/************************************************************************* * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * Copyright 2000, 2010 Oracle and/or its affiliates. * * OpenOffice.org - a multi-platform office productivity suite * * This file is part of OpenOffice.org. * * OpenOffice.org is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 3 * only, as published by the Free Software Foundation. * * OpenOffice.org is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License version 3 for more details * (a copy is included in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU Lesser General Public License * version 3 along with OpenOffice.org. If not, see * * for a copy of the LGPLv3 License. * ************************************************************************/ // MARKER(update_precomp.py): autogen include statement, do not remove #include "precompiled_vcl.hxx" #include #include #include #include #include #include #include #include #include #include #include // ----------- // - Defines - // ----------- #define PNGCHUNK_IHDR 0x49484452 #define PNGCHUNK_PLTE 0x504c5445 #define PNGCHUNK_IDAT 0x49444154 #define PNGCHUNK_IEND 0x49454e44 #define PNGCHUNK_bKGD 0x624b4744 #define PNGCHUNK_cHRM 0x6348524d #define PNGCHUNK_gAMA 0x67414d41 #define PNGCHUNK_hIST 0x68495354 #define PNGCHUNK_pHYs 0x70485973 #define PNGCHUNK_sBIT 0x73425420 #define PNGCHUNK_tIME 0x74494d45 #define PNGCHUNK_tEXt 0x74455874 #define PNGCHUNK_tRNS 0x74524e53 #define PNGCHUNK_zTXt 0x7a545874 #define PMGCHUNG_msOG 0x6d734f47 // Microsoft Office Animated GIF #define VIEWING_GAMMA 2.35 #define DISPLAY_GAMMA 1.0 namespace vcl { // ----------- // - statics - // ----------- // ------------------------------------------------------------------------------ static const BYTE mpDefaultColorTable[ 256 ] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff }; // ------------- // - PNGReaderImpl - // ------------- class PNGReaderImpl { private: SvStream& mrPNGStream; sal_uInt16 mnOrigStreamMode; std::vector< vcl::PNGReader::ChunkData > maChunkSeq; std::vector< vcl::PNGReader::ChunkData >::iterator maChunkIter; std::vector< sal_uInt8 >::iterator maDataIter; Bitmap* mpBmp; BitmapWriteAccess* mpAcc; Bitmap* mpMaskBmp; AlphaMask* mpAlphaMask; BitmapWriteAccess* mpMaskAcc; ZCodec* mpZCodec; BYTE* mpInflateInBuf; // as big as the size of a scanline + alphachannel + 1 BYTE* mpScanPrior; // pointer to the latest scanline BYTE* mpTransTab; // for transparency in images with palette colortype BYTE* mpScanCurrent; // pointer into the current scanline BYTE* mpColorTable; // sal_Size mnStreamSize; // estimate of PNG file size sal_uInt32 mnChunkType; // Type of current PNG chunk sal_Int32 mnChunkLen; // Length of current PNG chunk Size maOrigSize; // pixel size of the full image Size maTargetSize; // pixel size of the result image Size maPhysSize; // prefered size in MAP_100TH_MM units sal_uInt32 mnBPP; // number of bytes per pixel sal_uInt32 mnScansize; // max size of scanline sal_uInt32 mnYpos; // latest y position in full image int mnPass; // if interlaced the latest pass ( 1..7 ) else 7 sal_uInt32 mnXStart; // the starting X for the current pass sal_uInt32 mnXAdd; // the increment for input images X coords for the current pass sal_uInt32 mnYAdd; // the increment for input images Y coords for the current pass int mnPreviewShift; // shift to convert orig image coords into preview image coords int mnPreviewMask; // == ((1 << mnPreviewShift) - 1) USHORT mnIStmOldMode; USHORT mnTargetDepth; // pixel depth of target bitmap BYTE mnTransRed; BYTE mnTransGreen; BYTE mnTransBlue; BYTE mnPngDepth; // pixel depth of PNG data BYTE mnColorType; BYTE mnCompressionType; BYTE mnFilterType; BYTE mnInterlaceType; BitmapColor mcTranspColor; // transparency mask's transparency "color" BitmapColor mcOpaqueColor; // transparency mask's opaque "color" BOOL mbTransparent; // graphic includes an tRNS Chunk or an alpha Channel BOOL mbAlphaChannel; // is true for ColorType 4 and 6 BOOL mbRGBTriple; BOOL mbPalette; // FALSE if we need a Palette BOOL mbGrayScale; BOOL mbzCodecInUse; BOOL mbStatus; BOOL mbIDAT; // TRUE if finished with enough IDAT chunks BOOL mbGamma; // TRUE if Gamma Correction available BOOL mbpHYs; // TRUE if pysical size of pixel available sal_Bool mbIgnoreGammaChunk; bool ReadNextChunk(); void ReadRemainingChunks(); void SkipRemainingChunks(); void ImplSetPixel( sal_uInt32 y, sal_uInt32 x, const BitmapColor & ); void ImplSetPixel( sal_uInt32 y, sal_uInt32 x, BYTE nPalIndex ); void ImplSetTranspPixel( sal_uInt32 y, sal_uInt32 x, const BitmapColor &, BOOL bTrans ); void ImplSetAlphaPixel( sal_uInt32 y, sal_uInt32 x, BYTE nPalIndex, BYTE nAlpha ); void ImplSetAlphaPixel( sal_uInt32 y, sal_uInt32 x, const BitmapColor&, BYTE nAlpha ); void ImplReadIDAT(); bool ImplPreparePass(); void ImplApplyFilter(); void ImplDrawScanline( sal_uInt32 nXStart, sal_uInt32 nXAdd ); BOOL ImplReadTransparent(); void ImplGetGamma(); void ImplGetBackground(); BYTE ImplScaleColor(); BOOL ImplReadHeader( const Size& rPreviewSizeHint ); BOOL ImplReadPalette(); void ImplGetGrayPalette( sal_uInt16 ); sal_uInt32 ImplReadsal_uInt32(); public: PNGReaderImpl( SvStream& ); ~PNGReaderImpl(); BitmapEx GetBitmapEx( const Size& rPreviewSizeHint ); const std::vector< PNGReader::ChunkData >& GetAllChunks(); void SetIgnoreGammaChunk( sal_Bool bIgnore ){ mbIgnoreGammaChunk = bIgnore; }; }; // ------------------------------------------------------------------------------ PNGReaderImpl::PNGReaderImpl( SvStream& rPNGStream ) : mrPNGStream( rPNGStream ), mpBmp ( NULL ), mpAcc ( NULL ), mpMaskBmp ( NULL ), mpAlphaMask ( NULL ), mpMaskAcc ( NULL ), mpZCodec ( new ZCodec( DEFAULT_IN_BUFSIZE, DEFAULT_OUT_BUFSIZE, MAX_MEM_USAGE ) ), mpInflateInBuf ( NULL ), mpScanPrior ( NULL ), mpTransTab ( NULL ), mpColorTable ( (sal_uInt8*) mpDefaultColorTable ), mbzCodecInUse ( sal_False ), mbStatus( TRUE), mbIDAT( FALSE ), mbGamma ( sal_False ), mbpHYs ( sal_False ), mbIgnoreGammaChunk ( sal_False ) { // prepare the PNG data stream mnOrigStreamMode = mrPNGStream.GetNumberFormatInt(); mrPNGStream.SetNumberFormatInt( NUMBERFORMAT_INT_BIGENDIAN ); // prepare the chunk reader maChunkSeq.reserve( 16 ); maChunkIter = maChunkSeq.begin(); // estimate PNG file size (to allow sanity checks) const sal_Size nStreamPos = mrPNGStream.Tell(); mrPNGStream.Seek( STREAM_SEEK_TO_END ); mnStreamSize = mrPNGStream.Tell(); mrPNGStream.Seek( nStreamPos ); // check the PNG header magic sal_uInt32 nDummy = 0; mrPNGStream >> nDummy; mbStatus = (nDummy == 0x89504e47); mrPNGStream >> nDummy; mbStatus &= (nDummy == 0x0d0a1a0a); mnPreviewShift = 0; mnPreviewMask = (1 << mnPreviewShift) - 1; } // ------------------------------------------------------------------------ PNGReaderImpl::~PNGReaderImpl() { mrPNGStream.SetNumberFormatInt( mnOrigStreamMode ); if ( mbzCodecInUse ) mpZCodec->EndCompression(); if( mpColorTable != mpDefaultColorTable ) delete[] mpColorTable; delete mpBmp; delete mpAlphaMask; delete mpMaskBmp; delete[] mpTransTab; delete[] mpInflateInBuf; delete[] mpScanPrior; delete mpZCodec; } // ------------------------------------------------------------------------ bool PNGReaderImpl::ReadNextChunk() { if( maChunkIter == maChunkSeq.end() ) { // get the next chunk from the stream // unless we are at the end of the PNG stream if( mrPNGStream.IsEof() || (mrPNGStream.GetError() != ERRCODE_NONE) ) return false; if( !maChunkSeq.empty() && (maChunkSeq.back().nType == PNGCHUNK_IEND) ) return false; PNGReader::ChunkData aDummyChunk; maChunkIter = maChunkSeq.insert( maChunkSeq.end(), aDummyChunk ); PNGReader::ChunkData& rChunkData = *maChunkIter; // read the chunk header mrPNGStream >> mnChunkLen >> mnChunkType; rChunkData.nType = mnChunkType; // #128377#/#149343# sanity check for chunk length if( mnChunkLen < 0 ) return false; const sal_Size nStreamPos = mrPNGStream.Tell(); if( nStreamPos + mnChunkLen >= mnStreamSize ) return false; // calculate chunktype CRC (swap it back to original byte order) sal_uInt32 nChunkType = mnChunkType;; #if defined(__LITTLEENDIAN) || defined(OSL_LITENDIAN) nChunkType = SWAPLONG( nChunkType ); #endif sal_uInt32 nCRC32 = rtl_crc32( 0, &nChunkType, 4 ); // read the chunk data and check the CRC if( mnChunkLen && !mrPNGStream.IsEof() ) { rChunkData.aData.resize( mnChunkLen ); sal_Int32 nBytesRead = 0; do { sal_uInt8* pPtr = &rChunkData.aData[ nBytesRead ]; nBytesRead += mrPNGStream.Read( pPtr, mnChunkLen - nBytesRead ); } while ( ( nBytesRead < mnChunkLen ) && ( mrPNGStream.GetError() == ERRCODE_NONE ) ); nCRC32 = rtl_crc32( nCRC32, &rChunkData.aData[ 0 ], mnChunkLen ); maDataIter = rChunkData.aData.begin(); } sal_uInt32 nCheck; mrPNGStream >> nCheck; if( nCRC32 != nCheck ) return false; } else { // the next chunk was already read mnChunkType = (*maChunkIter).nType; mnChunkLen = (*maChunkIter).aData.size(); maDataIter = (*maChunkIter).aData.begin(); } ++maChunkIter; if( mnChunkType == PNGCHUNK_IEND ) return false; return true; } // ------------------------------------------------------------------------ // read the remaining chunks from mrPNGStream void PNGReaderImpl::ReadRemainingChunks() { while( ReadNextChunk() ) ; } // ------------------------------------------------------------------------ // move position of mrPNGStream to the end of the file void PNGReaderImpl::SkipRemainingChunks() { // nothing to skip if the last chunk was read if( !maChunkSeq.empty() && (maChunkSeq.back().nType == PNGCHUNK_IEND) ) return; // read from the stream until the IEND chunk is found const sal_Size nStreamPos = mrPNGStream.Tell(); while( !mrPNGStream.IsEof() && (mrPNGStream.GetError() == ERRCODE_NONE) ) { mrPNGStream >> mnChunkLen >> mnChunkType; if( mnChunkLen < 0 ) break; if( nStreamPos + mnChunkLen >= mnStreamSize ) break; mrPNGStream.SeekRel( mnChunkLen + 4 ); // skip data + CRC if( mnChunkType == PNGCHUNK_IEND ) break; } } // ------------------------------------------------------------------------ const std::vector< vcl::PNGReader::ChunkData >& PNGReaderImpl::GetAllChunks() { ReadRemainingChunks(); return maChunkSeq; } // ------------------------------------------------------------------------ BitmapEx PNGReaderImpl::GetBitmapEx( const Size& rPreviewSizeHint ) { // reset to the