew.Convert(BmpConversion::N32Bit); break; } default: { SAL_WARN("vcl", "BitDepth adaptation failed, from " << rNew.GetBitCount() << " to " << GetBitCount()); break; } } } } bool Bitmap::Dither() { const Size aSize( GetSizePixel() ); if( aSize.Width() == 1 || aSize.Height() == 1 ) return true; bool bRet = false; if( ( aSize.Width() > 3 ) && ( aSize.Height() > 2 ) ) { ScopedReadAccess pReadAcc(*this); Bitmap aNewBmp( GetSizePixel(), 8 ); BitmapScopedWriteAccess pWriteAcc(aNewBmp); if( pReadAcc && pWriteAcc ) { BitmapColor aColor; long nWidth = pReadAcc->Width(); long nWidth1 = nWidth - 1; long nHeight = pReadAcc->Height(); long nX; long nW = nWidth * 3; long nW2 = nW - 3; long nRErr, nGErr, nBErr; long nRC, nGC, nBC; std::unique_ptr p1(new long[ nW ]); std::unique_ptr p2(new long[ nW ]); long* p1T = p1.get(); long* p2T = p2.get(); long* pTmp; bool bPal = pReadAcc->HasPalette(); pTmp = p2T; if( bPal ) { Scanline pScanlineRead = pReadAcc->GetScanline(0); for( long nZ = 0; nZ < nWidth; nZ++ ) { aColor = pReadAcc->GetPaletteColor( pReadAcc->GetIndexFromData( pScanlineRead, nZ ) ); *pTmp++ = static_cast(aColor.GetBlue()) << 12; *pTmp++ = static_cast(aColor.GetGreen()) << 12; *pTmp++ = static_cast(aColor.GetRed()) << 12; } } else { Scanline pScanlineRead = pReadAcc->GetScanline(0); for( long nZ = 0; nZ < nWidth; nZ++ ) { aColor = pReadAcc->GetPixelFromData( pScanlineRead, nZ ); *pTmp++ = static_cast(aColor.GetBlue()) << 12; *pTmp++ = static_cast(aColor.GetGreen()) << 12; *pTmp++ = static_cast(aColor.GetRed()) << 12; } } for( long nY = 1, nYAcc = 0; nY <= nHeight; nY++, nYAcc++ ) { pTmp = p1T; p1T = p2T; p2T = pTmp; if( nY < nHeight ) { if( bPal ) { Scanline pScanlineRead = pReadAcc->GetScanline(nY); for( long nZ = 0; nZ < nWidth; nZ++ ) { aColor = pReadAcc->GetPaletteColor( pReadAcc->GetIndexFromData( pScanlineRead, nZ ) ); *pTmp++ = static_cast(aColor.GetBlue()) << 12; *pTmp++ = static_cast(aColor.GetGreen()) << 12; *pTmp++ = static_cast(aColor.GetRed()) << 12; } } else { Scanline pScanlineRead = pReadAcc->GetScanline(nY); for( long nZ = 0; nZ < nWidth; nZ++ ) { aColor = pReadAcc->GetPixelFromData( pScanlineRead, nZ ); *pTmp++ = static_cast(aColor.GetBlue()) << 12; *pTmp++ = static_cast(aColor.GetGreen()) << 12; *pTmp++ = static_cast(aColor.GetRed()) << 12; } } } // Examine first Pixel separately nX = 0; long nTemp; CALC_ERRORS; CALC_TABLES7; nX -= 5; CALC_TABLES5; Scanline pScanline = pWriteAcc->GetScanline(nYAcc); pWriteAcc->SetPixelOnData( pScanline, 0, BitmapColor(static_cast(nVCLBLut[ nBC ] + nVCLGLut[nGC ] + nVCLRLut[nRC ])) ); // Get middle Pixels using a loop long nXAcc; for ( nX = 3, nXAcc = 1; nX < nW2; nXAcc++ ) { CALC_ERRORS; CALC_TABLES7; nX -= 8; CALC_TABLES3; CALC_TABLES5; pWriteAcc->SetPixelOnData( pScanline, nXAcc, BitmapColor(static_cast(nVCLBLut[ nBC ] + nVCLGLut[nGC ] + nVCLRLut[nRC ])) ); } // Treat last Pixel separately CALC_ERRORS; nX -= 5; CALC_TABLES3; CALC_TABLES5; pWriteAcc->SetPixelOnData( pScanline, nWidth1, BitmapColor(static_cast(nVCLBLut[ nBC ] + nVCLGLut[nGC ] + nVCLRLut[nRC ])) ); } bRet = true; } pReadAcc.reset(); pWriteAcc.reset(); if( bRet ) { const MapMode aMap( maPrefMapMode ); const Size aPrefSize( maPrefSize ); *this = aNewBmp; maPrefMapMode = aMap; maPrefSize = aPrefSize; } } return bRet; } void Bitmap::Vectorize( GDIMetaFile& rMtf, sal_uInt8 cReduce, const Link* pProgress ) { ImplVectorizer::ImplVectorize( *this, rMtf, cReduce, pProgress ); } bool Bitmap::Adjust( short nLuminancePercent, short nContrastPercent, short nChannelRPercent, short nChannelGPercent, short nChannelBPercent, double fGamma, bool bInvert, bool msoBrightness ) { bool bRet = false; // nothing to do => return quickly if( !nLuminancePercent && !nContrastPercent && !nChannelRPercent && !nChannelGPercent && !nChannelBPercent && ( fGamma == 1.0 ) && !bInvert ) { bRet = true; } else { BitmapScopedWriteAccess pAcc(*this); if( pAcc ) { BitmapColor aCol; const long nW = pAcc->Width(); const long nH = pAcc->Height(); std::unique_ptr cMapR(new sal_uInt8[ 256 ]); std::unique_ptr cMapG(new sal_uInt8[ 256 ]); std::unique_ptr cMapB(new sal_uInt8[ 256 ]); double fM, fROff, fGOff, fBOff, fOff; // calculate slope if( nContrastPercent >= 0 ) fM = 128.0 / ( 128.0 - 1.27 * MinMax( nContrastPercent, 0, 100 ) ); else fM = ( 128.0 + 1.27 * MinMax( nContrastPercent, -100, 0 ) ) / 128.0; if(!msoBrightness) // total offset = luminance offset + contrast offset fOff = MinMax( nLuminancePercent, -100, 100 ) * 2.55 + 128.0 - fM * 128.0; else fOff = MinMax( nLuminancePercent, -100, 100 ) * 2.55; // channel offset = channel offset + total offset fROff = nChannelRPercent * 2.55 + fOff; fGOff = nChannelGPercent * 2.55 + fOff; fBOff = nChannelBPercent * 2.55 + fOff; // calculate gamma value fGamma = ( fGamma <= 0.0 || fGamma > 10.0 ) ? 1.0 : ( 1.0 / fGamma ); const bool bGamma = ( fGamma != 1.0 ); // create mapping table for( long nX = 0; nX < 256; nX++ ) { if(!msoBrightness) { cMapR[ nX ] = static_cast(MinMax( FRound( nX * fM + fROff ), 0, 255 )); cMapG[ nX ] = static_cast(MinMax( FRound( nX * fM + fGOff ), 0, 255 )); cMapB[ nX ] = static_cast(MinMax( FRound( nX * fM + fBOff ), 0, 255 )); } else { // LO simply uses (in a somewhat optimized form) "newcolor = (oldcolor-128)*contrast+brightness+128" // as the formula, i.e. contrast first, brightness afterwards. MSOffice, for whatever weird reason, // use neither first, but apparently it applies half of brightness before contrast and half afterwards. cMapR[ nX ] = static_cast(MinMax( FRound( (nX+fROff/2-128) * fM + 128 + fROff/2 ), 0, 255 )); cMapG[ nX ] = static_cast(MinMax( FRound( (nX+fGOff/2-128) * fM + 128 + fGOff/2 ), 0, 255 )); cMapB[ nX ] = static_cast(MinMax( FRound( (nX+fBOff/2-128) * fM + 128 + fBOff/2 ), 0, 255 )); } if( bGamma ) { cMapR[ nX ] = GAMMA( cMapR[ nX ], fGamma ); cMapG[ nX ] = GAMMA( cMapG[ nX ], fGamma ); cMapB[ nX ] = GAMMA( cMapB[ nX ], fGamma ); } if( bInvert ) { cMapR[ nX ] = ~cMapR[ nX ]; cMapG[ nX ] = ~cMapG[ nX ]; cMapB[ nX ] = ~cMapB[ nX ]; } } // do modifying if( pAcc->HasPalette() ) { BitmapColor aNewCol; for( sal_uInt16 i = 0, nCount = pAcc->GetPaletteEntryCount(); i < nCount; i++ ) { const BitmapColor& rCol = pAcc->GetPaletteColor( i ); aNewCol.SetRed( cMapR[ rCol.GetRed() ] ); aNewCol.SetGreen( cMapG[ rCol.GetGreen() ] ); aNewCol.SetBlue( cMapB[ rCol.GetBlue() ] ); pAcc->SetPaletteColor( i, aNewCol ); } } else if( pAcc->GetScanlineFormat() == ScanlineFormat::N24BitTcBgr ) { for( long nY = 0; nY < nH; nY++ ) { Scanline pScan = pAcc->GetScanline( nY ); for( long nX = 0; nX < nW; nX++ ) { *pScan = cMapB[ *pScan ]; pScan++; *pScan = cMapG[ *pScan ]; pScan++; *pScan = cMapR[ *pScan ]; pScan++; } } } else if( pAcc->GetScanlineFormat() == ScanlineFormat::N24BitTcRgb ) { for( long nY = 0; nY < nH; nY++ ) { Scanline pScan = pAcc->GetScanline( nY ); for( long nX = 0; nX < nW; nX++ ) { *pScan = cMapR[ *pScan ]; pScan++; *pScan = cMapG[ *pScan ]; pScan++; *pScan = cMapB[ *pScan ]; pScan++; } } } else { for( long nY = 0; nY < nH; nY++ ) { Scanline pScanline = pAcc->GetScanline(nY); for( long nX = 0; nX < nW; nX++ ) { aCol = pAcc->GetPixelFromData( pScanline, nX ); aCol.SetRed( cMapR[ aCol.GetRed() ] ); aCol.SetGreen( cMapG[ aCol.GetGreen() ] ); aCol.SetBlue( cMapB[ aCol.GetBlue() ] ); pAcc->SetPixelOnData( pScanline, nX, aCol ); } } } pAcc.reset(); bRet = true; } } return bRet; } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */