/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // BitmapEx::Create #include #include #include #include #include #include #include #include #include using namespace ::com::sun::star; BitmapEx::BitmapEx() : meTransparent(TransparentType::NONE) , mbAlpha(false) { } BitmapEx::BitmapEx( const BitmapEx& ) = default; BitmapEx::BitmapEx( const BitmapEx& rBitmapEx, Point aSrc, Size aSize ) : meTransparent(TransparentType::NONE) , mbAlpha(false) { if( rBitmapEx.IsEmpty() ) return; maBitmap = Bitmap( aSize, rBitmapEx.maBitmap.GetBitCount() ); SetSizePixel(aSize); if( rBitmapEx.IsAlpha() ) { mbAlpha = true; maMask = AlphaMask( aSize ).ImplGetBitmap(); } else if( rBitmapEx.IsTransparent() ) maMask = Bitmap( aSize, rBitmapEx.maMask.GetBitCount() ); tools::Rectangle aDestRect( Point( 0, 0 ), aSize ); tools::Rectangle aSrcRect( aSrc, aSize ); CopyPixel( aDestRect, aSrcRect, &rBitmapEx ); } BitmapEx::BitmapEx( Size aSize, sal_uInt16 nBitCount ) : meTransparent(TransparentType::NONE) , mbAlpha(false) { maBitmap = Bitmap( aSize, nBitCount ); SetSizePixel(aSize); } BitmapEx::BitmapEx( const OUString& rIconName ) : meTransparent(TransparentType::NONE) , mbAlpha(false) { loadFromIconTheme( rIconName ); } void BitmapEx::loadFromIconTheme( const OUString& rIconName ) { bool bSuccess; OUString aIconTheme; try { aIconTheme = Application::GetSettings().GetStyleSettings().DetermineIconTheme(); bSuccess = ImageTree::get().loadImage(rIconName, aIconTheme, *this, true); } catch (...) { bSuccess = false; } SAL_WARN_IF( !bSuccess, "vcl", "BitmapEx::BitmapEx(): could not load image " << rIconName << " via icon theme " << aIconTheme); } BitmapEx::BitmapEx( const Bitmap& rBmp ) : maBitmap ( rBmp ), maBitmapSize ( maBitmap.GetSizePixel() ), meTransparent( TransparentType::NONE ), mbAlpha ( false ) { } BitmapEx::BitmapEx( const Bitmap& rBmp, const Bitmap& rMask ) : maBitmap ( rBmp ), maMask ( rMask ), maBitmapSize ( maBitmap.GetSizePixel() ), meTransparent ( !rMask ? TransparentType::NONE : TransparentType::Bitmap ), mbAlpha ( false ) { // Ensure a mask is exactly one bit deep if( !!maMask && maMask.GetBitCount() != 1 ) { SAL_WARN( "vcl", "BitmapEx: forced mask to monochrome"); BitmapEx aMaskEx(maMask); BitmapFilter::Filter(aMaskEx, BitmapMonochromeFilter(255)); maMask = aMaskEx.GetBitmap(); } if (!!maBitmap && !!maMask && maBitmap.GetSizePixel() != maMask.GetSizePixel()) { OSL_ENSURE(false, "Mask size differs from Bitmap size, corrected Mask (!)"); maMask.Scale(maBitmap.GetSizePixel()); } } BitmapEx::BitmapEx( const Bitmap& rBmp, const AlphaMask& rAlphaMask ) : maBitmap ( rBmp ), maMask ( rAlphaMask.ImplGetBitmap() ), maBitmapSize ( maBitmap.GetSizePixel() ), meTransparent ( !rAlphaMask ? TransparentType::NONE : TransparentType::Bitmap ), mbAlpha ( !rAlphaMask.IsEmpty() ) { if (!!maBitmap && !!maMask && maBitmap.GetSizePixel() != maMask.GetSizePixel()) { OSL_ENSURE(false, "Alpha size differs from Bitmap size, corrected Mask (!)"); maMask.Scale(rBmp.GetSizePixel()); } // #i75531# the workaround below can go when // X11SalGraphics::drawAlphaBitmap()'s render acceleration // can handle the bitmap depth mismatch directly if( maBitmap.GetBitCount() < maMask.GetBitCount() ) maBitmap.Convert( BmpConversion::N24Bit ); } BitmapEx::BitmapEx( const Bitmap& rBmp, const Color& rTransparentColor ) : maBitmap ( rBmp ), maBitmapSize ( maBitmap.GetSizePixel() ), maTransparentColor ( rTransparentColor ), meTransparent ( TransparentType::Bitmap ), mbAlpha ( false ) { maMask = maBitmap.CreateMask( maTransparentColor ); SAL_WARN_IF(rBmp.GetSizePixel() != maMask.GetSizePixel(), "vcl", "BitmapEx::BitmapEx(): size mismatch for bitmap and alpha mask."); } BitmapEx& BitmapEx::operator=( const BitmapEx& ) = default; bool BitmapEx::operator==( const BitmapEx& rBitmapEx ) const { if (meTransparent != rBitmapEx.meTransparent) return false; if (GetSizePixel() != rBitmapEx.GetSizePixel()) return false; if (meTransparent != rBitmapEx.meTransparent) return false; if (meTransparent == TransparentType::Color && maTransparentColor != rBitmapEx.maTransparentColor) return false; if (mbAlpha != rBitmapEx.mbAlpha) return false; if (maBitmap != rBitmapEx.maBitmap) return false; return maMask == rBitmapEx.maMask; } bool BitmapEx::IsEmpty() const { return( maBitmap.IsEmpty() && maMask.IsEmpty() ); } void BitmapEx::SetEmpty() { maBitmap.SetEmpty(); maMask.SetEmpty(); meTransparent = TransparentType::NONE; mbAlpha = false; } void BitmapEx::Clear() { SetEmpty(); } bool BitmapEx::IsTransparent() const { return( meTransparent != TransparentType::NONE ); } bool BitmapEx::IsAlpha() const { return( IsTransparent() && mbAlpha ); } const Bitmap& BitmapEx::GetBitmapRef() const { return maBitmap; } Bitmap BitmapEx::GetBitmap( const Color* pTransReplaceColor ) const { Bitmap aRetBmp( maBitmap ); if( pTransReplaceColor && ( meTransparent != TransparentType::NONE ) ) { Bitmap aTempMask; if( meTransparent == TransparentType::Color ) aTempMask = maBitmap.CreateMask( maTransparentColor ); else aTempMask = maMask; if( !IsAlpha() ) aRetBmp.Replace( aTempMask, *pTransReplaceColor ); else aRetBmp.Replace( GetAlpha(), *pTransReplaceColor ); } return aRetBmp; } Bitmap BitmapEx::GetMask() const { if (!IsAlpha()) return maMask; BitmapEx aMaskEx(maMask); BitmapFilter::Filter(aMaskEx, BitmapMonochromeFilter(255)); return aMaskEx.GetBitmap(); } AlphaMask BitmapEx::GetAlpha() const { if( IsAlpha() ) { AlphaMask aAlpha; aAlpha.ImplSetBitmap( maMask ); return aAlpha; } else { return AlphaMask(maMask); } } sal_uLong BitmapEx::GetSizeBytes() const { sal_uLong nSizeBytes = maBitmap.GetSizeBytes(); if( meTransparent == TransparentType::Bitmap ) nSizeBytes += maMask.GetSizeBytes(); return nSizeBytes; } BitmapChecksum BitmapEx::GetChecksum() const { BitmapChecksum nCrc = maBitmap.GetChecksum(); SVBT32 aBT32; BitmapChecksumOctetArray aBCOA; UInt32ToSVBT32( o3tl::underlyingEnumValue(meTransparent), aBT32 ); nCrc = vcl_get_checksum( nCrc, aBT32, 4 ); UInt32ToSVBT32( sal_uInt32(mbAlpha), aBT32 ); nCrc = vcl_get_checksum( nCrc, aBT32, 4 ); if( ( TransparentType::Bitmap == meTransparent ) && !maMask.IsEmpty() ) { BCToBCOA( maMask.GetChecksum(), aBCOA ); nCrc = vcl_get_checksum( nCrc, aBCOA, BITMAP_CHECKSUM_SIZE ); } return nCrc; } void BitmapEx::SetSizePixel(const Size& rNewSize) { maBitmapSize = rNewSize; } bool BitmapEx::Invert() { bool bRet = false; if (!!maBitmap) { bRet = maBitmap.Invert(); if (bRet && (meTransparent == TransparentType::Color)) maTransparentColor.Invert(); } return bRet; } bool BitmapEx::Mirror( BmpMirrorFlags nMirrorFlags ) { bool bRet = false; if( !!maBitmap ) { bRet = maBitmap.Mirror( nMirrorFlags ); if( bRet && ( meTransparent == TransparentType::Bitmap ) && !!maMask ) maMask.Mirror( nMirrorFlags ); } return bRet; } bool BitmapEx::Scale( const double& rScaleX, const double& rScaleY, BmpScaleFlag nScaleFlag ) { bool bRet = false; if( !!maBitmap ) { bRet = maBitmap.Scale( rScaleX, rScaleY, nScaleFlag ); if( bRet && ( meTransparent == TransparentType::Bitmap ) && !!maMask ) { maMask.Scale( rScaleX, rScaleY, nScaleFlag ); } SetSizePixel(maBitmap.GetSizePixel()); SAL_WARN_IF( !!maMask && maBitmap.GetSizePixel() != maMask.GetSizePixel(), "vcl", "BitmapEx::Scale(): size mismatch for bitmap and alpha mask." ); } return bRet; } bool BitmapEx::Scale( const Size& rNewSize, BmpScaleFlag nScaleFlag ) { bool bRet; if (GetSizePixel().Width() && GetSizePixel().Height() && (rNewSize.Width() != GetSizePixel().Width() || rNewSize.Height() != GetSizePixel().Height() ) ) { bRet = Scale( static_cast(rNewSize.Width()) / GetSizePixel().Width(), static_cast(rNewSize.Height()) / GetSizePixel().Height(), nScaleFlag ); } else { bRet = true; } return bRet; } bool BitmapEx::Rotate( long nAngle10, const Color& rFillColor ) { bool bRet = false; if( !!maBitmap ) { const bool bTransRotate = ( COL_TRANSPARENT == rFillColor ); if( bTransRotate ) { if( meTransparent == TransparentType::Color ) bRet = maBitmap.Rotate( nAngle10, maTransparentColor ); else { bRet = maBitmap.Rotate( nAngle10, COL_BLACK ); if( meTransparent == TransparentType::NONE ) { maMask = Bitmap(GetSizePixel(), 1); maMask.Erase( COL_BLACK ); meTransparent = TransparentType::Bitmap; } if( bRet && !!maMask ) maMask.Rotate( nAngle10, COL_WHITE ); } } else { bRet = maBitmap.Rotate( nAngle10, rFillColor ); if( bRet && ( meTransparent == TransparentType::Bitmap ) && !!maMask ) maMask.Rotate( nAngle10, COL_WHITE ); } SetSizePixel(maBitmap.GetSizePixel()); SAL_WARN_IF(!!maMask && maBitmap.GetSizePixel() != maMask.GetSizePixel(), "vcl", "BitmapEx::Rotate(): size mismatch for bitmap and alpha mask."); } return bRet; } bool BitmapEx::Crop( const tools::Rectangle& rRectPixel ) { bool bRet = false; if( !!maBitmap ) { bRet = maBitmap.Crop( rRectPixel ); if( bRet && ( meTransparent == TransparentType::Bitmap ) && !!maMask ) maMask.Crop( rRectPixel ); SetSizePixel(maBitmap.GetSizePixel()); SAL_WARN_IF(!!maMask && maBitmap.GetSizePixel() != maMask.GetSizePixel(), "vcl", "BitmapEx::Crop(): size mismatch for bitmap and alpha mask."); } return bRet; } bool BitmapEx::Convert( BmpConversion eConversion ) { return !!maBitmap && maBitmap.Convert( eConversion ); } void BitmapEx::Expand( sal_uLong nDX, sal_uLong nDY, bool bExpandTransparent ) { bool bRet = false; if( !!maBitmap ) { bRet = maBitmap.Expand( nDX, nDY ); if( bRet && ( meTransparent == TransparentType::Bitmap ) && !!maMask ) { Color aColor( bExpandTransparent ? COL_WHITE : COL_BLACK ); maMask.Expand( nDX, nDY, &aColor ); } SetSizePixel(maBitmap.GetSizePixel()); SAL_WARN_IF(!!maMask && maBitmap.GetSizePixel() != maMask.GetSizePixel(), "vcl", "BitmapEx::Expand(): size mismatch for bitmap and alpha mask."); } } bool BitmapEx::CopyPixel( const tools::Rectangle& rRectDst, const tools::Rectangle& rRectSrc, const BitmapEx* pBmpExSrc ) { bool bRet = false; if( !pBmpExSrc || pBmpExSrc->IsEmpty() ) { if( !maBitmap.IsEmpty() ) { bRet = maBitmap.CopyPixel( rRectDst, rRectSrc ); if( bRet && ( meTransparent == TransparentType::Bitmap ) && !!maMask ) maMask.CopyPixel( rRectDst, rRectSrc ); } } else { if( !maBitmap.IsEmpty() ) { bRet = maBitmap.CopyPixel( rRectDst, rRectSrc, &pBmpExSrc->maBitmap ); if( bRet ) { if( pBmpExSrc->IsAlpha() ) { if( IsAlpha() ) // cast to use the optimized AlphaMask::CopyPixel maMask.CopyPixel_AlphaOptimized( rRectDst, rRectSrc, &pBmpExSrc->maMask ); else if( IsTransparent() ) { std::unique_ptr pAlpha(new AlphaMask( maMask )); maMask = pAlpha->ImplGetBitmap(); pAlpha.reset(); mbAlpha = true; maMask.CopyPixel( rRectDst, rRectSrc, &pBmpExSrc->maMask ); } else { sal_uInt8 cBlack = 0; std::unique_ptr pAlpha(new AlphaMask(GetSizePixel(), &cBlack)); maMask = pAlpha->ImplGetBitmap(); pAlpha.reset(); meTransparent = TransparentType::Bitmap; mbAlpha = true; maMask.CopyPixel( rRectDst, rRectSrc, &pBmpExSrc->maMask ); } } else if( pBmpExSrc->IsTransparent() ) { if (IsAlpha()) { AlphaMask aAlpha( pBmpExSrc->maMask ); maMask.CopyPixel( rRectDst, rRectSrc, &aAlpha.ImplGetBitmap() ); } else if (IsTransparent()) { maMask.CopyPixel( rRectDst, rRectSrc, &pBmpExSrc->maMask ); } else { maMask = Bitmap(GetSizePixel(), 1); maMask.Erase(COL_BLACK); meTransparent = TransparentType::Bitmap; maMask.CopyPixel( rRectDst, rRectSrc, &pBmpExSrc->maMask ); } } else if (IsAlpha()) { sal_uInt8 cBlack = 0; const AlphaMask aAlphaSrc(pBmpExSrc->GetSizePixel(), &cBlack); maMask.CopyPixel( rRectDst, rRectSrc, &aAlphaSrc.ImplGetBitmap() ); } else if (IsTransparent()) { Bitmap aMaskSrc(pBmpExSrc->GetSizePixel(), 1); aMaskSrc.Erase( COL_BLACK ); maMask.CopyPixel( rRectDst, rRectSrc, &aMaskSrc ); } } } } return bRet; } bool BitmapEx::Erase( const Color& rFillColor ) { bool bRet = false; if( !!maBitmap ) { bRet = maBitmap.Erase( rFillColor ); if( bRet && ( meTransparent == TransparentType::Bitmap ) && !!maMask ) { // Respect transparency on fill color if( rFillColor.GetTransparency() ) { const Color aFill( rFillColor.GetTransparency(), rFillColor.GetTransparency(), rFillColor.GetTransparency() ); maMask.Erase( aFill ); } else { const Color aBlack( COL_BLACK ); maMask.Erase( aBlack ); } } } return bRet; } void BitmapEx::Replace( const Color& rSearchColor, const Color& rReplaceColor ) { if (!!maBitmap) maBitmap.Replace( rSearchColor, rReplaceColor ); } void BitmapEx::Replace( const Color* pSearchColors, const Color* pReplaceColors, sal_uLong nColorCount ) { if (!!maBitmap) maBitmap.Replace( pSearchColors, pReplaceColors, nColorCount, /*pTols*/nullptr ); } bool BitmapEx::Adjust( short nLuminancePercent, short nContrastPercent, short nChannelRPercent, short nChannelGPercent, short nChannelBPercent, double fGamma, bool bInvert, bool msoBrightness ) { return !!maBitmap && maBitmap.Adjust( nLuminancePercent, nContrastPercent, nChannelRPercent, nChannelGPercent, nChannelBPercent, fGamma, bInvert, msoBrightness ); } void BitmapEx::Draw( OutputDevice* pOutDev, const Point& rDestPt ) const { pOutDev->DrawBitmapEx( rDestPt, *this ); } void BitmapEx::Draw( OutputDevice* pOutDev, const Point& rDestPt, const Size& rDestSize ) const { pOutDev->DrawBitmapEx( rDestPt, rDestSize, *this ); } BitmapEx BitmapEx:: AutoScaleBitmap(BitmapEx const & aBitmap, const long aStandardSize) { Point aEmptyPoint(0,0); double imgposX = 0; double imgposY = 0; BitmapEx aRet = aBitmap; double imgOldWidth = aRet.GetSizePixel().Width(); double imgOldHeight = aRet.GetSizePixel().Height(); Size aScaledSize; if (imgOldWidth >= aStandardSize || imgOldHeight >= aStandardSize) { sal_Int32 imgNewWidth = 0; sal_Int32 imgNewHeight = 0; if (imgOldWidth >= imgOldHeight) { imgNewWidth = aStandardSize; imgNewHeight = sal_Int32(imgOldHeight / (imgOldWidth / aStandardSize) + 0.5); imgposX = 0; imgposY = (aStandardSize - (imgOldHeight / (imgOldWidth / aStandardSize) + 0.5)) / 2 + 0.5; } else { imgNewHeight = aStandardSize; imgNewWidth = sal_Int32(imgOldWidth / (imgOldHeight / aStandardSize) + 0.5); imgposY = 0; imgposX = (aStandardSize - (imgOldWidth / (imgOldHeight / aStandardSize) + 0.5)) / 2 + 0.5; } aScaledSize = Size( imgNewWidth, imgNewHeight ); aRet.Scale( aScaledSize, BmpScaleFlag::BestQuality ); } else { imgposX = (aStandardSize - imgOldWidth) / 2 + 0.5; imgposY = (aStandardSize - imgOldHeight) / 2 + 0.5; } Size aStdSize( aStandardSize, aStandardSize ); tools::Rectangle aRect(aEmptyPoint, aStdSize ); ScopedVclPtrInstance< VirtualDevice > aVirDevice(*Application::GetDefaultDevice(), DeviceFormat::DEFAULT, DeviceFormat::BITMASK); aVirDevice->SetOutputSizePixel( aStdSize ); aVirDevice->SetFillColor( COL_TRANSPARENT ); aVirDevice->SetLineColor( COL_TRANSPARENT ); // Draw a rect into virDevice aVirDevice->DrawRect( aRect ); Point aPointPixel( static_cast(imgposX), static_cast(imgposY) ); aVirDevice->DrawBitmapEx( aPointPixel, aRet ); aRet = aVirDevice->GetBitmapEx( aEmptyPoint, aStdSize ); return aRet; } sal_uInt8 BitmapEx::GetTransparency(sal_Int32 nX, sal_Int32 nY) const { sal_uInt8 nTransparency(0xff); if(!maBitmap.IsEmpty()) { if (nX >= 0 && nX < GetSizePixel().Width() && nY >= 0 && nY < GetSizePixel().Height()) { switch(meTransparent) { case TransparentType::NONE: { // Not transparent, ergo all covered nTransparency = 0x00; break; } case TransparentType::Color: { Bitmap aTestBitmap(maBitmap); Bitmap::ScopedReadAccess pRead(aTestBitmap); if(pRead) { const BitmapColor aBmpColor = pRead->GetColor(nY, nX); // If color is not equal to TransparentColor, we are not transparent if (aBmpColor != maTransparentColor) nTransparency = 0x00; } break; } case TransparentType::Bitmap: { if(!maMask.IsEmpty()) { Bitmap aTestBitmap(maMask); Bitmap::ScopedReadAccess pRead(aTestBitmap); if(pRead) { const BitmapColor aBitmapColor(pRead->GetPixel(nY, nX)); if(mbAlpha) { nTransparency = aBitmapColor.GetIndex(); } else { if(0x00 == aBitmapColor.GetIndex()) { nTransparency = 0x00; } } } } break; } } } } return nTransparency; } Color BitmapEx::GetPixelColor(sal_Int32 nX, sal_Int32 nY) const { Bitmap::ScopedReadAccess pReadAccess( const_cast(maBitmap) ); assert(pReadAccess); BitmapColor aColor = pReadAccess->GetColor(nY, nX); if (IsAlpha()) { AlphaMask aAlpha = GetAlpha(); AlphaMask::ScopedReadAccess pAlphaReadAccess(aAlpha); aColor.SetTransparency(pAlphaReadAccess->GetPixel(nY, nX).GetIndex()); } else if (maBitmap.GetBitCount() != 32) { aColor.SetTransparency(0); } return aColor; } // Shift alpha transparent pixels between cppcanvas/ implementations // and vcl in a generally grotesque and under-performing fashion bool BitmapEx::Create( const css::uno::Reference< css::rendering::XBitmapCanvas > &xBitmapCanvas, const Size &rSize ) { uno::Reference< beans::XFastPropertySet > xFastPropertySet( xBitmapCanvas, uno::UNO_QUERY ); if( xFastPropertySet.get() ) { // 0 means get BitmapEx uno::Any aAny = xFastPropertySet->getFastPropertyValue( 0 ); std::unique_ptr xBitmapEx(reinterpret_cast(*o3tl::doAccess(aAny))); if( xBitmapEx ) { *this = *xBitmapEx; return true; } } std::shared_ptr pSalBmp; std::shared_ptr pSalMask; pSalBmp = ImplGetSVData()->mpDefInst->CreateSalBitmap(); Size aLocalSize(rSize); if( pSalBmp->Create( xBitmapCanvas, aLocalSize ) ) { pSalMask = ImplGetSVData()->mpDefInst->CreateSalBitmap(); if ( pSalMask->Create( xBitmapCanvas, aLocalSize, true ) ) { *this = BitmapEx(Bitmap(pSalBmp), Bitmap(pSalMask) ); return true; } else { *this = BitmapEx(Bitmap(pSalBmp)); return true; } } return false; } namespace { Bitmap impTransformBitmap( const Bitmap& rSource, const Size& rDestinationSize, const basegfx::B2DHomMatrix& rTransform, bool bSmooth) { Bitmap aDestination(rDestinationSize, 24); BitmapScopedWriteAccess xWrite(aDestination); if(xWrite) { Bitmap::ScopedReadAccess xRead(const_cast< Bitmap& >(rSource)); if (xRead) { const Size aDestinationSizePixel(aDestination.GetSizePixel()); const BitmapColor aOutside(BitmapColor(0xff, 0xff, 0xff)); for(long y(0); y < aDestinationSizePixel.getHeight(); y++) { Scanline pScanline = xWrite->GetScanline( y ); for(long x(0); x < aDestinationSizePixel.getWidth(); x++) { const basegfx::B2DPoint aSourceCoor(rTransform * basegfx::B2DPoint(x, y)); if(bSmooth) { xWrite->SetPixelOnData( pScanline, x, xRead->GetInterpolatedColorWithFallback( aSourceCoor.getY(), aSourceCoor.getX(), aOutside)); } else { // this version does the correct <= 0.0 checks, so no need // to do the static_cast< sal_Int32 > self and make an error xWrite->SetPixelOnData( pScanline, x, xRead->GetColorWithFallback( aSourceCoor.getY(), aSourceCoor.getX(), aOutside)); } } } } } rSource.AdaptBitCount(aDestination); return aDestination; } } // end of anonymous namespace BitmapEx BitmapEx::TransformBitmapEx( double fWidth, double fHeight, const basegfx::B2DHomMatrix& rTransformation) const { if(fWidth <= 1 || fHeight <= 1) return BitmapEx(); // force destination to 24 bit, we want to smooth output const Size aDestinationSize(basegfx::fround(fWidth), basegfx::fround(fHeight)); const Bitmap aDestination(impTransformBitmap(GetBitmapRef(), aDestinationSize, rTransformation, /*bSmooth*/true)); // create mask if(IsTransparent()) { if(IsAlpha()) { const Bitmap aAlpha(impTransformBitmap(GetAlpha().GetBitmap(), aDestinationSize, rTransformation, /*bSmooth*/true)); return BitmapEx(aDestination, AlphaMask(aAlpha)); } else { const Bitmap aLclMask(impTransformBitmap(GetMask(), aDestinationSize, rTransformation, false)); return BitmapEx(aDestination, aLclMask); } } return BitmapEx(aDestination); } BitmapEx BitmapEx::getTransformed( const basegfx::B2DHomMatrix& rTransformation, const basegfx::B2DRange& rVisibleRange, double fMaximumArea) const { BitmapEx aRetval; if(IsEmpty()) return aRetval; const sal_uInt32 nSourceWidth(GetSizePixel().Width()); const sal_uInt32 nSourceHeight(GetSizePixel().Height()); if(!nSourceWidth || !nSourceHeight) return aRetval; // Get aOutlineRange basegfx::B2DRange aOutlineRange(0.0, 0.0, 1.0, 1.0); aOutlineRange.transform(rTransformation); // create visible range from it by moving from relative to absolute basegfx::B2DRange aVisibleRange(rVisibleRange); aVisibleRange.transform( basegfx::utils::createScaleTranslateB2DHomMatrix( aOutlineRange.getRange(), aOutlineRange.getMinimum())); // get target size (which is visible range's size) double fWidth(aVisibleRange.getWidth()); double fHeight(aVisibleRange.getHeight()); if(fWidth < 1.0 || fHeight < 1.0) { return aRetval; } // test if discrete size (pixel) maybe too big and limit it const double fArea(fWidth * fHeight); const bool bNeedToReduce(basegfx::fTools::more(fArea, fMaximumArea)); double fReduceFactor(1.0); if(bNeedToReduce) { fReduceFactor = sqrt(fMaximumArea / fArea); fWidth *= fReduceFactor; fHeight *= fReduceFactor; } // Build complete transform from source pixels to target pixels. // Start by scaling from source pixel size to unit coordinates basegfx::B2DHomMatrix aTransform( basegfx::utils::createScaleB2DHomMatrix( 1.0 / nSourceWidth, 1.0 / nSourceHeight)); // multiply with given transform which leads from unit coordinates inside // aOutlineRange aTransform = rTransformation * aTransform; // subtract top-left of absolute VisibleRange aTransform.translate( -aVisibleRange.getMinX(), -aVisibleRange.getMinY()); // scale to target pixels (if needed) if(bNeedToReduce) { aTransform.scale(fReduceFactor, fReduceFactor); } // invert to get transformation from target pixel coordinates to source pixels aTransform.invert(); // create bitmap using source, destination and linear back-transformation aRetval = TransformBitmapEx(fWidth, fHeight, aTransform); return aRetval; } BitmapEx BitmapEx::ModifyBitmapEx(const basegfx::BColorModifierStack& rBColorModifierStack) const { Bitmap aChangedBitmap(GetBitmapRef()); bool bDone(false); for(sal_uInt32 a(rBColorModifierStack.count()); a && !bDone; ) { const basegfx::BColorModifierSharedPtr& rModifier = rBColorModifierStack.getBColorModifier(--a); const basegfx::BColorModifier_replace* pReplace = dynamic_cast< const basegfx::BColorModifier_replace* >(rModifier.get()); if(pReplace) { // complete replace if(IsTransparent()) { // clear bitmap with dest color if(aChangedBitmap.GetBitCount() <= 8) { // do NOT use erase; for e.g. 8bit Bitmaps, the nearest color to the given // erase color is determined and used -> this may be different from what is // wanted here. Better create a new bitmap with the needed color explicitly Bitmap::ScopedReadAccess xReadAccess(aChangedBitmap); OSL_ENSURE(xReadAccess, "Got no Bitmap ReadAccess ?!?"); if(xReadAccess) { BitmapPalette aNewPalette(xReadAccess->GetPalette()); aNewPalette[0] = BitmapColor(Color(pReplace->getBColor())); aChangedBitmap = Bitmap( aChangedBitmap.GetSizePixel(), aChangedBitmap.GetBitCount(), &aNewPalette); } } else { aChangedBitmap.Erase(Color(pReplace->getBColor())); } } else { // erase bitmap, caller will know to paint direct aChangedBitmap.SetEmpty(); } bDone = true; } else { BitmapScopedWriteAccess xContent(aChangedBitmap); if(xContent) { const double fConvertColor(1.0 / 255.0); if(xContent->HasPalette()) { const sal_uInt16 nCount(xContent->GetPaletteEntryCount()); for(sal_uInt16 b(0); b < nCount; b++) { const BitmapColor& rCol = xContent->GetPaletteColor(b); const basegfx::BColor aBSource( rCol.GetRed() * fConvertColor, rCol.GetGreen() * fConvertColor, rCol.GetBlue() * fConvertColor); const basegfx::BColor aBDest(rModifier->getModifiedColor(aBSource)); xContent->SetPaletteColor(b, BitmapColor(Color(aBDest))); } } else if(ScanlineFormat::N24BitTcBgr == xContent->GetScanlineFormat()) { for(sal_uInt32 y(0); y < static_cast(xContent->Height()); y++) { Scanline pScan = xContent->GetScanline(y); for(sal_uInt32 x(0); x < static_cast(xContent->Width()); x++) { const basegfx::BColor aBSource( *(pScan + 2)* fConvertColor, *(pScan + 1) * fConvertColor, *pScan * fConvertColor); const basegfx::BColor aBDest(rModifier->getModifiedColor(aBSource)); *pScan++ = static_cast< sal_uInt8 >(aBDest.getBlue() * 255.0); *pScan++ = static_cast< sal_uInt8 >(aBDest.getGreen() * 255.0); *pScan++ = static_cast< sal_uInt8 >(aBDest.getRed() * 255.0); } } } else if(ScanlineFormat::N24BitTcRgb == xContent->GetScanlineFormat()) { for(sal_uInt32 y(0); y < static_cast(xContent->Height()); y++) { Scanline pScan = xContent->GetScanline(y); for(sal_uInt32 x(0); x < static_cast(xContent->Width()); x++) { const basegfx::BColor aBSource( *pScan * fConvertColor, *(pScan + 1) * fConvertColor, *(pScan + 2) * fConvertColor); const basegfx::BColor aBDest(rModifier->getModifiedColor(aBSource)); *pScan++ = static_cast< sal_uInt8 >(aBDest.getRed() * 255.0); *pScan++ = static_cast< sal_uInt8 >(aBDest.getGreen() * 255.0); *pScan++ = static_cast< sal_uInt8 >(aBDest.getBlue() * 255.0); } } } else { for(sal_uInt32 y(0); y < static_cast(xContent->Height()); y++) { Scanline pScanline = xContent->GetScanline( y ); for(sal_uInt32 x(0); x < static_cast(xContent->Width()); x++) { const BitmapColor aBMCol(xContent->GetColor(y, x)); const basegfx::BColor aBSource( static_cast(aBMCol.GetRed()) * fConvertColor, static_cast(aBMCol.GetGreen()) * fConvertColor, static_cast(aBMCol.GetBlue()) * fConvertColor); const basegfx::BColor aBDest(rModifier->getModifiedColor(aBSource)); xContent->SetPixelOnData(pScanline, x, BitmapColor(Color(aBDest))); } } } } } } if(aChangedBitmap.IsEmpty()) { return BitmapEx(); } else { if(IsTransparent()) { if(IsAlpha()) { return BitmapEx(aChangedBitmap, GetAlpha()); } else { return BitmapEx(aChangedBitmap, GetMask()); } } else { return BitmapEx(aChangedBitmap); } } } BitmapEx createBlendFrame( const Size& rSize, sal_uInt8 nAlpha, Color aColorTopLeft, Color aColorBottomRight) { const sal_uInt32 nW(rSize.Width()); const sal_uInt32 nH(rSize.Height()); if(nW || nH) { Color aColTopRight(aColorTopLeft); Color aColBottomLeft(aColorTopLeft); const sal_uInt32 nDE(nW + nH); aColTopRight.Merge(aColorBottomRight, 255 - sal_uInt8((nW * 255) / nDE)); aColBottomLeft.Merge(aColorBottomRight, 255 - sal_uInt8((nH * 255) / nDE)); return createBlendFrame(rSize, nAlpha, aColorTopLeft, aColTopRight, aColorBottomRight, aColBottomLeft); } return BitmapEx(); } BitmapEx createBlendFrame( const Size& rSize, sal_uInt8 nAlpha, Color aColorTopLeft, Color aColorTopRight, Color aColorBottomRight, Color aColorBottomLeft) { BlendFrameCache* pBlendFrameCache = ImplGetBlendFrameCache(); if(pBlendFrameCache->m_aLastSize == rSize && pBlendFrameCache->m_nLastAlpha == nAlpha && pBlendFrameCache->m_aLastColorTopLeft == aColorTopLeft && pBlendFrameCache->m_aLastColorTopRight == aColorTopRight && pBlendFrameCache->m_aLastColorBottomRight == aColorBottomRight && pBlendFrameCache->m_aLastColorBottomLeft == aColorBottomLeft) { return pBlendFrameCache->m_aLastResult; } pBlendFrameCache->m_aLastSize = rSize; pBlendFrameCache->m_nLastAlpha = nAlpha; pBlendFrameCache->m_aLastColorTopLeft = aColorTopLeft; pBlendFrameCache->m_aLastColorTopRight = aColorTopRight; pBlendFrameCache->m_aLastColorBottomRight = aColorBottomRight; pBlendFrameCache->m_aLastColorBottomLeft = aColorBottomLeft; pBlendFrameCache->m_aLastResult.Clear(); const long nW(rSize.Width()); const long nH(rSize.Height()); if(nW > 1 && nH > 1) { sal_uInt8 aEraseTrans(0xff); Bitmap aContent(rSize, 24); AlphaMask aAlpha(rSize, &aEraseTrans); aContent.Erase(COL_BLACK); BitmapScopedWriteAccess pContent(aContent); AlphaScopedWriteAccess pAlpha(aAlpha); if(pContent && pAlpha) { long x(0); long y(0); Scanline pScanContent = pContent->GetScanline( 0 ); Scanline pScanAlpha = pContent->GetScanline( 0 ); // x == 0, y == 0, top-left corner pContent->SetPixelOnData(pScanContent, 0, aColorTopLeft); pAlpha->SetPixelOnData(pScanAlpha, 0, BitmapColor(nAlpha)); // y == 0, top line left to right for(x = 1; x < nW - 1; x++) { Color aMix(aColorTopLeft); aMix.Merge(aColorTopRight, 255 - sal_uInt8((x * 255) / nW)); pContent->SetPixelOnData(pScanContent, x, aMix); pAlpha->SetPixelOnData(pScanAlpha, x, BitmapColor(nAlpha)); } // x == nW - 1, y == 0, top-right corner // #i123690# Caution! When nW is 1, x == nW is possible (!) if(x < nW) { pContent->SetPixelOnData(pScanContent, x, aColorTopRight); pAlpha->SetPixelOnData(pScanAlpha, x, BitmapColor(nAlpha)); } // x == 0 and nW - 1, left and right line top-down for(y = 1; y < nH - 1; y++) { pScanContent = pContent->GetScanline( y ); pScanAlpha = pContent->GetScanline( y ); Color aMixA(aColorTopLeft); aMixA.Merge(aColorBottomLeft, 255 - sal_uInt8((y * 255) / nH)); pContent->SetPixelOnData(pScanContent, 0, aMixA); pAlpha->SetPixelOnData(pScanAlpha, 0, BitmapColor(nAlpha)); // #i123690# Caution! When nW is 1, x == nW is possible (!) if(x < nW) { Color aMixB(aColorTopRight); aMixB.Merge(aColorBottomRight, 255 - sal_uInt8((y * 255) / nH)); pContent->SetPixelOnData(pScanContent, x, aMixB); pAlpha->SetPixelOnData(pScanAlpha, x, BitmapColor(nAlpha)); } } // #i123690# Caution! When nH is 1, y == nH is possible (!) if(y < nH) { // x == 0, y == nH - 1, bottom-left corner pContent->SetPixelOnData(pScanContent, 0, aColorBottomLeft); pAlpha->SetPixelOnData(pScanAlpha, 0, BitmapColor(nAlpha)); // y == nH - 1, bottom line left to right for(x = 1; x < nW - 1; x++) { Color aMix(aColorBottomLeft); aMix.Merge(aColorBottomRight, 255 - sal_uInt8(((x - 0)* 255) / nW)); pContent->SetPixelOnData(pScanContent, x, aMix); pAlpha->SetPixelOnData(pScanAlpha, x, BitmapColor(nAlpha)); } // x == nW - 1, y == nH - 1, bottom-right corner // #i123690# Caution! When nW is 1, x == nW is possible (!) if(x < nW) { pContent->SetPixelOnData(pScanContent, x, aColorBottomRight); pAlpha->SetPixelOnData(pScanAlpha, x, BitmapColor(nAlpha)); } } pContent.reset(); pAlpha.reset(); pBlendFrameCache->m_aLastResult = BitmapEx(aContent, aAlpha); } } return pBlendFrameCache->m_aLastResult; } void BitmapEx::Replace(const Color& rSearchColor, const Color& rReplaceColor, sal_uInt8 nTolerance) { maBitmap.Replace(rSearchColor, rReplaceColor, nTolerance); } void BitmapEx::Replace( const Color* pSearchColors, const Color* pReplaceColors, sal_uLong nColorCount, sal_uInt8 const * pTols ) { maBitmap.Replace( pSearchColors, pReplaceColors, nColorCount, pTols ); } void BitmapEx::ReplaceTransparency(const Color& rColor) { if( IsTransparent() ) { maBitmap.Replace( GetMask(), rColor ); maMask = Bitmap(); maBitmapSize = maBitmap.GetSizePixel(); maTransparentColor = Color(); meTransparent = TransparentType::NONE; mbAlpha = false; } } static Bitmap DetectEdges( const Bitmap& rBmp ) { constexpr sal_uInt8 cEdgeDetectThreshold = 128; const Size aSize( rBmp.GetSizePixel() ); Bitmap aRetBmp; if( ( aSize.Width() > 2 ) && ( aSize.Height() > 2 ) ) { Bitmap aWorkBmp( rBmp ); if( aWorkBmp.Convert( BmpConversion::N8BitGreys ) ) { bool bRet = false; ScopedVclPtr pVirDev(VclPtr::Create()); pVirDev->SetOutputSizePixel(aSize); Bitmap::ScopedReadAccess pReadAcc(aWorkBmp); if( pReadAcc ) { const long nWidth = aSize.Width(); const long nWidth2 = nWidth - 2; const long nHeight = aSize.Height(); const long nHeight2 = nHeight - 2; const long lThres2 = static_cast(cEdgeDetectThreshold) * cEdgeDetectThreshold; long nSum1; long nSum2; long lGray; // initialize border with white pixels pVirDev->SetLineColor( COL_WHITE ); pVirDev->DrawLine( Point(), Point( nWidth - 1, 0L ) ); pVirDev->DrawLine( Point( nWidth - 1, 0L ), Point( nWidth - 1, nHeight - 1 ) ); pVirDev->DrawLine( Point( nWidth - 1, nHeight - 1 ), Point( 0L, nHeight - 1 ) ); pVirDev->DrawLine( Point( 0, nHeight - 1 ), Point() ); for( long nY = 0, nY1 = 1, nY2 = 2; nY < nHeight2; nY++, nY1++, nY2++ ) { Scanline pScanlineRead = pReadAcc->GetScanline( nY ); Scanline pScanlineRead1 = pReadAcc->GetScanline( nY1 ); Scanline pScanlineRead2 = pReadAcc->GetScanline( nY2 ); for( long nX = 0, nXDst = 1, nXTmp; nX < nWidth2; nX++, nXDst++ ) { nXTmp = nX; nSum2 = lGray = pReadAcc->GetIndexFromData( pScanlineRead, nXTmp++ ); nSum1 = -nSum2; nSum2 += static_cast(pReadAcc->GetIndexFromData( pScanlineRead, nXTmp++ )) << 1; lGray = pReadAcc->GetIndexFromData( pScanlineRead, nXTmp ); nSum1 += lGray; nSum2 += lGray; nSum1 += static_cast(pReadAcc->GetIndexFromData( pScanlineRead1, nXTmp )) << 1; nXTmp -= 2; nSum1 -= static_cast(pReadAcc->GetIndexFromData( pScanlineRead1, nXTmp )) << 1; lGray = -static_cast(pReadAcc->GetIndexFromData( pScanlineRead2, nXTmp++ )); nSum1 += lGray; nSum2 += lGray; nSum2 -= static_cast(pReadAcc->GetIndexFromData( pScanlineRead2, nXTmp++ )) << 1; lGray = static_cast(pReadAcc->GetIndexFromData( pScanlineRead2, nXTmp )); nSum1 += lGray; nSum2 -= lGray; if( ( nSum1 * nSum1 + nSum2 * nSum2 ) < lThres2 ) pVirDev->DrawPixel( Point(nXDst, nY), COL_WHITE ); else pVirDev->DrawPixel( Point(nXDst, nY), COL_BLACK ); } } bRet = true; } pReadAcc.reset(); if( bRet ) aRetBmp = pVirDev->GetBitmap(Point(0,0), aSize); } } if( !aRetBmp ) aRetBmp = rBmp; else { aRetBmp.SetPrefMapMode( rBmp.GetPrefMapMode() ); aRetBmp.SetPrefSize( rBmp.GetPrefSize() ); } return aRetBmp; } /** Get contours in image */ tools::Polygon BitmapEx::GetContour( bool bContourEdgeDetect, bool bContourVert, const tools::Rectangle* pWorkRectPixel ) { Bitmap aWorkBmp; tools::Polygon aRetPoly; tools::Rectangle aWorkRect( Point(), maBitmap.GetSizePixel() ); if( pWorkRectPixel ) aWorkRect.Intersection( *pWorkRectPixel ); aWorkRect.Justify(); if( ( aWorkRect.GetWidth() > 4 ) && ( aWorkRect.GetHeight() > 4 ) ) { // if the flag is set, we need to detect edges if( bContourEdgeDetect ) aWorkBmp = DetectEdges( maBitmap ); else aWorkBmp = maBitmap; BitmapReadAccess* pAcc = aWorkBmp.AcquireReadAccess(); const long nWidth = pAcc ? pAcc->Width() : 0; const long nHeight = pAcc ? pAcc->Height() : 0; if (pAcc && nWidth && nHeight) { const Size& rPrefSize = aWorkBmp.GetPrefSize(); const double fFactorX = static_cast(rPrefSize.Width()) / nWidth; const double fFactorY = static_cast(rPrefSize.Height()) / nHeight; const long nStartX1 = aWorkRect.Left() + 1; const long nEndX1 = aWorkRect.Right(); const long nStartX2 = nEndX1 - 1; const long nStartY1 = aWorkRect.Top() + 1; const long nEndY1 = aWorkRect.Bottom(); const long nStartY2 = nEndY1 - 1; std::unique_ptr pPoints1; std::unique_ptr pPoints2; long nX, nY; sal_uInt16 nPolyPos = 0; const BitmapColor aBlack = pAcc->GetBestMatchingColor( COL_BLACK ); if( bContourVert ) { pPoints1.reset(new Point[ nWidth ]); pPoints2.reset(new Point[ nWidth ]); for( nX = nStartX1; nX < nEndX1; nX++ ) { nY = nStartY1; // scan row from left to right while( nY < nEndY1 ) { Scanline pScanline = pAcc->GetScanline( nY ); if( aBlack == pAcc->GetPixelFromData( pScanline, nX ) ) { pPoints1[ nPolyPos ] = Point( nX, nY ); nY = nStartY2; // this loop always breaks eventually as there is at least one pixel while( true ) { // coverity[copy_paste_error : FALSE] - this is correct nX, not nY if( aBlack == pAcc->GetPixelFromData( pScanline, nX ) ) { pPoints2[ nPolyPos ] = Point( nX, nY ); break; } nY--; } nPolyPos++; break; } nY++; } } } else { pPoints1.reset(new Point[ nHeight ]); pPoints2.reset(new Point[ nHeight ]); for ( nY = nStartY1; nY < nEndY1; nY++ ) { nX = nStartX1; Scanline pScanline = pAcc->GetScanline( nY ); // scan row from left to right while( nX < nEndX1 ) { if( aBlack == pAcc->GetPixelFromData( pScanline, nX ) ) { pPoints1[ nPolyPos ] = Point( nX, nY ); nX = nStartX2; // this loop always breaks eventually as there is at least one pixel while( true ) { if( aBlack == pAcc->GetPixelFromData( pScanline, nX ) ) { pPoints2[ nPolyPos ] = Point( nX, nY ); break; } nX--; } nPolyPos++; break; } nX++; } } } const sal_uInt16 nNewSize1 = nPolyPos << 1; aRetPoly = tools::Polygon( nPolyPos, pPoints1.get() ); aRetPoly.SetSize( nNewSize1 + 1 ); aRetPoly[ nNewSize1 ] = aRetPoly[ 0 ]; for( sal_uInt16 j = nPolyPos; nPolyPos < nNewSize1; ) aRetPoly[ nPolyPos++ ] = pPoints2[ --j ]; if( ( fFactorX != 0. ) && ( fFactorY != 0. ) ) aRetPoly.Scale( fFactorX, fFactorY ); } Bitmap::ReleaseAccess(pAcc); } return aRetPoly; } void BitmapEx::setAlphaFrom( sal_uInt8 cIndexFrom, sal_Int8 nAlphaTo ) { AlphaMask aAlphaMask(GetAlpha()); BitmapScopedWriteAccess pWriteAccess(aAlphaMask); Bitmap::ScopedReadAccess pReadAccess(maBitmap); assert( pReadAccess.get() && pWriteAccess.get() ); if ( pReadAccess.get() && pWriteAccess.get() ) { for ( long nY = 0; nY < pReadAccess->Height(); nY++ ) { Scanline pScanline = pWriteAccess->GetScanline( nY ); Scanline pScanlineRead = pReadAccess->GetScanline( nY ); for ( long nX = 0; nX < pReadAccess->Width(); nX++ ) { const sal_uInt8 cIndex = pReadAccess->GetPixelFromData( pScanlineRead, nX ).GetIndex(); if ( cIndex == cIndexFrom ) pWriteAccess->SetPixelOnData( pScanline, nX, BitmapColor(nAlphaTo) ); } } } } void BitmapEx::AdjustTransparency(sal_uInt8 cTrans) { AlphaMask aAlpha; if (!IsTransparent()) { aAlpha = AlphaMask(GetSizePixel(), &cTrans); } else if( !IsAlpha() ) { aAlpha = GetMask(); aAlpha.Replace( 0, cTrans ); } else { aAlpha = GetAlpha(); BitmapScopedWriteAccess pA(aAlpha); assert(pA); if( !pA ) return; sal_uLong nTrans = cTrans, nNewTrans; const long nWidth = pA->Width(), nHeight = pA->Height(); if( pA->GetScanlineFormat() == ScanlineFormat::N8BitPal ) { for( long nY = 0; nY < nHeight; nY++ ) { Scanline pAScan = pA->GetScanline( nY ); for( long nX = 0; nX < nWidth; nX++ ) { nNewTrans = nTrans + *pAScan; *pAScan++ = static_cast( ( nNewTrans & 0xffffff00 ) ? 255 : nNewTrans ); } } } else { BitmapColor aAlphaValue( 0 ); for( long nY = 0; nY < nHeight; nY++ ) { Scanline pScanline = pA->GetScanline( nY ); for( long nX = 0; nX < nWidth; nX++ ) { nNewTrans = nTrans + pA->GetIndexFromData( pScanline, nX ); aAlphaValue.SetIndex( static_cast( ( nNewTrans & 0xffffff00 ) ? 255 : nNewTrans ) ); pA->SetPixelOnData( pScanline, nX, aAlphaValue ); } } } } *this = BitmapEx( GetBitmapRef(), aAlpha ); } // AS: Because JPEGs require the alpha channel provided separately (JPEG does not // natively support alpha channel, but SWF lets you provide it separately), we // extract the alpha channel into a separate array here. void BitmapEx::GetSplitData( std::vector& rvColorData, std::vector& rvAlphaData ) const { if( IsEmpty() ) return; Bitmap::ScopedReadAccess pRAcc(const_cast(maBitmap)); assert( pRAcc ); AlphaMask aAlpha; sal_uInt32 nWidth = pRAcc->Width(); sal_uInt32 nHeight = pRAcc->Height(); rvColorData.resize(nWidth*nHeight*4); rvAlphaData.resize(nWidth*nHeight); sal_uInt8* p = rvColorData.data(), *pAlpha = rvAlphaData.data(); if (IsAlpha()) { aAlpha = GetAlpha(); } else if (IsTransparent()) { aAlpha = GetMask(); } else { sal_uInt8 cAlphaVal = 0; aAlpha = AlphaMask(maBitmap.GetSizePixel(), &cAlphaVal); } AlphaMask::ScopedReadAccess pAAcc(aAlpha); assert( pAAcc ); for( sal_uInt32 nY = 0; nY < nHeight; nY++ ) { Scanline pScanlineAA = pAAcc->GetScanline( nY ); for( sal_uInt32 nX = 0; nX < nWidth; nX++ ) { const sal_uInt8 nAlpha = pAAcc->GetIndexFromData( pScanlineAA, nX ); const BitmapColor aPixelColor( pRAcc->GetColor( nY, nX ) ); if( nAlpha == 0xff ) { *p++ = 0; *p++ = 0; *p++ = 0; *p++ = 0; } else { *p++ = 0xff-nAlpha; *p++ = aPixelColor.GetRed(); *p++ = aPixelColor.GetGreen(); *p++ = aPixelColor.GetBlue(); } *pAlpha++ = 0xff - nAlpha; } } } void BitmapEx::CombineMaskOr(Color maskColor, sal_uInt8 nTol) { Bitmap aNewMask = maBitmap.CreateMask( maskColor, nTol ); if ( IsTransparent() ) aNewMask.CombineSimple( maMask, BmpCombine::Or ); maMask = aNewMask; meTransparent = TransparentType::Bitmap; } /** * Retrieves the color model data we need for the XImageConsumer stuff. */ void BitmapEx::GetColorModel(css::uno::Sequence< sal_Int32 >& rRGBPalette, sal_uInt32& rnRedMask, sal_uInt32& rnGreenMask, sal_uInt32& rnBlueMask, sal_uInt32& rnAlphaMask, sal_uInt32& rnTransparencyIndex, sal_uInt32& rnWidth, sal_uInt32& rnHeight, sal_uInt8& rnBitCount) { Bitmap::ScopedReadAccess pReadAccess( maBitmap ); assert( pReadAccess ); if( pReadAccess->HasPalette() ) { sal_uInt16 nPalCount = pReadAccess->GetPaletteEntryCount(); if( nPalCount ) { rRGBPalette = css::uno::Sequence< sal_Int32 >( nPalCount + 1 ); sal_Int32* pTmp = rRGBPalette.getArray(); for( sal_uInt32 i = 0; i < nPalCount; i++, pTmp++ ) { const BitmapColor& rCol = pReadAccess->GetPaletteColor( static_cast(i) ); *pTmp = static_cast(rCol.GetRed()) << sal_Int32(24); *pTmp |= static_cast(rCol.GetGreen()) << sal_Int32(16); *pTmp |= static_cast(rCol.GetBlue()) << sal_Int32(8); *pTmp |= sal_Int32(0x000000ffL); } if( IsTransparent() ) { // append transparent entry *pTmp = sal_Int32(0xffffff00L); rnTransparencyIndex = nPalCount; nPalCount++; } else rnTransparencyIndex = 0; } } else { rnRedMask = 0xff000000UL; rnGreenMask = 0x00ff0000UL; rnBlueMask = 0x0000ff00UL; rnAlphaMask = 0x000000ffUL; rnTransparencyIndex = 0; } rnWidth = pReadAccess->Width(); rnHeight = pReadAccess->Height(); rnBitCount = pReadAccess->GetBitCount(); } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */