/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // BitmapEx::Create #include #include #include #include #include using namespace ::com::sun::star; BitmapEx::BitmapEx() : eTransparent( TRANSPARENT_NONE ), bAlpha ( false ) { } BitmapEx::BitmapEx( const BitmapEx& rBitmapEx ) : aBitmap ( rBitmapEx.aBitmap ), aMask ( rBitmapEx.aMask ), aBitmapSize ( rBitmapEx.aBitmapSize ), aTransparentColor ( rBitmapEx.aTransparentColor ), eTransparent ( rBitmapEx.eTransparent ), bAlpha ( rBitmapEx.bAlpha ) { } BitmapEx::BitmapEx( const BitmapEx& rBitmapEx, Point aSrc, Size aSize ) : eTransparent( TRANSPARENT_NONE ), bAlpha ( false ) { if( rBitmapEx.IsEmpty() ) return; aBitmap = Bitmap( aSize, rBitmapEx.aBitmap.GetBitCount() ); aBitmapSize = aSize; if( rBitmapEx.IsAlpha() ) { bAlpha = true; aMask = AlphaMask( aSize ).ImplGetBitmap(); } else if( rBitmapEx.IsTransparent() ) aMask = Bitmap( aSize, rBitmapEx.aMask.GetBitCount() ); Rectangle aDestRect( Point( 0, 0 ), aSize ); Rectangle aSrcRect( aSrc, aSize ); CopyPixel( aDestRect, aSrcRect, &rBitmapEx ); } BitmapEx::BitmapEx( const OUString& rIconName ) { loadFromIconTheme( rIconName ); } BitmapEx::BitmapEx( const ResId& rResId ) : eTransparent( TRANSPARENT_NONE ), bAlpha ( false ) { ResMgr* pResMgr = NULL; ResMgr::GetResourceSkipHeader( rResId.SetRT( RSC_BITMAP ), &pResMgr ); pResMgr->ReadLong(); pResMgr->ReadLong(); const OUString aFileName( pResMgr->ReadString() ); loadFromIconTheme( aFileName ); } void BitmapEx::loadFromIconTheme( const OUString& rIconName ) { static ImplImageTreeSingletonRef aImageTree; OUString aIconTheme = Application::GetSettings().GetStyleSettings().DetermineIconTheme(); if( !aImageTree->loadImage( rIconName, aIconTheme, *this, true ) ) { #ifdef DBG_UTIL OStringBuffer aErrorStr( "BitmapEx::BitmapEx(): could not load image <"); aErrorStr.append(OUStringToOString(rIconName, RTL_TEXTENCODING_ASCII_US)).append("> via icon theme "); aErrorStr.append(OUStringToOString(aIconTheme, RTL_TEXTENCODING_ASCII_US)).append('.'); OSL_FAIL(aErrorStr.getStr()); #endif } } BitmapEx::BitmapEx( const Bitmap& rBmp ) : aBitmap ( rBmp ), aBitmapSize ( aBitmap.GetSizePixel() ), eTransparent( TRANSPARENT_NONE ), bAlpha ( false ) { } BitmapEx::BitmapEx( const Bitmap& rBmp, const Bitmap& rMask ) : aBitmap ( rBmp ), aMask ( rMask ), aBitmapSize ( aBitmap.GetSizePixel() ), eTransparent ( !rMask ? TRANSPARENT_NONE : TRANSPARENT_BITMAP ), bAlpha ( false ) { if(!!aBitmap && !!aMask && aBitmap.GetSizePixel() != aMask.GetSizePixel()) { OSL_ENSURE(false, "Mask size differs from Bitmap size, corrected Mask (!)"); aMask.Scale(aBitmap.GetSizePixel()); } // Ensure a mask is exactly one bit deep if( !!aMask && aMask.GetBitCount() != 1 ) { OSL_TRACE("BitmapEx: forced mask to monochrome"); aMask.ImplMakeMono( 255 ); } } BitmapEx::BitmapEx( const Bitmap& rBmp, const AlphaMask& rAlphaMask ) : aBitmap ( rBmp ), aMask ( rAlphaMask.ImplGetBitmap() ), aBitmapSize ( aBitmap.GetSizePixel() ), eTransparent ( !rAlphaMask ? TRANSPARENT_NONE : TRANSPARENT_BITMAP ), bAlpha ( !rAlphaMask.IsEmpty() ) { if(!!aBitmap && !!aMask && aBitmap.GetSizePixel() != aMask.GetSizePixel()) { OSL_ENSURE(false, "Alpha size differs from Bitmap size, corrected Mask (!)"); aMask.Scale(rBmp.GetSizePixel()); } // #i75531# the workaround below can go when // X11SalGraphics::drawAlphaBitmap()'s render acceleration // can handle the bitmap depth mismatch directly if( aBitmap.GetBitCount() < aMask.GetBitCount() ) aBitmap.Convert( BMP_CONVERSION_24BIT ); } BitmapEx::BitmapEx( const Bitmap& rBmp, const Color& rTransparentColor ) : aBitmap ( rBmp ), aBitmapSize ( aBitmap.GetSizePixel() ), aTransparentColor ( rTransparentColor ), eTransparent ( TRANSPARENT_BITMAP ), bAlpha ( false ) { aMask = aBitmap.CreateMask( aTransparentColor ); DBG_ASSERT( rBmp.GetSizePixel() == aMask.GetSizePixel(), "BitmapEx::BitmapEx(): size mismatch for bitmap and alpha mask." ); } BitmapEx::~BitmapEx() { } BitmapEx& BitmapEx::operator=( const BitmapEx& rBitmapEx ) { if( &rBitmapEx != this ) { aBitmap = rBitmapEx.aBitmap; aMask = rBitmapEx.aMask; aBitmapSize = rBitmapEx.aBitmapSize; aTransparentColor = rBitmapEx.aTransparentColor; eTransparent = rBitmapEx.eTransparent; bAlpha = rBitmapEx.bAlpha; } return *this; } bool BitmapEx::operator==( const BitmapEx& rBitmapEx ) const { if( eTransparent != rBitmapEx.eTransparent ) return false; if( aBitmap != rBitmapEx.aBitmap ) return false; if( aBitmapSize != rBitmapEx.aBitmapSize ) return false; if( eTransparent == TRANSPARENT_NONE ) return true; if( eTransparent == TRANSPARENT_COLOR ) return aTransparentColor == rBitmapEx.aTransparentColor; return( ( aMask == rBitmapEx.aMask ) && ( bAlpha == rBitmapEx.bAlpha ) ); } bool BitmapEx::IsEmpty() const { return( aBitmap.IsEmpty() && aMask.IsEmpty() ); } void BitmapEx::SetEmpty() { aBitmap.SetEmpty(); aMask.SetEmpty(); eTransparent = TRANSPARENT_NONE; bAlpha = false; } void BitmapEx::Clear() { SetEmpty(); } bool BitmapEx::IsTransparent() const { return( eTransparent != TRANSPARENT_NONE ); } bool BitmapEx::IsAlpha() const { return( IsTransparent() && bAlpha ); } Bitmap BitmapEx::GetBitmap( const Color* pTransReplaceColor ) const { Bitmap aRetBmp( aBitmap ); if( pTransReplaceColor && ( eTransparent != TRANSPARENT_NONE ) ) { Bitmap aTempMask; if( eTransparent == TRANSPARENT_COLOR ) aTempMask = aBitmap.CreateMask( aTransparentColor ); else aTempMask = aMask; if( !IsAlpha() ) aRetBmp.Replace( aTempMask, *pTransReplaceColor ); else aRetBmp.Replace( GetAlpha(), *pTransReplaceColor ); } return aRetBmp; } Bitmap BitmapEx::GetMask() const { Bitmap aRet( aMask ); if( IsAlpha() ) aRet.ImplMakeMono( 255 ); return aRet; } AlphaMask BitmapEx::GetAlpha() const { if( IsAlpha() ) { AlphaMask aAlpha; aAlpha.ImplSetBitmap( aMask ); return aAlpha; } else { return aMask; } } sal_uLong BitmapEx::GetSizeBytes() const { sal_uLong nSizeBytes = aBitmap.GetSizeBytes(); if( eTransparent == TRANSPARENT_BITMAP ) nSizeBytes += aMask.GetSizeBytes(); return nSizeBytes; } BitmapChecksum BitmapEx::GetChecksum() const { BitmapChecksum nCrc = aBitmap.GetChecksum(); SVBT32 aBT32; BitmapChecksumOctetArray aBCOA; UInt32ToSVBT32( (long) eTransparent, aBT32 ); nCrc = vcl_get_checksum( nCrc, aBT32, 4 ); UInt32ToSVBT32( (long) bAlpha, aBT32 ); nCrc = vcl_get_checksum( nCrc, aBT32, 4 ); if( ( TRANSPARENT_BITMAP == eTransparent ) && !aMask.IsEmpty() ) { BCToBCOA( aMask.GetChecksum(), aBCOA ); nCrc = vcl_get_checksum( nCrc, aBCOA, BITMAP_CHECKSUM_SIZE ); } return nCrc; } void BitmapEx::SetSizePixel( const Size& rNewSize, BmpScaleFlag nScaleFlag ) { if(GetSizePixel() != rNewSize) { Scale( rNewSize, nScaleFlag ); } } bool BitmapEx::Invert() { bool bRet = false; if( !!aBitmap ) { bRet = aBitmap.Invert(); if( bRet && ( eTransparent == TRANSPARENT_COLOR ) ) aTransparentColor = BitmapColor( aTransparentColor ).Invert(); } return bRet; } bool BitmapEx::Mirror( BmpMirrorFlags nMirrorFlags ) { bool bRet = false; if( !!aBitmap ) { bRet = aBitmap.Mirror( nMirrorFlags ); if( bRet && ( eTransparent == TRANSPARENT_BITMAP ) && !!aMask ) aMask.Mirror( nMirrorFlags ); } return bRet; } bool BitmapEx::Scale( const double& rScaleX, const double& rScaleY, BmpScaleFlag nScaleFlag ) { bool bRet = false; if( !!aBitmap ) { bRet = aBitmap.Scale( rScaleX, rScaleY, nScaleFlag ); if( bRet && ( eTransparent == TRANSPARENT_BITMAP ) && !!aMask ) { aMask.Scale( rScaleX, rScaleY, nScaleFlag ); } aBitmapSize = aBitmap.GetSizePixel(); DBG_ASSERT( !aMask || aBitmap.GetSizePixel() == aMask.GetSizePixel(), "BitmapEx::Scale(): size mismatch for bitmap and alpha mask." ); } return bRet; } bool BitmapEx::Scale( const Size& rNewSize, BmpScaleFlag nScaleFlag ) { bool bRet; if( aBitmapSize.Width() && aBitmapSize.Height() && ( rNewSize.Width() != aBitmapSize.Width() || rNewSize.Height() != aBitmapSize.Height() ) ) { bRet = Scale( (double) rNewSize.Width() / aBitmapSize.Width(), (double) rNewSize.Height() / aBitmapSize.Height(), nScaleFlag ); } else bRet = true; return bRet; } bool BitmapEx::Rotate( long nAngle10, const Color& rFillColor ) { bool bRet = false; if( !!aBitmap ) { const bool bTransRotate = ( Color( COL_TRANSPARENT ) == rFillColor ); if( bTransRotate ) { if( eTransparent == TRANSPARENT_COLOR ) bRet = aBitmap.Rotate( nAngle10, aTransparentColor ); else { bRet = aBitmap.Rotate( nAngle10, COL_BLACK ); if( eTransparent == TRANSPARENT_NONE ) { aMask = Bitmap( aBitmapSize, 1 ); aMask.Erase( COL_BLACK ); eTransparent = TRANSPARENT_BITMAP; } if( bRet && !!aMask ) aMask.Rotate( nAngle10, COL_WHITE ); } } else { bRet = aBitmap.Rotate( nAngle10, rFillColor ); if( bRet && ( eTransparent == TRANSPARENT_BITMAP ) && !!aMask ) aMask.Rotate( nAngle10, COL_WHITE ); } aBitmapSize = aBitmap.GetSizePixel(); DBG_ASSERT( !aMask || aBitmap.GetSizePixel() == aMask.GetSizePixel(), "BitmapEx::Rotate(): size mismatch for bitmap and alpha mask." ); } return bRet; } bool BitmapEx::Crop( const Rectangle& rRectPixel ) { bool bRet = false; if( !!aBitmap ) { bRet = aBitmap.Crop( rRectPixel ); if( bRet && ( eTransparent == TRANSPARENT_BITMAP ) && !!aMask ) aMask.Crop( rRectPixel ); aBitmapSize = aBitmap.GetSizePixel(); DBG_ASSERT( !aMask || aBitmap.GetSizePixel() == aMask.GetSizePixel(), "BitmapEx::Crop(): size mismatch for bitmap and alpha mask." ); } return bRet; } bool BitmapEx::Convert( BmpConversion eConversion ) { return !!aBitmap && aBitmap.Convert( eConversion ); } bool BitmapEx::ReduceColors( sal_uInt16 nNewColorCount, BmpReduce eReduce ) { return !!aBitmap && aBitmap.ReduceColors( nNewColorCount, eReduce ); } bool BitmapEx::Expand( sal_uLong nDX, sal_uLong nDY, const Color* pInitColor, bool bExpandTransparent ) { bool bRet = false; if( !!aBitmap ) { bRet = aBitmap.Expand( nDX, nDY, pInitColor ); if( bRet && ( eTransparent == TRANSPARENT_BITMAP ) && !!aMask ) { Color aColor( bExpandTransparent ? COL_WHITE : COL_BLACK ); aMask.Expand( nDX, nDY, &aColor ); } aBitmapSize = aBitmap.GetSizePixel(); DBG_ASSERT( !aMask || aBitmap.GetSizePixel() == aMask.GetSizePixel(), "BitmapEx::Expand(): size mismatch for bitmap and alpha mask." ); } return bRet; } bool BitmapEx::CopyPixel( const Rectangle& rRectDst, const Rectangle& rRectSrc, const BitmapEx* pBmpExSrc ) { bool bRet = false; if( !pBmpExSrc || pBmpExSrc->IsEmpty() ) { if( !aBitmap.IsEmpty() ) { bRet = aBitmap.CopyPixel( rRectDst, rRectSrc ); if( bRet && ( eTransparent == TRANSPARENT_BITMAP ) && !!aMask ) aMask.CopyPixel( rRectDst, rRectSrc ); } } else { if( !aBitmap.IsEmpty() ) { bRet = aBitmap.CopyPixel( rRectDst, rRectSrc, &pBmpExSrc->aBitmap ); if( bRet ) { if( pBmpExSrc->IsAlpha() ) { if( IsAlpha() ) // cast to use the optimized AlphaMask::CopyPixel aMask.CopyPixel_AlphaOptimized( rRectDst, rRectSrc, &pBmpExSrc->aMask ); else if( IsTransparent() ) { AlphaMask* pAlpha = new AlphaMask( aMask ); aMask = pAlpha->ImplGetBitmap(); delete pAlpha; bAlpha = true; aMask.CopyPixel( rRectDst, rRectSrc, &pBmpExSrc->aMask ); } else { sal_uInt8 cBlack = 0; AlphaMask* pAlpha = new AlphaMask( GetSizePixel(), &cBlack ); aMask = pAlpha->ImplGetBitmap(); delete pAlpha; eTransparent = TRANSPARENT_BITMAP; bAlpha = true; aMask.CopyPixel( rRectDst, rRectSrc, &pBmpExSrc->aMask ); } } else if( pBmpExSrc->IsTransparent() ) { if( IsAlpha() ) { AlphaMask aAlpha( pBmpExSrc->aMask ); aMask.CopyPixel( rRectDst, rRectSrc, &aAlpha.ImplGetBitmap() ); } else if( IsTransparent() ) aMask.CopyPixel( rRectDst, rRectSrc, &pBmpExSrc->aMask ); else { aMask = Bitmap( GetSizePixel(), 1 ); aMask.Erase( Color( COL_BLACK ) ); eTransparent = TRANSPARENT_BITMAP; aMask.CopyPixel( rRectDst, rRectSrc, &pBmpExSrc->aMask ); } } else if( IsAlpha() ) { sal_uInt8 cBlack = 0; const AlphaMask aAlphaSrc( pBmpExSrc->GetSizePixel(), &cBlack ); aMask.CopyPixel( rRectDst, rRectSrc, &aAlphaSrc.ImplGetBitmap() ); } else if( IsTransparent() ) { Bitmap aMaskSrc( pBmpExSrc->GetSizePixel(), 1 ); aMaskSrc.Erase( Color( COL_BLACK ) ); aMask.CopyPixel( rRectDst, rRectSrc, &aMaskSrc ); } } } } return bRet; } bool BitmapEx::Erase( const Color& rFillColor ) { bool bRet = false; if( !!aBitmap ) { bRet = aBitmap.Erase( rFillColor ); if( bRet && ( eTransparent == TRANSPARENT_BITMAP ) && !!aMask ) { // Respect transparency on fill color if( rFillColor.GetTransparency() ) { const Color aFill( rFillColor.GetTransparency(), rFillColor.GetTransparency(), rFillColor.GetTransparency() ); aMask.Erase( aFill ); } else { const Color aBlack( COL_BLACK ); aMask.Erase( aBlack ); } } } return bRet; } bool BitmapEx::Dither( BmpDitherFlags nDitherFlags ) { return !!aBitmap && aBitmap.Dither( nDitherFlags ); } bool BitmapEx::Replace( const Color& rSearchColor, const Color& rReplaceColor, sal_uLong nTol ) { return !!aBitmap && aBitmap.Replace( rSearchColor, rReplaceColor, nTol ); } bool BitmapEx::Replace( const Color* pSearchColors, const Color* pReplaceColors, sal_uLong nColorCount, const sal_uLong* pTols ) { return !!aBitmap && aBitmap.Replace( pSearchColors, pReplaceColors, nColorCount, const_cast(pTols) ); } bool BitmapEx::Adjust( short nLuminancePercent, short nContrastPercent, short nChannelRPercent, short nChannelGPercent, short nChannelBPercent, double fGamma, bool bInvert, bool msoBrightness ) { return !!aBitmap && aBitmap.Adjust( nLuminancePercent, nContrastPercent, nChannelRPercent, nChannelGPercent, nChannelBPercent, fGamma, bInvert, msoBrightness ); } bool BitmapEx::Filter( BmpFilter eFilter, const BmpFilterParam* pFilterParam ) { return !!aBitmap && aBitmap.Filter( eFilter, pFilterParam ); } void BitmapEx::Draw( OutputDevice* pOutDev, const Point& rDestPt ) const { pOutDev->DrawBitmapEx( rDestPt, *this ); } void BitmapEx::Draw( OutputDevice* pOutDev, const Point& rDestPt, const Size& rDestSize ) const { pOutDev->DrawBitmapEx( rDestPt, rDestSize, *this ); } BitmapEx BitmapEx:: AutoScaleBitmap(BitmapEx & aBitmap, const long aStandardSize) { Point aEmptyPoint(0,0); double imgposX = 0; double imgposY = 0; BitmapEx aRet = aBitmap; double imgOldWidth = aRet.GetSizePixel().Width(); double imgOldHeight =aRet.GetSizePixel().Height(); Size aScaledSize; if (imgOldWidth >= aStandardSize || imgOldHeight >= aStandardSize) { sal_Int32 imgNewWidth = 0; sal_Int32 imgNewHeight = 0; if (imgOldWidth >= imgOldHeight) { imgNewWidth = aStandardSize; imgNewHeight = sal_Int32(imgOldHeight / (imgOldWidth / aStandardSize) + 0.5); imgposX = 0; imgposY = (aStandardSize - (imgOldHeight / (imgOldWidth / aStandardSize) + 0.5)) / 2 + 0.5; } else { imgNewHeight = aStandardSize; imgNewWidth = sal_Int32(imgOldWidth / (imgOldHeight / aStandardSize) + 0.5); imgposY = 0; imgposX = (aStandardSize - (imgOldWidth / (imgOldHeight / aStandardSize) + 0.5)) / 2 + 0.5; } aScaledSize = Size( imgNewWidth, imgNewHeight ); aRet.Scale( aScaledSize, BmpScaleFlag::BestQuality ); } else { imgposX = (aStandardSize - imgOldWidth) / 2 + 0.5; imgposY = (aStandardSize - imgOldHeight) / 2 + 0.5; } Size aStdSize( aStandardSize, aStandardSize ); Rectangle aRect(aEmptyPoint, aStdSize ); ScopedVclPtrInstance< VirtualDevice > aVirDevice( *Application::GetDefaultDevice(), 0, 1 ); aVirDevice->SetOutputSizePixel( aStdSize ); aVirDevice->SetFillColor( COL_TRANSPARENT ); aVirDevice->SetLineColor( COL_TRANSPARENT ); // Draw a rect into virDevice aVirDevice->DrawRect( aRect ); Point aPointPixel( (long)imgposX, (long)imgposY ); aVirDevice->DrawBitmapEx( aPointPixel, aRet ); aRet = aVirDevice->GetBitmapEx( aEmptyPoint, aStdSize ); return aRet; } sal_uInt8 BitmapEx::GetTransparency(sal_Int32 nX, sal_Int32 nY) const { sal_uInt8 nTransparency(0xff); if(!aBitmap.IsEmpty()) { if(nX >= 0 && nX < aBitmapSize.Width() && nY >= 0 && nY < aBitmapSize.Height()) { switch(eTransparent) { case TRANSPARENT_NONE: { // Not transparent, ergo all covered nTransparency = 0x00; break; } case TRANSPARENT_COLOR: { Bitmap aTestBitmap(aBitmap); BitmapReadAccess* pRead = aTestBitmap.AcquireReadAccess(); if(pRead) { const Color aColor = pRead->GetColor(nY, nX); // If color is not equal to TransparentColor, we are not transparent if(aColor != aTransparentColor) { nTransparency = 0x00; } Bitmap::ReleaseAccess(pRead); } break; } case TRANSPARENT_BITMAP: { if(!aMask.IsEmpty()) { Bitmap aTestBitmap(aMask); BitmapReadAccess* pRead = aTestBitmap.AcquireReadAccess(); if(pRead) { const BitmapColor aBitmapColor(pRead->GetPixel(nY, nX)); if(bAlpha) { nTransparency = aBitmapColor.GetIndex(); } else { if(0x00 == aBitmapColor.GetIndex()) { nTransparency = 0x00; } } Bitmap::ReleaseAccess(pRead); } } break; } } } } return nTransparency; } // Shift alpha transparent pixels between cppcanvas/ implementations // and vcl in a generally grotesque and under-performing fashion bool BitmapEx::Create( const ::com::sun::star::uno::Reference< ::com::sun::star::rendering::XBitmapCanvas > &xBitmapCanvas, const Size &rSize ) { uno::Reference< beans::XFastPropertySet > xFastPropertySet( xBitmapCanvas, uno::UNO_QUERY ); if( xFastPropertySet.get() ) { // 0 means get BitmapEx uno::Any aAny = xFastPropertySet->getFastPropertyValue( 0 ); std::unique_ptr xBitmapEx(reinterpret_cast( *static_cast(aAny.getValue()))); if( xBitmapEx ) { *this = *xBitmapEx; return true; } } SalBitmap* pSalBmp, *pSalMask; pSalBmp = ImplGetSVData()->mpDefInst->CreateSalBitmap(); pSalMask = ImplGetSVData()->mpDefInst->CreateSalBitmap(); Size aLocalSize(rSize); if( pSalBmp->Create( xBitmapCanvas, aLocalSize ) ) { if ( pSalMask->Create( xBitmapCanvas, aLocalSize, true ) ) { *this = BitmapEx(Bitmap(pSalBmp), Bitmap(pSalMask) ); return true; } else { *this = BitmapEx(Bitmap(pSalBmp)); return true; } } delete pSalBmp; delete pSalMask; return false; } namespace { Bitmap impTransformBitmap( const Bitmap& rSource, const Size& rDestinationSize, const basegfx::B2DHomMatrix& rTransform, bool bSmooth) { Bitmap aDestination(rDestinationSize, 24); std::unique_ptr xWrite(aDestination.AcquireWriteAccess()); if(xWrite) { std::unique_ptr xRead((const_cast< Bitmap& >(rSource)).AcquireReadAccess()); if (xRead) { const Size aDestinationSizePixel(aDestination.GetSizePixel()); const BitmapColor aOutside(BitmapColor(0xff, 0xff, 0xff)); for(long y(0L); y < aDestinationSizePixel.getHeight(); y++) { for(long x(0L); x < aDestinationSizePixel.getWidth(); x++) { const basegfx::B2DPoint aSourceCoor(rTransform * basegfx::B2DPoint(x, y)); if(bSmooth) { xWrite->SetPixel( y, x, xRead->GetInterpolatedColorWithFallback( aSourceCoor.getY(), aSourceCoor.getX(), aOutside)); } else { // this version does the correct <= 0.0 checks, so no need // to do the static_cast< sal_Int32 > self and make an error xWrite->SetPixel( y, x, xRead->GetColorWithFallback( aSourceCoor.getY(), aSourceCoor.getX(), aOutside)); } } } } } rSource.AdaptBitCount(aDestination); return aDestination; } } // end of anonymous namespace BitmapEx BitmapEx::TransformBitmapEx( double fWidth, double fHeight, const basegfx::B2DHomMatrix& rTransformation, bool bSmooth) const { if(fWidth <= 1 || fHeight <= 1) return BitmapEx(); // force destination to 24 bit, we want to smooth output const Size aDestinationSize(basegfx::fround(fWidth), basegfx::fround(fHeight)); const Bitmap aDestination(impTransformBitmap(GetBitmap(), aDestinationSize, rTransformation, bSmooth)); // create mask if(IsTransparent()) { if(IsAlpha()) { const Bitmap aAlpha(impTransformBitmap(GetAlpha().GetBitmap(), aDestinationSize, rTransformation, bSmooth)); return BitmapEx(aDestination, AlphaMask(aAlpha)); } else { const Bitmap aLclMask(impTransformBitmap(GetMask(), aDestinationSize, rTransformation, false)); return BitmapEx(aDestination, aLclMask); } } return BitmapEx(aDestination); } BitmapEx BitmapEx::getTransformed( const basegfx::B2DHomMatrix& rTransformation, const basegfx::B2DRange& rVisibleRange, double fMaximumArea, bool bSmooth) const { BitmapEx aRetval; if(IsEmpty()) return aRetval; const sal_uInt32 nSourceWidth(GetSizePixel().Width()); const sal_uInt32 nSourceHeight(GetSizePixel().Height()); if(!nSourceWidth || !nSourceHeight) return aRetval; // Get aOutlineRange basegfx::B2DRange aOutlineRange(0.0, 0.0, 1.0, 1.0); aOutlineRange.transform(rTransformation); // create visible range from it by moving from relative to absolute basegfx::B2DRange aVisibleRange(rVisibleRange); aVisibleRange.transform( basegfx::tools::createScaleTranslateB2DHomMatrix( aOutlineRange.getRange(), aOutlineRange.getMinimum())); // get target size (which is visible range's size) double fWidth(aVisibleRange.getWidth()); double fHeight(aVisibleRange.getHeight()); if(fWidth < 1.0 || fHeight < 1.0) { return aRetval; } // test if discrete size (pixel) maybe too big and limit it const double fArea(fWidth * fHeight); const bool bNeedToReduce(basegfx::fTools::more(fArea, fMaximumArea)); double fReduceFactor(1.0); if(bNeedToReduce) { fReduceFactor = sqrt(fMaximumArea / fArea); fWidth *= fReduceFactor; fHeight *= fReduceFactor; } // Build complete transform from source pixels to target pixels. // Start by scaling from source pixel size to unit coordinates basegfx::B2DHomMatrix aTransform( basegfx::tools::createScaleB2DHomMatrix( 1.0 / nSourceWidth, 1.0 / nSourceHeight)); // multiply with given transform which leads from unit coordinates inside // aOutlineRange aTransform = rTransformation * aTransform; // subtract top-left of absolute VisibleRange aTransform.translate( -aVisibleRange.getMinX(), -aVisibleRange.getMinY()); // scale to target pixels (if needed) if(bNeedToReduce) { aTransform.scale(fReduceFactor, fReduceFactor); } // invert to get transformation from target pixel coordiates to source pixels aTransform.invert(); // create bitmap using source, destination and linear back-transformation aRetval = TransformBitmapEx(fWidth, fHeight, aTransform, bSmooth); return aRetval; } BitmapEx BitmapEx::ModifyBitmapEx(const basegfx::BColorModifierStack& rBColorModifierStack) const { Bitmap aChangedBitmap(GetBitmap()); bool bDone(false); for(sal_uInt32 a(rBColorModifierStack.count()); a && !bDone; ) { const basegfx::BColorModifierSharedPtr& rModifier = rBColorModifierStack.getBColorModifier(--a); const basegfx::BColorModifier_replace* pReplace = dynamic_cast< const basegfx::BColorModifier_replace* >(rModifier.get()); if(pReplace) { // complete replace if(IsTransparent()) { // clear bitmap with dest color if(aChangedBitmap.GetBitCount() <= 8) { // do NOT use erase; for e.g. 8bit Bitmaps, the nearest color to the given // erase color is determined and used -> this may be different from what is // wanted here. Better create a new bitmap with the needed color explicitely std::unique_ptr xReadAccess(aChangedBitmap.AcquireReadAccess()); OSL_ENSURE(xReadAccess, "Got no Bitmap ReadAccess ?!?"); if(xReadAccess) { BitmapPalette aNewPalette(xReadAccess->GetPalette()); aNewPalette[0] = BitmapColor(Color(pReplace->getBColor())); aChangedBitmap = Bitmap( aChangedBitmap.GetSizePixel(), aChangedBitmap.GetBitCount(), &aNewPalette); } } else { aChangedBitmap.Erase(Color(pReplace->getBColor())); } } else { // erase bitmap, caller will know to paint direct aChangedBitmap.SetEmpty(); } bDone = true; } else { std::unique_ptr xContent(aChangedBitmap.AcquireWriteAccess()); if(xContent) { const double fConvertColor(1.0 / 255.0); if(xContent->HasPalette()) { const sal_uInt16 nCount(xContent->GetPaletteEntryCount()); for(sal_uInt16 b(0); b < nCount; b++) { const BitmapColor& rCol = xContent->GetPaletteColor(b); const basegfx::BColor aBSource( rCol.GetRed() * fConvertColor, rCol.GetGreen() * fConvertColor, rCol.GetBlue() * fConvertColor); const basegfx::BColor aBDest(rModifier->getModifiedColor(aBSource)); xContent->SetPaletteColor(b, BitmapColor(Color(aBDest))); } } else if(BMP_FORMAT_24BIT_TC_BGR == xContent->GetScanlineFormat()) { for(sal_uInt32 y(0L); y < (sal_uInt32)xContent->Height(); y++) { Scanline pScan = xContent->GetScanline(y); for(sal_uInt32 x(0L); x < (sal_uInt32)xContent->Width(); x++) { const basegfx::BColor aBSource( *(pScan + 2)* fConvertColor, *(pScan + 1) * fConvertColor, *pScan * fConvertColor); const basegfx::BColor aBDest(rModifier->getModifiedColor(aBSource)); *pScan++ = static_cast< sal_uInt8 >(aBDest.getBlue() * 255.0); *pScan++ = static_cast< sal_uInt8 >(aBDest.getGreen() * 255.0); *pScan++ = static_cast< sal_uInt8 >(aBDest.getRed() * 255.0); } } } else if(BMP_FORMAT_24BIT_TC_RGB == xContent->GetScanlineFormat()) { for(sal_uInt32 y(0L); y < (sal_uInt32)xContent->Height(); y++) { Scanline pScan = xContent->GetScanline(y); for(sal_uInt32 x(0L); x < (sal_uInt32)xContent->Width(); x++) { const basegfx::BColor aBSource( *pScan * fConvertColor, *(pScan + 1) * fConvertColor, *(pScan + 2) * fConvertColor); const basegfx::BColor aBDest(rModifier->getModifiedColor(aBSource)); *pScan++ = static_cast< sal_uInt8 >(aBDest.getRed() * 255.0); *pScan++ = static_cast< sal_uInt8 >(aBDest.getGreen() * 255.0); *pScan++ = static_cast< sal_uInt8 >(aBDest.getBlue() * 255.0); } } } else { for(sal_uInt32 y(0L); y < (sal_uInt32)xContent->Height(); y++) { for(sal_uInt32 x(0L); x < (sal_uInt32)xContent->Width(); x++) { const BitmapColor aBMCol(xContent->GetColor(y, x)); const basegfx::BColor aBSource( (double)aBMCol.GetRed() * fConvertColor, (double)aBMCol.GetGreen() * fConvertColor, (double)aBMCol.GetBlue() * fConvertColor); const basegfx::BColor aBDest(rModifier->getModifiedColor(aBSource)); xContent->SetPixel(y, x, BitmapColor(Color(aBDest))); } } } } } } if(aChangedBitmap.IsEmpty()) { return BitmapEx(); } else { if(IsTransparent()) { if(IsAlpha()) { return BitmapEx(aChangedBitmap, GetAlpha()); } else { return BitmapEx(aChangedBitmap, GetMask()); } } else { return BitmapEx(aChangedBitmap); } } } BitmapEx createBlendFrame( const Size& rSize, sal_uInt8 nAlpha, Color aColorTopLeft, Color aColorBottomRight) { const sal_uInt32 nW(rSize.Width()); const sal_uInt32 nH(rSize.Height()); if(nW || nH) { Color aColTopRight(aColorTopLeft); Color aColBottomLeft(aColorTopLeft); const sal_uInt32 nDE(nW + nH); aColTopRight.Merge(aColorBottomRight, 255 - sal_uInt8((nW * 255) / nDE)); aColBottomLeft.Merge(aColorBottomRight, 255 - sal_uInt8((nH * 255) / nDE)); return createBlendFrame(rSize, nAlpha, aColorTopLeft, aColTopRight, aColorBottomRight, aColBottomLeft); } return BitmapEx(); } BitmapEx createBlendFrame( const Size& rSize, sal_uInt8 nAlpha, Color aColorTopLeft, Color aColorTopRight, Color aColorBottomRight, Color aColorBottomLeft) { BlendFrameCache* pBlendFrameCache = ImplGetBlendFrameCache(); if(pBlendFrameCache->m_aLastSize == rSize && pBlendFrameCache->m_nLastAlpha == nAlpha && pBlendFrameCache->m_aLastColorTopLeft == aColorTopLeft && pBlendFrameCache->m_aLastColorTopRight == aColorTopRight && pBlendFrameCache->m_aLastColorBottomRight == aColorBottomRight && pBlendFrameCache->m_aLastColorBottomLeft == aColorBottomLeft) { return pBlendFrameCache->m_aLastResult; } pBlendFrameCache->m_aLastSize = rSize; pBlendFrameCache->m_nLastAlpha = nAlpha; pBlendFrameCache->m_aLastColorTopLeft = aColorTopLeft; pBlendFrameCache->m_aLastColorTopRight = aColorTopRight; pBlendFrameCache->m_aLastColorBottomRight = aColorBottomRight; pBlendFrameCache->m_aLastColorBottomLeft = aColorBottomLeft; pBlendFrameCache->m_aLastResult.Clear(); const long nW(rSize.Width()); const long nH(rSize.Height()); if(nW > 1 && nH > 1) { sal_uInt8 aEraseTrans(0xff); Bitmap aContent(rSize, 24); AlphaMask aAlpha(rSize, &aEraseTrans); aContent.Erase(COL_BLACK); BitmapWriteAccess* xContent = aContent.AcquireWriteAccess(); BitmapWriteAccess* pAlpha = aAlpha.AcquireWriteAccess(); if(xContent && pAlpha) { long x(0); long y(0); // x == 0, y == 0, top-left corner xContent->SetPixel(0, 0, aColorTopLeft); pAlpha->SetPixelIndex(0, 0, nAlpha); // y == 0, top line left to right for(x = 1; x < nW - 1; x++) { Color aMix(aColorTopLeft); aMix.Merge(aColorTopRight, 255 - sal_uInt8((x * 255) / nW)); xContent->SetPixel(0, x, aMix); pAlpha->SetPixelIndex(0, x, nAlpha); } // x == nW - 1, y == 0, top-right corner // #i123690# Caution! When nW is 1, x == nW is possible (!) if(x < nW) { xContent->SetPixel(0, x, aColorTopRight); pAlpha->SetPixelIndex(0, x, nAlpha); } // x == 0 and nW - 1, left and right line top-down for(y = 1; y < nH - 1; y++) { Color aMixA(aColorTopLeft); aMixA.Merge(aColorBottomLeft, 255 - sal_uInt8((y * 255) / nH)); xContent->SetPixel(y, 0, aMixA); pAlpha->SetPixelIndex(y, 0, nAlpha); // #i123690# Caution! When nW is 1, x == nW is possible (!) if(x < nW) { Color aMixB(aColorTopRight); aMixB.Merge(aColorBottomRight, 255 - sal_uInt8((y * 255) / nH)); xContent->SetPixel(y, x, aMixB); pAlpha->SetPixelIndex(y, x, nAlpha); } } // #i123690# Caution! When nH is 1, y == nH is possible (!) if(y < nH) { // x == 0, y == nH - 1, bottom-left corner xContent->SetPixel(y, 0, aColorBottomLeft); pAlpha->SetPixelIndex(y, 0, nAlpha); // y == nH - 1, bottom line left to right for(x = 1; x < nW - 1; x++) { Color aMix(aColorBottomLeft); aMix.Merge(aColorBottomRight, 255 - sal_uInt8(((x - 0)* 255) / nW)); xContent->SetPixel(y, x, aMix); pAlpha->SetPixelIndex(y, x, nAlpha); } // x == nW - 1, y == nH - 1, bottom-right corner // #i123690# Caution! When nW is 1, x == nW is possible (!) if(x < nW) { xContent->SetPixel(y, x, aColorBottomRight); pAlpha->SetPixelIndex(y, x, nAlpha); } } Bitmap::ReleaseAccess(xContent); Bitmap::ReleaseAccess(pAlpha); pBlendFrameCache->m_aLastResult = BitmapEx(aContent, aAlpha); } else { if(xContent) { Bitmap::ReleaseAccess(xContent); } if(pAlpha) { Bitmap::ReleaseAccess(pAlpha); } } } return pBlendFrameCache->m_aLastResult; } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */