/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include #include #include "pdfwriter_impl.hxx" #include "window.h" #include "salframe.hxx" #include "salgdi.hxx" #include "svdata.hxx" #include "outdata.hxx" #include #include #include #define HATCH_MAXPOINTS 1024 #define GRADIENT_DEFAULT_STEPCOUNT 0 extern "C" int SAL_CALL ImplHatchCmpFnc( const void* p1, const void* p2 ) { const long nX1 = ( (Point*) p1 )->X(); const long nX2 = ( (Point*) p2 )->X(); const long nY1 = ( (Point*) p1 )->Y(); const long nY2 = ( (Point*) p2 )->Y(); return ( nX1 > nX2 ? 1 : nX1 == nX2 ? nY1 > nY2 ? 1: nY1 == nY2 ? 0 : -1 : -1 ); } DBG_NAMEEX( OutputDevice ) DBG_NAMEEX( Gradient ) void OutputDevice::ImplDrawPolygon( const Polygon& rPoly, const PolyPolygon* pClipPolyPoly ) { if( pClipPolyPoly ) ImplDrawPolyPolygon( rPoly, pClipPolyPoly ); else { sal_uInt16 nPoints = rPoly.GetSize(); if ( nPoints < 2 ) return; const SalPoint* pPtAry = (const SalPoint*)rPoly.GetConstPointAry(); mpGraphics->DrawPolygon( nPoints, pPtAry, this ); } } void OutputDevice::ImplDrawPolyPolygon( const PolyPolygon& rPolyPoly, const PolyPolygon* pClipPolyPoly ) { PolyPolygon* pPolyPoly; if( pClipPolyPoly ) { pPolyPoly = new PolyPolygon; rPolyPoly.GetIntersection( *pClipPolyPoly, *pPolyPoly ); } else pPolyPoly = (PolyPolygon*) &rPolyPoly; if( pPolyPoly->Count() == 1 ) { const Polygon rPoly = pPolyPoly->GetObject( 0 ); sal_uInt16 nSize = rPoly.GetSize(); if( nSize >= 2 ) { const SalPoint* pPtAry = (const SalPoint*)rPoly.GetConstPointAry(); mpGraphics->DrawPolygon( nSize, pPtAry, this ); } } else if( pPolyPoly->Count() ) { sal_uInt16 nCount = pPolyPoly->Count(); sal_uInt32* pPointAry = new sal_uInt32[nCount]; PCONSTSALPOINT* pPointAryAry = new PCONSTSALPOINT[nCount]; sal_uInt16 i = 0; do { const Polygon& rPoly = pPolyPoly->GetObject( i ); sal_uInt16 nSize = rPoly.GetSize(); if ( nSize ) { pPointAry[i] = nSize; pPointAryAry[i] = (PCONSTSALPOINT)rPoly.GetConstPointAry(); i++; } else nCount--; } while( i < nCount ); if( nCount == 1 ) mpGraphics->DrawPolygon( *pPointAry, *pPointAryAry, this ); else mpGraphics->DrawPolyPolygon( nCount, pPointAry, pPointAryAry, this ); delete[] pPointAry; delete[] pPointAryAry; } if( pClipPolyPoly ) delete pPolyPoly; } inline sal_uInt8 ImplGetGradientColorValue( long nValue ) { if ( nValue < 0 ) return 0; else if ( nValue > 0xFF ) return 0xFF; else return (sal_uInt8)nValue; } void OutputDevice::ImplDrawLinearGradient( const Rectangle& rRect, const Gradient& rGradient, sal_Bool bMtf, const PolyPolygon* pClipPolyPoly ) { // rotiertes BoundRect ausrechnen Rectangle aRect; Point aCenter; sal_uInt16 nAngle = rGradient.GetAngle() % 3600; rGradient.GetBoundRect( rRect, aRect, aCenter ); // Rand berechnen und Rechteck neu setzen Rectangle aFullRect = aRect; long nBorder = (long)rGradient.GetBorder() * aRect.GetHeight() / 100; // Rand berechnen und Rechteck neu setzen fuer linearen Farbverlauf bool bLinear = (rGradient.GetStyle() == GradientStyle_LINEAR); if ( bLinear ) { aRect.Top() += nBorder; } // Rand berechnen und Rechteck neu setzen fuer axiale Farbverlauf else { nBorder >>= 1; aRect.Top() += nBorder; aRect.Bottom() -= nBorder; } // Top darf nicht groesser als Bottom sein aRect.Top() = std::min( aRect.Top(), (long)(aRect.Bottom() - 1) ); long nMinRect = aRect.GetHeight(); // Intensitaeten von Start- und Endfarbe ggf. aendern und // Farbschrittweiten berechnen long nFactor; Color aStartCol = rGradient.GetStartColor(); Color aEndCol = rGradient.GetEndColor(); long nStartRed = aStartCol.GetRed(); long nStartGreen = aStartCol.GetGreen(); long nStartBlue = aStartCol.GetBlue(); long nEndRed = aEndCol.GetRed(); long nEndGreen = aEndCol.GetGreen(); long nEndBlue = aEndCol.GetBlue(); nFactor = rGradient.GetStartIntensity(); nStartRed = (nStartRed * nFactor) / 100; nStartGreen = (nStartGreen * nFactor) / 100; nStartBlue = (nStartBlue * nFactor) / 100; nFactor = rGradient.GetEndIntensity(); nEndRed = (nEndRed * nFactor) / 100; nEndGreen = (nEndGreen * nFactor) / 100; nEndBlue = (nEndBlue * nFactor) / 100; long nRedSteps = nEndRed - nStartRed; long nGreenSteps = nEndGreen - nStartGreen; long nBlueSteps = nEndBlue - nStartBlue; long nStepCount = rGradient.GetSteps(); // Bei nicht linearen Farbverlaeufen haben wir nur die halben Steps // pro Farbe if ( !bLinear ) { nRedSteps <<= 1; nGreenSteps <<= 1; nBlueSteps <<= 1; } // Anzahl der Schritte berechnen, falls nichts uebergeben wurde if ( !nStepCount ) { long nInc; if ( meOutDevType != OUTDEV_PRINTER && !bMtf ) { nInc = (nMinRect < 50) ? 2 : 4; } else { // #105998# Use display-equivalent step size calculation nInc = (nMinRect < 800) ? 10 : 20; } nStepCount = nMinRect / nInc; } // minimal drei Schritte und maximal die Anzahl der Farbunterschiede long nSteps = std::max( nStepCount, 2L ); long nCalcSteps = std::abs( nRedSteps ); long nTempSteps = std::abs( nGreenSteps ); if ( nTempSteps > nCalcSteps ) nCalcSteps = nTempSteps; nTempSteps = std::abs( nBlueSteps ); if ( nTempSteps > nCalcSteps ) nCalcSteps = nTempSteps; if ( nCalcSteps < nSteps ) nSteps = nCalcSteps; if ( !nSteps ) nSteps = 1; // Falls axialer Farbverlauf, muss die Schrittanzahl ungerade sein if ( !bLinear && !(nSteps & 1) ) nSteps++; // Berechnung ueber Double-Addition wegen Genauigkeit double fScanLine = aRect.Top(); double fScanInc = (double)aRect.GetHeight() / (double)nSteps; // Startfarbe berechnen und setzen sal_uInt8 nRed; sal_uInt8 nGreen; sal_uInt8 nBlue; long nSteps2; long nStepsHalf = 0; if ( bLinear ) { // Um 1 erhoeht, um die Border innerhalb der Schleife // zeichnen zu koennen nSteps2 = nSteps + 1; nRed = (sal_uInt8)nStartRed; nGreen = (sal_uInt8)nStartGreen; nBlue = (sal_uInt8)nStartBlue; } else { // Um 2 erhoeht, um die Border innerhalb der Schleife // zeichnen zu koennen nSteps2 = nSteps + 2; nRed = (sal_uInt8)nEndRed; nGreen = (sal_uInt8)nEndGreen; nBlue = (sal_uInt8)nEndBlue; nStepsHalf = nSteps >> 1; } if ( bMtf ) mpMetaFile->AddAction( new MetaFillColorAction( Color( nRed, nGreen, nBlue ), sal_True ) ); else mpGraphics->SetFillColor( MAKE_SALCOLOR( nRed, nGreen, nBlue ) ); // Startpolygon erzeugen (== Borderpolygon) Polygon aPoly( 4 ); Polygon aTempPoly( 2 ); Polygon aTempPoly2( 2 ); /* n#710061 Use overlapping fills to avoid color * leak via gaps in some pdf viewers */ Point aOverLap( 0, fScanInc*.1 ); aPoly[0] = aFullRect.TopLeft(); aPoly[1] = aFullRect.TopRight(); aPoly[2] = aRect.TopRight(); aPoly[3] = aRect.TopLeft(); aPoly.Rotate( aCenter, nAngle ); aTempPoly[0] = aPoly[3]; aTempPoly[1] = aPoly[2]; // Schleife, um rotierten Verlauf zu fuellen for ( long i = 0; i < nSteps2; i++ ) { // berechnetesPolygon ausgeben if ( bMtf ) mpMetaFile->AddAction( new MetaPolygonAction( aPoly ) ); else ImplDrawPolygon( aPoly, pClipPolyPoly ); // neues Polygon berechnen aRect.Top() = (long)(fScanLine += fScanInc); aPoly[0] = aTempPoly[0]; aPoly[1] = aTempPoly[1]; // unteren Rand komplett fuellen if ( i == nSteps ) { aTempPoly[0] = aFullRect.BottomLeft(); aTempPoly[1] = aFullRect.BottomRight(); aTempPoly2 = aTempPoly; } else { aTempPoly[0] = aRect.TopLeft(); aTempPoly[1] = aRect.TopRight(); aTempPoly2[0]= aTempPoly[0] + aOverLap; aTempPoly2[1]= aTempPoly[1] + aOverLap; } aTempPoly2.Rotate( aCenter, nAngle ); aTempPoly.Rotate( aCenter, nAngle ); aPoly[2] = aTempPoly2[1]; aPoly[3] = aTempPoly2[0]; // Farbintensitaeten aendern... // fuer lineare FV if ( bLinear ) { nRed = ImplGetGradientColorValue( nStartRed+((nRedSteps*i)/nSteps2) ); nGreen = ImplGetGradientColorValue( nStartGreen+((nGreenSteps*i)/nSteps2) ); nBlue = ImplGetGradientColorValue( nStartBlue+((nBlueSteps*i)/nSteps2) ); } // fuer radiale FV else { // fuer axiale FV muss die letzte Farbe der ersten // Farbe entsprechen // #107350# Setting end color one step earlier, as the // last time we get here, we drop out of the loop later // on. if ( i >= nSteps ) { nRed = (sal_uInt8)nEndRed; nGreen = (sal_uInt8)nEndGreen; nBlue = (sal_uInt8)nEndBlue; } else { if ( i <= nStepsHalf ) { nRed = ImplGetGradientColorValue( nEndRed-((nRedSteps*i)/nSteps2) ); nGreen = ImplGetGradientColorValue( nEndGreen-((nGreenSteps*i)/nSteps2) ); nBlue = ImplGetGradientColorValue( nEndBlue-((nBlueSteps*i)/nSteps2) ); } // genau die Mitte und hoeher else { long i2 = i - nStepsHalf; nRed = ImplGetGradientColorValue( nStartRed+((nRedSteps*i2)/nSteps2) ); nGreen = ImplGetGradientColorValue( nStartGreen+((nGreenSteps*i2)/nSteps2) ); nBlue = ImplGetGradientColorValue( nStartBlue+((nBlueSteps*i2)/nSteps2) ); } } } if ( bMtf ) mpMetaFile->AddAction( new MetaFillColorAction( Color( nRed, nGreen, nBlue ), sal_True ) ); else mpGraphics->SetFillColor( MAKE_SALCOLOR( nRed, nGreen, nBlue ) ); } } void OutputDevice::ImplDrawComplexGradient( const Rectangle& rRect, const Gradient& rGradient, sal_Bool bMtf, const PolyPolygon* pClipPolyPoly ) { // Feststellen ob Ausgabe ueber Polygon oder PolyPolygon // Bei Rasteroperationen ungleich Overpaint immer PolyPolygone, // da es zu falschen Ergebnissen kommt, wenn man mehrfach uebereinander // ausgibt // Bei Druckern auch immer PolyPolygone, da nicht alle Drucker // das Uebereinanderdrucken von Polygonen koennen // Virtuelle Device werden auch ausgeklammert, da einige Treiber // ansonsten zu langsam sind PolyPolygon* pPolyPoly; Rectangle aRect; Point aCenter; Color aStartCol( rGradient.GetStartColor() ); Color aEndCol( rGradient.GetEndColor() ); long nStartRed = ( (long) aStartCol.GetRed() * rGradient.GetStartIntensity() ) / 100; long nStartGreen = ( (long) aStartCol.GetGreen() * rGradient.GetStartIntensity() ) / 100; long nStartBlue = ( (long) aStartCol.GetBlue() * rGradient.GetStartIntensity() ) / 100; long nEndRed = ( (long) aEndCol.GetRed() * rGradient.GetEndIntensity() ) / 100; long nEndGreen = ( (long) aEndCol.GetGreen() * rGradient.GetEndIntensity() ) / 100; long nEndBlue = ( (long) aEndCol.GetBlue() * rGradient.GetEndIntensity() ) / 100; long nRedSteps = nEndRed - nStartRed; long nGreenSteps = nEndGreen - nStartGreen; long nBlueSteps = nEndBlue - nStartBlue; long nStepCount = rGradient.GetSteps(); sal_uInt16 nAngle = rGradient.GetAngle() % 3600; rGradient.GetBoundRect( rRect, aRect, aCenter ); if( (meRasterOp != ROP_OVERPAINT) || (meOutDevType != OUTDEV_WINDOW) || bMtf ) pPolyPoly = new PolyPolygon( 2 ); else pPolyPoly = NULL; long nMinRect = std::min( aRect.GetWidth(), aRect.GetHeight() ); // Anzahl der Schritte berechnen, falls nichts uebergeben wurde if( !nStepCount ) { long nInc; if ( meOutDevType != OUTDEV_PRINTER && !bMtf ) { nInc = ( nMinRect < 50 ) ? 2 : 4; } else { // #105998# Use display-equivalent step size calculation nInc = (nMinRect < 800) ? 10 : 20; } nStepCount = nMinRect / nInc; } // minimal drei Schritte und maximal die Anzahl der Farbunterschiede long nSteps = std::max( nStepCount, 2L ); long nCalcSteps = std::abs( nRedSteps ); long nTempSteps = std::abs( nGreenSteps ); if ( nTempSteps > nCalcSteps ) nCalcSteps = nTempSteps; nTempSteps = std::abs( nBlueSteps ); if ( nTempSteps > nCalcSteps ) nCalcSteps = nTempSteps; if ( nCalcSteps < nSteps ) nSteps = nCalcSteps; if ( !nSteps ) nSteps = 1; // Ausgabebegrenzungen und Schrittweite fuer jede Richtung festlegen Polygon aPoly; double fScanLeft = aRect.Left(); double fScanTop = aRect.Top(); double fScanRight = aRect.Right(); double fScanBottom = aRect.Bottom(); double fScanIncX = (double) aRect.GetWidth() / (double) nSteps * 0.5; double fScanIncY = (double) aRect.GetHeight() / (double) nSteps * 0.5; // all gradients are rendered as nested rectangles which shrink // equally in each dimension - except for 'square' gradients // which shrink to a central vertex but are not per-se square. if( rGradient.GetStyle() != GradientStyle_SQUARE ) { fScanIncY = std::min( fScanIncY, fScanIncX ); fScanIncX = fScanIncY; } sal_uInt8 nRed = (sal_uInt8) nStartRed, nGreen = (sal_uInt8) nStartGreen, nBlue = (sal_uInt8) nStartBlue; bool bPaintLastPolygon( false ); // #107349# Paint last polygon only if loop has generated any output if( bMtf ) mpMetaFile->AddAction( new MetaFillColorAction( Color( nRed, nGreen, nBlue ), sal_True ) ); else mpGraphics->SetFillColor( MAKE_SALCOLOR( nRed, nGreen, nBlue ) ); if( pPolyPoly ) { pPolyPoly->Insert( aPoly = rRect ); pPolyPoly->Insert( aPoly ); } else { // extend rect, to avoid missing bounding line Rectangle aExtRect( rRect ); aExtRect.Left() -= 1; aExtRect.Top() -= 1; aExtRect.Right() += 1; aExtRect.Bottom() += 1; ImplDrawPolygon( aPoly = aExtRect, pClipPolyPoly ); } // Schleife, um nacheinander die Polygone/PolyPolygone auszugeben for( long i = 1; i < nSteps; i++ ) { // neues Polygon berechnen aRect.Left() = (long)( fScanLeft += fScanIncX ); aRect.Top() = (long)( fScanTop += fScanIncY ); aRect.Right() = (long)( fScanRight -= fScanIncX ); aRect.Bottom() = (long)( fScanBottom -= fScanIncY ); if( ( aRect.GetWidth() < 2 ) || ( aRect.GetHeight() < 2 ) ) break; if( rGradient.GetStyle() == GradientStyle_RADIAL || rGradient.GetStyle() == GradientStyle_ELLIPTICAL ) aPoly = Polygon( aRect.Center(), aRect.GetWidth() >> 1, aRect.GetHeight() >> 1 ); else aPoly = Polygon( aRect ); aPoly.Rotate( aCenter, nAngle ); // Farbe entsprechend anpassen const long nStepIndex = ( ( pPolyPoly != NULL ) ? i : ( i + 1 ) ); nRed = ImplGetGradientColorValue( nStartRed + ( ( nRedSteps * nStepIndex ) / nSteps ) ); nGreen = ImplGetGradientColorValue( nStartGreen + ( ( nGreenSteps * nStepIndex ) / nSteps ) ); nBlue = ImplGetGradientColorValue( nStartBlue + ( ( nBlueSteps * nStepIndex ) / nSteps ) ); // entweder langsame PolyPolygon-Ausgaben oder schnelles Polygon-Painting if( pPolyPoly ) { bPaintLastPolygon = true; // #107349# Paint last polygon only if loop has generated any output pPolyPoly->Replace( pPolyPoly->GetObject( 1 ), 0 ); pPolyPoly->Replace( aPoly, 1 ); if( bMtf ) mpMetaFile->AddAction( new MetaPolyPolygonAction( *pPolyPoly ) ); else ImplDrawPolyPolygon( *pPolyPoly, pClipPolyPoly ); // #107349# Set fill color _after_ geometry painting: // pPolyPoly's geometry is the band from last iteration's // aPoly to current iteration's aPoly. The window outdev // path (see else below), on the other hand, paints the // full aPoly. Thus, here, we're painting the band before // the one painted in the window outdev path below. To get // matching colors, have to delay color setting here. if( bMtf ) mpMetaFile->AddAction( new MetaFillColorAction( Color( nRed, nGreen, nBlue ), sal_True ) ); else mpGraphics->SetFillColor( MAKE_SALCOLOR( nRed, nGreen, nBlue ) ); } else { // #107349# Set fill color _before_ geometry painting if( bMtf ) mpMetaFile->AddAction( new MetaFillColorAction( Color( nRed, nGreen, nBlue ), sal_True ) ); else mpGraphics->SetFillColor( MAKE_SALCOLOR( nRed, nGreen, nBlue ) ); ImplDrawPolygon( aPoly, pClipPolyPoly ); } } // Falls PolyPolygon-Ausgabe, muessen wir noch ein letztes inneres Polygon zeichnen if( pPolyPoly ) { const Polygon& rPoly = pPolyPoly->GetObject( 1 ); if( !rPoly.GetBoundRect().IsEmpty() ) { // #107349# Paint last polygon with end color only if loop // has generated output. Otherwise, the current // (i.e. start) color is taken, to generate _any_ output. if( bPaintLastPolygon ) { nRed = ImplGetGradientColorValue( nEndRed ); nGreen = ImplGetGradientColorValue( nEndGreen ); nBlue = ImplGetGradientColorValue( nEndBlue ); } if( bMtf ) { mpMetaFile->AddAction( new MetaFillColorAction( Color( nRed, nGreen, nBlue ), sal_True ) ); mpMetaFile->AddAction( new MetaPolygonAction( rPoly ) ); } else { mpGraphics->SetFillColor( MAKE_SALCOLOR( nRed, nGreen, nBlue ) ); ImplDrawPolygon( rPoly, pClipPolyPoly ); } } delete pPolyPoly; } } void OutputDevice::DrawGradient( const Rectangle& rRect, const Gradient& rGradient ) { DBG_CHKTHIS( OutputDevice, ImplDbgCheckOutputDevice ); DBG_CHKOBJ( &rGradient, Gradient, NULL ); if ( mnDrawMode & DRAWMODE_NOGRADIENT ) return; else if ( mnDrawMode & ( DRAWMODE_BLACKGRADIENT | DRAWMODE_WHITEGRADIENT | DRAWMODE_SETTINGSGRADIENT) ) { Color aColor; if ( mnDrawMode & DRAWMODE_BLACKGRADIENT ) aColor = Color( COL_BLACK ); else if ( mnDrawMode & DRAWMODE_WHITEGRADIENT ) aColor = Color( COL_WHITE ); else if ( mnDrawMode & DRAWMODE_SETTINGSGRADIENT ) aColor = GetSettings().GetStyleSettings().GetWindowColor(); if ( mnDrawMode & DRAWMODE_GHOSTEDGRADIENT ) { aColor = Color( ( aColor.GetRed() >> 1 ) | 0x80, ( aColor.GetGreen() >> 1 ) | 0x80, ( aColor.GetBlue() >> 1 ) | 0x80 ); } Push( PUSH_LINECOLOR | PUSH_FILLCOLOR ); SetLineColor( aColor ); SetFillColor( aColor ); DrawRect( rRect ); Pop(); return; } Gradient aGradient( rGradient ); if ( mnDrawMode & ( DRAWMODE_GRAYGRADIENT | DRAWMODE_GHOSTEDGRADIENT ) ) { Color aStartCol( aGradient.GetStartColor() ); Color aEndCol( aGradient.GetEndColor() ); if ( mnDrawMode & DRAWMODE_GRAYGRADIENT ) { sal_uInt8 cStartLum = aStartCol.GetLuminance(), cEndLum = aEndCol.GetLuminance(); aStartCol = Color( cStartLum, cStartLum, cStartLum ); aEndCol = Color( cEndLum, cEndLum, cEndLum ); } if ( mnDrawMode & DRAWMODE_GHOSTEDGRADIENT ) { aStartCol = Color( ( aStartCol.GetRed() >> 1 ) | 0x80, ( aStartCol.GetGreen() >> 1 ) | 0x80, ( aStartCol.GetBlue() >> 1 ) | 0x80 ); aEndCol = Color( ( aEndCol.GetRed() >> 1 ) | 0x80, ( aEndCol.GetGreen() >> 1 ) | 0x80, ( aEndCol.GetBlue() >> 1 ) | 0x80 ); } aGradient.SetStartColor( aStartCol ); aGradient.SetEndColor( aEndCol ); } if( mpMetaFile ) mpMetaFile->AddAction( new MetaGradientAction( rRect, aGradient ) ); if( !IsDeviceOutputNecessary() || ImplIsRecordLayout() ) return; // Rechteck in Pixel umrechnen Rectangle aRect( ImplLogicToDevicePixel( rRect ) ); aRect.Justify(); // Wenn Rechteck leer ist, brauchen wir nichts machen if ( !aRect.IsEmpty() ) { // Clip Region sichern Push( PUSH_CLIPREGION ); IntersectClipRegion( rRect ); // because we draw with no border line, we have to expand gradient // rect to avoid missing lines on the right and bottom edge aRect.Left()--; aRect.Top()--; aRect.Right()++; aRect.Bottom()++; // we need a graphics if ( !mpGraphics ) { if ( !ImplGetGraphics() ) return; } if ( mbInitClipRegion ) ImplInitClipRegion(); if ( !mbOutputClipped ) { // Gradienten werden ohne Umrandung gezeichnet if ( mbLineColor || mbInitLineColor ) { mpGraphics->SetLineColor(); mbInitLineColor = sal_True; } mbInitFillColor = sal_True; // calculate step count if necessary if ( !aGradient.GetSteps() ) aGradient.SetSteps( GRADIENT_DEFAULT_STEPCOUNT ); if( aGradient.GetStyle() == GradientStyle_LINEAR || aGradient.GetStyle() == GradientStyle_AXIAL ) ImplDrawLinearGradient( aRect, aGradient, sal_False, NULL ); else ImplDrawComplexGradient( aRect, aGradient, sal_False, NULL ); } Pop(); } if( mpAlphaVDev ) { // #i32109#: Make gradient area opaque mpAlphaVDev->ImplFillOpaqueRectangle( rRect ); } } void OutputDevice::DrawGradient( const PolyPolygon& rPolyPoly, const Gradient& rGradient ) { DBG_CHKTHIS( OutputDevice, ImplDbgCheckOutputDevice ); DBG_CHKOBJ( &rGradient, Gradient, NULL ); if( mbInitClipRegion ) ImplInitClipRegion(); if( mbOutputClipped ) return; if( !mpGraphics ) if( !ImplGetGraphics() ) return; if( rPolyPoly.Count() && rPolyPoly[ 0 ].GetSize() && !( mnDrawMode & DRAWMODE_NOGRADIENT ) ) { if ( mnDrawMode & ( DRAWMODE_BLACKGRADIENT | DRAWMODE_WHITEGRADIENT | DRAWMODE_SETTINGSGRADIENT) ) { Color aColor; if ( mnDrawMode & DRAWMODE_BLACKGRADIENT ) aColor = Color( COL_BLACK ); else if ( mnDrawMode & DRAWMODE_WHITEGRADIENT ) aColor = Color( COL_WHITE ); else if ( mnDrawMode & DRAWMODE_SETTINGSGRADIENT ) aColor = GetSettings().GetStyleSettings().GetWindowColor(); if ( mnDrawMode & DRAWMODE_GHOSTEDGRADIENT ) { aColor = Color( ( aColor.GetRed() >> 1 ) | 0x80, ( aColor.GetGreen() >> 1 ) | 0x80, ( aColor.GetBlue() >> 1 ) | 0x80 ); } Push( PUSH_LINECOLOR | PUSH_FILLCOLOR ); SetLineColor( aColor ); SetFillColor( aColor ); DrawPolyPolygon( rPolyPoly ); Pop(); return; } if( mpMetaFile ) { const Rectangle aRect( rPolyPoly.GetBoundRect() ); mpMetaFile->AddAction( new MetaCommentAction( "XGRAD_SEQ_BEGIN" ) ); mpMetaFile->AddAction( new MetaGradientExAction( rPolyPoly, rGradient ) ); if( OUTDEV_PRINTER == meOutDevType ) { Push( PUSH_CLIPREGION ); IntersectClipRegion(Region(rPolyPoly)); DrawGradient( aRect, rGradient ); Pop(); } else { const sal_Bool bOldOutput = IsOutputEnabled(); EnableOutput( sal_False ); Push( PUSH_RASTEROP ); SetRasterOp( ROP_XOR ); DrawGradient( aRect, rGradient ); SetFillColor( COL_BLACK ); SetRasterOp( ROP_0 ); DrawPolyPolygon( rPolyPoly ); SetRasterOp( ROP_XOR ); DrawGradient( aRect, rGradient ); Pop(); EnableOutput( bOldOutput ); } mpMetaFile->AddAction( new MetaCommentAction( "XGRAD_SEQ_END" ) ); } if( !IsDeviceOutputNecessary() || ImplIsRecordLayout() ) return; Gradient aGradient( rGradient ); if ( mnDrawMode & ( DRAWMODE_GRAYGRADIENT | DRAWMODE_GHOSTEDGRADIENT ) ) { Color aStartCol( aGradient.GetStartColor() ); Color aEndCol( aGradient.GetEndColor() ); if ( mnDrawMode & DRAWMODE_GRAYGRADIENT ) { sal_uInt8 cStartLum = aStartCol.GetLuminance(), cEndLum = aEndCol.GetLuminance(); aStartCol = Color( cStartLum, cStartLum, cStartLum ); aEndCol = Color( cEndLum, cEndLum, cEndLum ); } if ( mnDrawMode & DRAWMODE_GHOSTEDGRADIENT ) { aStartCol = Color( ( aStartCol.GetRed() >> 1 ) | 0x80, ( aStartCol.GetGreen() >> 1 ) | 0x80, ( aStartCol.GetBlue() >> 1 ) | 0x80 ); aEndCol = Color( ( aEndCol.GetRed() >> 1 ) | 0x80, ( aEndCol.GetGreen() >> 1 ) | 0x80, ( aEndCol.GetBlue() >> 1 ) | 0x80 ); } aGradient.SetStartColor( aStartCol ); aGradient.SetEndColor( aEndCol ); } if( OUTDEV_PRINTER == meOutDevType || ImplGetSVData()->maGDIData.mbNoXORClipping ) { const Rectangle aBoundRect( rPolyPoly.GetBoundRect() ); if( !Rectangle( PixelToLogic( Point() ), GetOutputSize() ).IsEmpty() ) { // Rechteck in Pixel umrechnen Rectangle aRect( ImplLogicToDevicePixel( aBoundRect ) ); aRect.Justify(); // Wenn Rechteck leer ist, brauchen wir nichts machen if ( !aRect.IsEmpty() ) { if( !mpGraphics && !ImplGetGraphics() ) return; if( mbInitClipRegion ) ImplInitClipRegion(); if( !mbOutputClipped ) { PolyPolygon aClipPolyPoly( ImplLogicToDevicePixel( rPolyPoly ) ); // Gradienten werden ohne Umrandung gezeichnet if( mbLineColor || mbInitLineColor ) { mpGraphics->SetLineColor(); mbInitLineColor = sal_True; } mbInitFillColor = sal_True; // calculate step count if necessary if ( !aGradient.GetSteps() ) aGradient.SetSteps( GRADIENT_DEFAULT_STEPCOUNT ); if( aGradient.GetStyle() == GradientStyle_LINEAR || aGradient.GetStyle() == GradientStyle_AXIAL ) ImplDrawLinearGradient( aRect, aGradient, sal_False, &aClipPolyPoly ); else ImplDrawComplexGradient( aRect, aGradient, sal_False, &aClipPolyPoly ); } } } } else { const PolyPolygon aPolyPoly( LogicToPixel( rPolyPoly ) ); const Rectangle aBoundRect( aPolyPoly.GetBoundRect() ); Point aPoint; Rectangle aDstRect( aPoint, GetOutputSizePixel() ); aDstRect.Intersection( aBoundRect ); if( OUTDEV_WINDOW == meOutDevType ) { const Region aPaintRgn( ( (Window*) this )->GetPaintRegion() ); if( !aPaintRgn.IsNull() ) aDstRect.Intersection( LogicToPixel( aPaintRgn ).GetBoundRect() ); } if( !aDstRect.IsEmpty() ) { VirtualDevice* pVDev; const Size aDstSize( aDstRect.GetSize() ); if( HasAlpha() ) { // #110958# Pay attention to alpha VDevs here, otherwise, // background will be wrong: Temp VDev has to have alpha, too. pVDev = new VirtualDevice( *this, 0, GetAlphaBitCount() > 1 ? 0 : 1 ); } else { // nothing special here. Plain VDev pVDev = new VirtualDevice(); } if( pVDev->SetOutputSizePixel( aDstSize) ) { MapMode aVDevMap; const sal_Bool bOldMap = mbMap; EnableMapMode( sal_False ); pVDev->DrawOutDev( Point(), aDstSize, aDstRect.TopLeft(), aDstSize, *this ); pVDev->SetRasterOp( ROP_XOR ); aVDevMap.SetOrigin( Point( -aDstRect.Left(), -aDstRect.Top() ) ); pVDev->SetMapMode( aVDevMap ); pVDev->DrawGradient( aBoundRect, aGradient ); pVDev->SetFillColor( COL_BLACK ); pVDev->SetRasterOp( ROP_0 ); pVDev->DrawPolyPolygon( aPolyPoly ); pVDev->SetRasterOp( ROP_XOR ); pVDev->DrawGradient( aBoundRect, aGradient ); aVDevMap.SetOrigin( Point() ); pVDev->SetMapMode( aVDevMap ); DrawOutDev( aDstRect.TopLeft(), aDstSize, Point(), aDstSize, *pVDev ); EnableMapMode( bOldMap ); } delete pVDev; } } } if( mpAlphaVDev ) mpAlphaVDev->DrawPolyPolygon( rPolyPoly ); } void OutputDevice::AddGradientActions( const Rectangle& rRect, const Gradient& rGradient, GDIMetaFile& rMtf ) { DBG_CHKTHIS( OutputDevice, ImplDbgCheckOutputDevice ); DBG_CHKOBJ( &rGradient, Gradient, NULL ); Rectangle aRect( rRect ); aRect.Justify(); // Wenn Rechteck leer ist, brauchen wir nichts machen if ( !aRect.IsEmpty() ) { Gradient aGradient( rGradient ); GDIMetaFile* pOldMtf = mpMetaFile; mpMetaFile = &rMtf; mpMetaFile->AddAction( new MetaPushAction( PUSH_ALL ) ); mpMetaFile->AddAction( new MetaISectRectClipRegionAction( aRect ) ); mpMetaFile->AddAction( new MetaLineColorAction( Color(), sal_False ) ); // because we draw with no border line, we have to expand gradient // rect to avoid missing lines on the right and bottom edge aRect.Left()--; aRect.Top()--; aRect.Right()++; aRect.Bottom()++; // calculate step count if necessary if ( !aGradient.GetSteps() ) aGradient.SetSteps( GRADIENT_DEFAULT_STEPCOUNT ); if( aGradient.GetStyle() == GradientStyle_LINEAR || aGradient.GetStyle() == GradientStyle_AXIAL ) ImplDrawLinearGradient( aRect, aGradient, sal_True, NULL ); else ImplDrawComplexGradient( aRect, aGradient, sal_True, NULL ); mpMetaFile->AddAction( new MetaPopAction() ); mpMetaFile = pOldMtf; } } void OutputDevice::DrawHatch( const PolyPolygon& rPolyPoly, const Hatch& rHatch ) { DBG_CHKTHIS( OutputDevice, ImplDbgCheckOutputDevice ); Hatch aHatch( rHatch ); if ( mnDrawMode & ( DRAWMODE_BLACKLINE | DRAWMODE_WHITELINE | DRAWMODE_GRAYLINE | DRAWMODE_GHOSTEDLINE | DRAWMODE_SETTINGSLINE ) ) { Color aColor( rHatch.GetColor() ); if ( mnDrawMode & DRAWMODE_BLACKLINE ) aColor = Color( COL_BLACK ); else if ( mnDrawMode & DRAWMODE_WHITELINE ) aColor = Color( COL_WHITE ); else if ( mnDrawMode & DRAWMODE_GRAYLINE ) { const sal_uInt8 cLum = aColor.GetLuminance(); aColor = Color( cLum, cLum, cLum ); } else if( mnDrawMode & DRAWMODE_SETTINGSLINE ) { aColor = GetSettings().GetStyleSettings().GetFontColor(); } if ( mnDrawMode & DRAWMODE_GHOSTEDLINE ) { aColor = Color( ( aColor.GetRed() >> 1 ) | 0x80, ( aColor.GetGreen() >> 1 ) | 0x80, ( aColor.GetBlue() >> 1 ) | 0x80); } aHatch.SetColor( aColor ); } if( mpMetaFile ) mpMetaFile->AddAction( new MetaHatchAction( rPolyPoly, aHatch ) ); if( !IsDeviceOutputNecessary() || ImplIsRecordLayout() ) return; if( !mpGraphics && !ImplGetGraphics() ) return; if( mbInitClipRegion ) ImplInitClipRegion(); if( mbOutputClipped ) return; if( rPolyPoly.Count() ) { PolyPolygon aPolyPoly( LogicToPixel( rPolyPoly ) ); GDIMetaFile* pOldMetaFile = mpMetaFile; sal_Bool bOldMap = mbMap; aPolyPoly.Optimize( POLY_OPTIMIZE_NO_SAME ); aHatch.SetDistance( ImplLogicWidthToDevicePixel( aHatch.GetDistance() ) ); mpMetaFile = NULL; EnableMapMode( sal_False ); Push( PUSH_LINECOLOR ); SetLineColor( aHatch.GetColor() ); ImplInitLineColor(); ImplDrawHatch( aPolyPoly, aHatch, sal_False ); Pop(); EnableMapMode( bOldMap ); mpMetaFile = pOldMetaFile; } if( mpAlphaVDev ) mpAlphaVDev->DrawHatch( rPolyPoly, rHatch ); } void OutputDevice::AddHatchActions( const PolyPolygon& rPolyPoly, const Hatch& rHatch, GDIMetaFile& rMtf ) { DBG_CHKTHIS( OutputDevice, ImplDbgCheckOutputDevice ); PolyPolygon aPolyPoly( rPolyPoly ); aPolyPoly.Optimize( POLY_OPTIMIZE_NO_SAME | POLY_OPTIMIZE_CLOSE ); if( aPolyPoly.Count() ) { GDIMetaFile* pOldMtf = mpMetaFile; mpMetaFile = &rMtf; mpMetaFile->AddAction( new MetaPushAction( PUSH_ALL ) ); mpMetaFile->AddAction( new MetaLineColorAction( rHatch.GetColor(), sal_True ) ); ImplDrawHatch( aPolyPoly, rHatch, sal_True ); mpMetaFile->AddAction( new MetaPopAction() ); mpMetaFile = pOldMtf; } } void OutputDevice::ImplDrawHatch( const PolyPolygon& rPolyPoly, const Hatch& rHatch, sal_Bool bMtf ) { if(rPolyPoly.Count()) { // #i115630# ImplDrawHatch does not work with beziers included in the polypolygon, take care of that bool bIsCurve(false); for(sal_uInt16 a(0); !bIsCurve && a < rPolyPoly.Count(); a++) { if(rPolyPoly[a].HasFlags()) { bIsCurve = true; } } if(bIsCurve) { OSL_ENSURE(false, "ImplDrawHatch does *not* support curves, falling back to AdaptiveSubdivide()..."); PolyPolygon aPolyPoly; rPolyPoly.AdaptiveSubdivide(aPolyPoly); ImplDrawHatch(aPolyPoly, rHatch, bMtf); } else { Rectangle aRect( rPolyPoly.GetBoundRect() ); const long nLogPixelWidth = ImplDevicePixelToLogicWidth( 1 ); const long nWidth = ImplDevicePixelToLogicWidth( std::max( ImplLogicWidthToDevicePixel( rHatch.GetDistance() ), 3L ) ); Point* pPtBuffer = new Point[ HATCH_MAXPOINTS ]; Point aPt1, aPt2, aEndPt1; Size aInc; // Single hatch aRect.Left() -= nLogPixelWidth; aRect.Top() -= nLogPixelWidth; aRect.Right() += nLogPixelWidth; aRect.Bottom() += nLogPixelWidth; ImplCalcHatchValues( aRect, nWidth, rHatch.GetAngle(), aPt1, aPt2, aInc, aEndPt1 ); do { ImplDrawHatchLine( Line( aPt1, aPt2 ), rPolyPoly, pPtBuffer, bMtf ); aPt1.X() += aInc.Width(); aPt1.Y() += aInc.Height(); aPt2.X() += aInc.Width(); aPt2.Y() += aInc.Height(); } while( ( aPt1.X() <= aEndPt1.X() ) && ( aPt1.Y() <= aEndPt1.Y() ) ); if( ( rHatch.GetStyle() == HATCH_DOUBLE ) || ( rHatch.GetStyle() == HATCH_TRIPLE ) ) { // Double hatch ImplCalcHatchValues( aRect, nWidth, rHatch.GetAngle() + 900, aPt1, aPt2, aInc, aEndPt1 ); do { ImplDrawHatchLine( Line( aPt1, aPt2 ), rPolyPoly, pPtBuffer, bMtf ); aPt1.X() += aInc.Width(); aPt1.Y() += aInc.Height(); aPt2.X() += aInc.Width(); aPt2.Y() += aInc.Height(); } while( ( aPt1.X() <= aEndPt1.X() ) && ( aPt1.Y() <= aEndPt1.Y() ) ); if( rHatch.GetStyle() == HATCH_TRIPLE ) { // Triple hatch ImplCalcHatchValues( aRect, nWidth, rHatch.GetAngle() + 450, aPt1, aPt2, aInc, aEndPt1 ); do { ImplDrawHatchLine( Line( aPt1, aPt2 ), rPolyPoly, pPtBuffer, bMtf ); aPt1.X() += aInc.Width(); aPt1.Y() += aInc.Height(); aPt2.X() += aInc.Width(); aPt2.Y() += aInc.Height(); } while( ( aPt1.X() <= aEndPt1.X() ) && ( aPt1.Y() <= aEndPt1.Y() ) ); } } delete[] pPtBuffer; } } } void OutputDevice::ImplCalcHatchValues( const Rectangle& rRect, long nDist, sal_uInt16 nAngle10, Point& rPt1, Point& rPt2, Size& rInc, Point& rEndPt1 ) { Point aRef; long nAngle = nAngle10 % 1800; long nOffset = 0; if( nAngle > 900 ) nAngle -= 1800; aRef = ( !IsRefPoint() ? rRect.TopLeft() : GetRefPoint() ); if( 0 == nAngle ) { rInc = Size( 0, nDist ); rPt1 = rRect.TopLeft(); rPt2 = rRect.TopRight(); rEndPt1 = rRect.BottomLeft(); if( aRef.Y() <= rRect.Top() ) nOffset = ( ( rRect.Top() - aRef.Y() ) % nDist ); else nOffset = ( nDist - ( ( aRef.Y() - rRect.Top() ) % nDist ) ); rPt1.Y() -= nOffset; rPt2.Y() -= nOffset; } else if( 900 == nAngle ) { rInc = Size( nDist, 0 ); rPt1 = rRect.TopLeft(); rPt2 = rRect.BottomLeft(); rEndPt1 = rRect.TopRight(); if( aRef.X() <= rRect.Left() ) nOffset = ( rRect.Left() - aRef.X() ) % nDist; else nOffset = nDist - ( ( aRef.X() - rRect.Left() ) % nDist ); rPt1.X() -= nOffset; rPt2.X() -= nOffset; } else if( nAngle >= -450 && nAngle <= 450 ) { const double fAngle = F_PI1800 * labs( nAngle ); const double fTan = tan( fAngle ); const long nYOff = FRound( ( rRect.Right() - rRect.Left() ) * fTan ); long nPY; rInc = Size( 0, nDist = FRound( nDist / cos( fAngle ) ) ); if( nAngle > 0 ) { rPt1 = rRect.TopLeft(); rPt2 = Point( rRect.Right(), rRect.Top() - nYOff ); rEndPt1 = Point( rRect.Left(), rRect.Bottom() + nYOff ); nPY = FRound( aRef.Y() - ( ( rPt1.X() - aRef.X() ) * fTan ) ); } else { rPt1 = rRect.TopRight(); rPt2 = Point( rRect.Left(), rRect.Top() - nYOff ); rEndPt1 = Point( rRect.Right(), rRect.Bottom() + nYOff ); nPY = FRound( aRef.Y() + ( ( rPt1.X() - aRef.X() ) * fTan ) ); } if( nPY <= rPt1.Y() ) nOffset = ( rPt1.Y() - nPY ) % nDist; else nOffset = nDist - ( ( nPY - rPt1.Y() ) % nDist ); rPt1.Y() -= nOffset; rPt2.Y() -= nOffset; } else { const double fAngle = F_PI1800 * labs( nAngle ); const double fTan = tan( fAngle ); const long nXOff = FRound( ( rRect.Bottom() - rRect.Top() ) / fTan ); long nPX; rInc = Size( nDist = FRound( nDist / sin( fAngle ) ), 0 ); if( nAngle > 0 ) { rPt1 = rRect.TopLeft(); rPt2 = Point( rRect.Left() - nXOff, rRect.Bottom() ); rEndPt1 = Point( rRect.Right() + nXOff, rRect.Top() ); nPX = FRound( aRef.X() - ( ( rPt1.Y() - aRef.Y() ) / fTan ) ); } else { rPt1 = rRect.BottomLeft(); rPt2 = Point( rRect.Left() - nXOff, rRect.Top() ); rEndPt1 = Point( rRect.Right() + nXOff, rRect.Bottom() ); nPX = FRound( aRef.X() + ( ( rPt1.Y() - aRef.Y() ) / fTan ) ); } if( nPX <= rPt1.X() ) nOffset = ( rPt1.X() - nPX ) % nDist; else nOffset = nDist - ( ( nPX - rPt1.X() ) % nDist ); rPt1.X() -= nOffset; rPt2.X() -= nOffset; } } void OutputDevice::ImplDrawHatchLine( const Line& rLine, const PolyPolygon& rPolyPoly, Point* pPtBuffer, sal_Bool bMtf ) { double fX, fY; long nAdd, nPCounter = 0; for( long nPoly = 0, nPolyCount = rPolyPoly.Count(); nPoly < nPolyCount; nPoly++ ) { const Polygon& rPoly = rPolyPoly[ (sal_uInt16) nPoly ]; if( rPoly.GetSize() > 1 ) { Line aCurSegment( rPoly[ 0 ], Point() ); for( long i = 1, nCount = rPoly.GetSize(); i <= nCount; i++ ) { aCurSegment.SetEnd( rPoly[ (sal_uInt16)( i % nCount ) ] ); nAdd = 0; if( rLine.Intersection( aCurSegment, fX, fY ) ) { if( ( fabs( fX - aCurSegment.GetStart().X() ) <= 0.0000001 ) && ( fabs( fY - aCurSegment.GetStart().Y() ) <= 0.0000001 ) ) { const Line aPrevSegment( rPoly[ (sal_uInt16)( ( i > 1 ) ? ( i - 2 ) : ( nCount - 1 ) ) ], aCurSegment.GetStart() ); const double fPrevDistance = rLine.GetDistance( aPrevSegment.GetStart() ); const double fCurDistance = rLine.GetDistance( aCurSegment.GetEnd() ); if( ( fPrevDistance <= 0.0 && fCurDistance > 0.0 ) || ( fPrevDistance > 0.0 && fCurDistance < 0.0 ) ) { nAdd = 1; } } else if( ( fabs( fX - aCurSegment.GetEnd().X() ) <= 0.0000001 ) && ( fabs( fY - aCurSegment.GetEnd().Y() ) <= 0.0000001 ) ) { const Line aNextSegment( aCurSegment.GetEnd(), rPoly[ (sal_uInt16)( ( i + 1 ) % nCount ) ] ); if( ( fabs( rLine.GetDistance( aNextSegment.GetEnd() ) ) <= 0.0000001 ) && ( rLine.GetDistance( aCurSegment.GetStart() ) > 0.0 ) ) { nAdd = 1; } } else nAdd = 1; if( nAdd ) pPtBuffer[ nPCounter++ ] = Point( FRound( fX ), FRound( fY ) ); } aCurSegment.SetStart( aCurSegment.GetEnd() ); } } } if( nPCounter > 1 ) { qsort( pPtBuffer, nPCounter, sizeof( Point ), ImplHatchCmpFnc ); if( nPCounter & 1 ) nPCounter--; if( bMtf ) { for( long i = 0; i < nPCounter; i += 2 ) mpMetaFile->AddAction( new MetaLineAction( pPtBuffer[ i ], pPtBuffer[ i + 1 ] ) ); } else { for( long i = 0; i < nPCounter; i += 2 ) { if( mpPDFWriter ) { mpPDFWriter->drawLine( pPtBuffer[ i ], pPtBuffer[ i+1 ] ); } else { const Point aPt1( ImplLogicToDevicePixel( pPtBuffer[ i ] ) ); const Point aPt2( ImplLogicToDevicePixel( pPtBuffer[ i + 1 ] ) ); mpGraphics->DrawLine( aPt1.X(), aPt1.Y(), aPt2.X(), aPt2.Y(), this ); } } } } } /* vim:set shiftwidth=4 softtabstop=4 expandtab: */