first chunk maChunkIter = maChunkSeq.begin(); // parse the chunks while( mbStatus && !mbIDAT && ReadNextChunk() ) { switch( mnChunkType ) { case PNGCHUNK_IHDR : { mbStatus = ImplReadHeader( rPreviewSizeHint ); } break; case PNGCHUNK_gAMA : // the gamma chunk must precede { // the 'IDAT' and also the 'PLTE'(if available ) if ( !mbIgnoreGammaChunk && ( mbIDAT == FALSE ) ) ImplGetGamma(); } break; case PNGCHUNK_PLTE : { if ( !mbPalette ) mbStatus = ImplReadPalette(); } break; case PNGCHUNK_tRNS : { if ( !mbIDAT ) // the tRNS chunk must precede the IDAT mbStatus = ImplReadTransparent(); } break; case PNGCHUNK_bKGD : // the background chunk must appear { if ( ( mbIDAT == FALSE ) && mbPalette ) // before the 'IDAT' and after the ImplGetBackground(); // PLTE(if available ) chunk. } break; case PNGCHUNK_IDAT : { if ( !mpInflateInBuf ) // taking care that the header has properly been read mbStatus = FALSE; else if ( !mbIDAT ) // the gfx is finished, but there may be left a zlibCRC of about 4Bytes ImplReadIDAT(); } break; case PNGCHUNK_pHYs : { if ( !mbIDAT && mnChunkLen == 9 ) { sal_uInt32 nXPixelPerMeter = ImplReadsal_uInt32(); sal_uInt32 nYPixelPerMeter = ImplReadsal_uInt32(); sal_uInt8 nUnitSpecifier = *maDataIter++; if( (nUnitSpecifier == 1) && nXPixelPerMeter && nXPixelPerMeter ) { mbpHYs = sal_True; // convert into MAP_100TH_MM maPhysSize.Width() = (sal_Int32)( (100000.0 * maOrigSize.Width()) / nXPixelPerMeter ); maPhysSize.Height() = (sal_Int32)( (100000.0 * maOrigSize.Height()) / nYPixelPerMeter ); } } } break; case PNGCHUNK_IEND: mbStatus = mbIDAT; // there is a problem if the image is not complete yet break; } } // release write access of the bitmaps if ( mpAcc ) mpBmp->ReleaseAccess( mpAcc ), mpAcc = NULL; if ( mpMaskAcc ) { if ( mpAlphaMask ) mpAlphaMask->ReleaseAccess( mpMaskAcc ); else if ( mpMaskBmp ) mpMaskBmp->ReleaseAccess( mpMaskAcc ); mpMaskAcc = NULL; } // return the resulting BitmapEx BitmapEx aRet; if( !mbStatus || !mbIDAT ) aRet.Clear(); else { if ( mpAlphaMask ) aRet = BitmapEx( *mpBmp, *mpAlphaMask ); else if ( mpMaskBmp ) aRet = BitmapEx( *mpBmp, *mpMaskBmp ); else aRet = *mpBmp; if ( mbpHYs && maPhysSize.Width() && maPhysSize.Height() ) { aRet.SetPrefMapMode( MAP_100TH_MM ); aRet.SetPrefSize( maPhysSize ); } #if 0 // TODO: make sure nobody depends on the stream being after the IEND chunks // => let them do ReadChunks before ReadRemainingChunks(); #endif } return aRet; } // ------------------------------------------------------------------------ BOOL PNGReaderImpl::ImplReadHeader( const Size& rPreviewSizeHint ) { if( mnChunkLen < 13 ) return FALSE; maOrigSize.Width() = ImplReadsal_uInt32(); maOrigSize.Height() = ImplReadsal_uInt32(); if ( !maOrigSize.Width() || !maOrigSize.Height() ) return FALSE; mnPngDepth = *(maDataIter++); mnColorType = *(maDataIter++); mnCompressionType = *(maDataIter++); if( mnCompressionType != 0 ) // unknown compression type return FALSE; mnFilterType = *(maDataIter++); if( mnFilterType != 0 ) // unknown filter type return FALSE; mnInterlaceType = *(maDataIter++); switch ( mnInterlaceType ) // filter type valid ? { case 0 : // progressive image mnPass = 7; break; case 1 : // Adam7-interlaced image mnPass = 0; break; default: return FALSE; } mbPalette = TRUE; mbIDAT = mbAlphaChannel = mbTransparent = FALSE; mbGrayScale = mbRGBTriple = FALSE; mnTargetDepth = mnPngDepth; sal_uInt64 nScansize64 = ( ( static_cast< sal_uInt64 >( maOrigSize.Width() ) * mnPngDepth ) + 7 ) >> 3; // valid color types are 0,2,3,4 & 6 switch ( mnColorType ) { case 0 : // each pixel is a grayscale { switch ( mnPngDepth ) { case 2 : // 2bit target not available -> use four bits mnTargetDepth = 4; // we have to expand the bitmap mbGrayScale = TRUE; break; case 16 : mnTargetDepth = 8; // we have to reduce the bitmap // fall through case 1 : case 4 : case 8 : mbGrayScale = TRUE; break; default : return FALSE; } } break; case 2 : // each pixel is an RGB triple { mbRGBTriple = TRUE; nScansize64 *= 3; switch ( mnPngDepth ) { case 16 : // we have to reduce the bitmap case 8 : mnTargetDepth = 24; break; default : return FALSE; } } break; case 3 : // each pixel is a palette index { switch ( mnPngDepth ) { case 2 : mnTargetDepth = 4; // we have to expand the bitmap // fall through case 1 : case 4 : case 8 : mbPalette = FALSE; break; default : return FALSE; } } break; case 4 : // each pixel is a grayscale sample followed by an alpha sample { nScansize64 *= 2; mbAlphaChannel = TRUE; switch ( mnPngDepth ) { case 16 : mnTargetDepth = 8; // we have to reduce the bitmap case 8 : mbGrayScale = TRUE; break; default : return FALSE; } } break; case 6 : // each pixel is an RGB triple followed by an alpha sample { mbRGBTriple = TRUE; nScansize64 *= 4; mbAlphaChannel = TRUE; switch (mnPngDepth ) { case 16 : // we have to reduce the bitmap case 8 : mnTargetDepth = 24; break; default : return FALSE; } } break; default : return FALSE; } mnBPP = static_cast< sal_uInt32 >( nScansize64 / maOrigSize.Width() ); if ( !mnBPP ) mnBPP = 1; nScansize64++; // each scanline includes one filterbyte if ( nScansize64 > SAL_MAX_UINT32 ) return FALSE; mnScansize = static_cast< sal_uInt32 >( nScansize64 ); // TODO: switch between both scanlines instead of copying mpInflateInBuf = new (std::nothrow) BYTE[ mnScansize ]; mpScanCurrent = mpInflateInBuf; mpScanPrior = new (std::nothrow) BYTE[ mnScansize ]; if ( !mpInflateInBuf || !mpScanPrior ) return FALSE; // calculate target size from original size and the preview hint if( rPreviewSizeHint.Width() || rPreviewSizeHint.Height() ) { Size aPreviewSize( rPreviewSizeHint.Width(), rPreviewSizeHint.Height() ); maTargetSize = maOrigSize; if( aPreviewSize.Width() == 0 ) { aPreviewSize.setWidth( ( maOrigSize.Width()*aPreviewSize.Height() )/maOrigSize.Height() ); if( aPreviewSize.Width() <= 0 ) aPreviewSize.setWidth( 1 ); } else if( aPreviewSize.Height() == 0 ) { aPreviewSize.setHeight( ( maOrigSize.Height()*aPreviewSize.Width() )/maOrigSize.Width() ); if( aPreviewSize.Height() <= 0 ) aPreviewSize.setHeight( 1 ); } if( aPreviewSize.Width() < maOrigSize.Width() && aPreviewSize.Height() < maOrigSize.Height() ) { OSL_TRACE("preview size %dx%d", aPreviewSize.Width(), aPreviewSize.Height() ); for( int i = 1; i < 5; ++i ) { if( (maTargetSize.Width() >> i) < aPreviewSize.Width() ) break; if( (maTargetSize.Height() >> i) < aPreviewSize.Height() ) break; mnPreviewShift = i; } mnPreviewMask = (1 << mnPreviewShift) - 1; } } maTargetSize.Width() = (maOrigSize.Width() + mnPreviewMask) >> mnPreviewShift; maTargetSize.Height() = (maOrigSize.Height() + mnPreviewMask) >> mnPreviewShift; mpBmp = new Bitmap( maTargetSize, mnTargetDepth ); mpAcc = mpBmp->AcquireWriteAccess(); if( !mpAcc ) return FALSE; mpBmp->SetSourceSizePixel( maOrigSize ); if ( mbAlphaChannel ) { mpAlphaMask = new AlphaMask( maTargetSize ); mpAlphaMask->Erase( 128 ); mpMaskAcc = mpAlphaMask->AcquireWriteAccess(); if( !mpMaskAcc ) return FALSE; } if ( mbGrayScale ) ImplGetGrayPalette( mnPngDepth ); ImplPreparePass(); return TRUE; } // ------------------------------------------------------------------------ void PNGReaderImpl::ImplGetGrayPalette( sal_uInt16 nBitDepth ) { if( nBitDepth > 8 ) nBitDepth = 8; sal_uInt16 nPaletteEntryCount = 1 << nBitDepth; sal_uInt32 nAdd = nBitDepth ? 256 / (nPaletteEntryCount - 1) : 0; // no bitdepth==2 available // but bitdepth==4 with two unused bits is close enough if( nBitDepth == 2 ) nPaletteEntryCount = 16; mpAcc->SetPaletteEntryCount( nPaletteEntryCount ); for ( sal_uInt32 i = 0, nStart = 0; nStart < 256; i++, nStart += nAdd ) mpAcc->SetPaletteColor( (USHORT)i, BitmapColor( mpColorTable[ nStart ], mpColorTable[ nStart ], mpColorTable[ nStart ] ) ); } // ------------------------------------------------------------------------ BOOL PNGReaderImpl::ImplReadPalette() { sal_uInt16 nCount = static_cast( mnChunkLen / 3 ); if ( ( ( mnChunkLen % 3 ) == 0 ) && ( ( 0 < nCount ) && ( nCount <= 256 ) ) && mpAcc ) { mbPalette = TRUE; mpAcc->SetPaletteEntryCount( (USHORT) nCount ); for ( sal_uInt16 i = 0; i < nCount; i++ ) { BYTE nRed = mpColorTable[ *maDataIter++ ]; BYTE nGreen = mpColorTable[ *maDataIter++ ]; BYTE nBlue = mpColorTable[ *maDataIter++ ]; mpAcc->SetPaletteColor( i, Color( nRed, nGreen, nBlue ) ); } } else mbStatus = FALSE; return mbStatus; } // ------------------------------------------------------------------------ BOOL PNGReaderImpl::ImplReadTransparent() { bool bNeedAlpha = false; if ( mpTransTab == NULL ) { switch ( mnColorType ) { case 0 : { if ( mnChunkLen == 2 ) { mpTransTab = new sal_uInt8[ 256 ]; rtl_fillMemory( mpTransTab, 256, 0xff ); // color type 0 and 4 is always greyscale, // so the return value can be used as index sal_uInt8 nIndex = ImplScaleColor(); mpTransTab[ nIndex ] = 0; mbTransparent = true; } } break; case 2 : { if ( mnChunkLen == 6 ) { mnTransRed = ImplScaleColor(); mnTransGreen = ImplScaleColor(); mnTransBlue = ImplScaleColor(); mbTransparent = true; } } break; case 3 : { if ( mnChunkLen <= 256 ) { mpTransTab = new BYTE [ 256 ]; rtl_fillMemory( mpTransTab, 256, 0xff ); rtl_copyMemory( mpTransTab, &(*maDataIter), mnChunkLen ); maDataIter += mnChunkLen; mbTransparent = true; // need alpha transparency if not on/off masking for( int i = 0; i < mnChunkLen; ++i ) bNeedAlpha |= (mpTransTab[i]!=0x00) && (mpTransTab[i]!=0xFF); } } break; } } if( mbTransparent && !mbAlphaChannel && !mpMaskBmp ) { if( bNeedAlpha) { mpAlphaMask = new AlphaMask( maTargetSize ); mpMaskAcc = mpAlphaMask->AcquireWriteAccess(); } else { mpMaskBmp = new Bitmap( maTargetSize, 1 ); mpMaskAcc = mpMaskBmp->AcquireWriteAccess(); } mbTransparent = (mpMaskAcc != NULL); if( !mbTransparent ) return FALSE; mcOpaqueColor = BitmapColor( 0x00 ); mcTranspColor = BitmapColor( 0xFF ); mpMaskAcc->Erase( 0x00 ); } return TRUE; } // ------------------------------------------------------------------------ void PNGReaderImpl::ImplGetGamma() { if( mnChunkLen < 4 ) return; sal_uInt32 nGammaValue = ImplReadsal_uInt32(); double fGamma = ( ( VIEWING_GAMMA / DISPLAY_GAMMA ) * ( (double)nGammaValue / 100000 ) ); double fInvGamma = ( fGamma <= 0.0 || fGamma > 10.0 ) ? 1.0 : ( 1.0 / fGamma ); if ( fInvGamma != 1.0 ) { mbGamma = TRUE; if ( mpColorTable == mpDefaultColorTable ) mpColorTable = new sal_uInt8[ 256 ]; for ( sal_Int32 i = 0; i < 256; i++ ) mpColorTable[ i ] = (sal_uInt8)(pow((double)i/255.0, fInvGamma) * 255.0 + 0.5); if ( mbGrayScale ) ImplGetGrayPalette( mnPngDepth ); } } // ------------------------------------------------------------------------ void PNGReaderImpl::ImplGetBackground() { switch ( mnColorType ) { case 3 : { if ( mnChunkLen == 1 ) { UINT16 nCol = *maDataIter++; if ( nCol < mpAcc->GetPaletteEntryCount() ) { mpAcc->Erase( mpAcc->GetPaletteColor( (BYTE)nCol ) ); break; } } } break; case 0 : case 4 : { if ( mnChunkLen == 2 ) { // the color type 0 and 4 is always greyscale, // so the return value can be used as index sal_uInt8 nIndex = ImplScaleColor(); mpAcc->Erase( mpAcc->GetPaletteColor( nIndex ) ); } } break; case 2 : case 6 : { if ( mnChunkLen == 6 ) { sal_uInt8 nRed = ImplScaleColor(); sal_uInt8 nGreen = ImplScaleColor(); sal_uInt8 nBlue = ImplScaleColor(); mpAcc->Erase( Color( nRed, nGreen, nBlue ) ); } } break; } } // ------------------------------------------------------------------------ // for color type 0 and 4 (greyscale) the return value is always index to the color // 2 and 6 (RGB) the return value is always the 8 bit color component sal_uInt8 PNGReaderImpl::ImplScaleColor() { sal_uInt32 nMask = ( ( 1 << mnPngDepth ) - 1 ); sal_uInt16 nCol = ( *maDataIter++ << 8 ); nCol += *maDataIter++ & (sal_uInt16)nMask; if ( mnPngDepth > 8 ) // convert 16bit graphics to 8 nCol >>= 8; return (sal_uInt8) nCol; } // ------------------------------------------------------------------------ // ImplReadIDAT reads as much image data as needed void PNGReaderImpl::ImplReadIDAT() { if( mnChunkLen > 0 ) { if ( mbzCodecInUse == FALSE ) { mbzCodecInUse = TRUE; mpZCodec->BeginCompression( ZCODEC_PNG_DEFAULT ); } mpZCodec->SetBreak( mnChunkLen ); SvMemoryStream aIStrm( &(*maDataIter), mnChunkLen, STREAM_READ ); while ( ( mpZCodec->GetBreak() ) ) { // get bytes needed to fill the current scanline sal_Int32 nToRead = mnScansize - (mpScanCurrent - mpInflateInBuf); sal_Int32 nRead = mpZCodec->ReadAsynchron( aIStrm, mpScanCurrent, nToRead ); if ( nRead < 0 ) { mbStatus = FALSE; break; } if ( nRead < nToRead ) { mpScanCurrent += nRead; // more ZStream data in the next IDAT chunk break; } else // this scanline is Finished { mpScanCurrent = mpInflateInBuf; ImplApplyFilter(); ImplDrawScanline( mnXStart, mnXAdd ); mnYpos += mnYAdd; } if ( mnYpos >= (sal_uInt32)maOrigSize.Height() ) { if( (mnPass < 7) && mnInterlaceType ) if( ImplPreparePass() ) continue; mbIDAT = true; break; } } } if( mbIDAT ) { mpZCodec->EndCompression(); mbzCodecInUse = FALSE; } } // --------------------------------------------------------------------------------------------------- bool PNGReaderImpl::ImplPreparePass() { struct InterlaceParams{ int mnXStart, mnYStart, mnXAdd, mnYAdd; }; static const InterlaceParams aInterlaceParams[8] = { // non-interlaced { 0, 0, 1, 1 }, // Adam7-interlaced { 0, 0, 8, 8 }, // pass 1 { 4, 0, 8, 8 }, // pass 2 { 0, 4, 4, 8 }, // pass 3 { 2, 0, 4, 4 }, // pass 4 { 0, 2, 2, 4 }, // pass 5 { 1, 0, 2, 2 }, // pass 6 { 0, 1, 1, 2 } // pass 7 }; const InterlaceParams* pParam = &aInterlaceParams[ 0 ]; if( mnInterlaceType ) { while( ++mnPass <= 7 ) { pParam = &aInterlaceParams[ mnPass ]; // skip this pass if the original image is too small for it if( (pParam->mnXStart < maOrigSize.Width()) && (pParam->mnYStart < maOrigSize.Height()) ) break; } if( mnPass > 7 ) return false; // skip the last passes if possible (for scaled down target images) if( mnPreviewMask & (pParam->mnXStart | pParam->mnYStart) ) return false; } mnYpos = pParam->mnYStart; mnXStart = pParam->mnXStart; mnXAdd = pParam->mnXAdd; mnYAdd = pParam->mnYAdd; // in Interlace mode the size of scanline is not constant // so first we calculate the number of entrys long nScanWidth = (maOrigSize.Width() - mnXStart + mnXAdd - 1) / mnXAdd; mnScansize = nScanWidth; if( mbRGBTriple ) mnScansize = 3 * nScanWidth; if( mbAlphaChannel ) mnScansize += nScanWidth; // convert to width in bytes mnScansize = ( mnScansize*mnPngDepth + 7 ) >> 3; ++mnScansize; // scan size also needs room for the filtertype byte rtl_zeroMemory( mpScanPrior, mnScansize ); return true; } // ---------------------------------------------------------------------------- // ImplApplyFilter writes the complete Scanline (nY) // in interlace mode the parameter nXStart and nXAdd are non-zero void PNGReaderImpl::ImplApplyFilter() { OSL_ASSERT( mnScansize >= mnBPP + 1 ); const BYTE* const pScanEnd = mpInflateInBuf + mnScansize; BYTE nFilterType = *mpInflateInBuf; // the filter type may change each scanline switch ( nFilterType ) { default: // unknown Scanline Filter Type case 0: // Filter Type "None" // we let the pixels pass and display the data unfiltered break; case 1: // Scanline Filter Type "Sub" { BYTE* p1 = mpInflateInBuf + 1; const BYTE* p2 = p1; p1 += mnBPP; // use left pixels do *p1 = static_cast( *p1 + *(p2++) ); while( ++p1 < pScanEnd ); } break; case 2: // Scanline Filter Type "Up" { BYTE* p1 = mpInflateInBuf + 1; const BYTE* p2 = mpScanPrior + 1; // use pixels from prior line while( p1 < pScanEnd ) { *p1 = static_cast( *p1 + *(p2++) ); ++p1; } } break; case 3: // Scanline Filter Type "Average" { BYTE* p1 = mpInflateInBuf + 1; const BYTE* p2 = mpScanPrior + 1; const BYTE* p3 = p1; // use one pixel from prior line for( int n = mnBPP; --n >= 0; ++p1, ++p2) *p1 = static_cast( *p1 + (*p2 >> 1) ); // predict by averaging the left and prior line pixels while( p1 < pScanEnd ) { *p1 = static_cast( *p1 + ((*(p2++) + *(p3++)) >> 1) ); ++p1; } } break; case 4: // Scanline Filter Type "PaethPredictor" { BYTE* p1 = mpInflateInBuf + 1; const BYTE* p2 = mpScanPrior + 1; const BYTE* p3 = p1; const BYTE* p4 = p2; // use one pixel from prior line for( int n = mnBPP; --n >= 0; ++p1) *p1 = static_cast( *p1 + *(p2++) ); // predict by using the left and the prior line pixels while( p1 < pScanEnd ) { int na = *(p2++); int nb = *(p3++); int nc = *(p4++); int npa = nb - (int)nc; int npb = na - (int)nc; int npc = npa + npb; if( npa < 0 ) npa =-npa; if( npb < 0 ) npb =-npb; if( npc < 0 ) npc =-npc; if( npa > npb ) na = nb, npa = npb; if( npa > npc ) na = nc; *p1 = static_cast( *p1 + na ); ++p1; } } break; } rtl_copyMemory( mpScanPrior, mpInflateInBuf, mnScansize ); } // --------------------------------------------------------------------------------------------------- // ImplDrawScanlines draws the complete Scanline (nY) into the target bitmap // In interlace mode the parameter nXStart and nXAdd append to the currently used pass void PNGReaderImpl::ImplDrawScanline( sal_uInt32 nXStart, sal_uInt32 nXAdd ) { // optimization for downscaling if( mnYpos & mnPreviewMask ) return; if( nXStart & mnPreviewMask ) return; // convert nY to pixel units in the target image // => TODO; also do this for nX here instead of in the ImplSet*Pixel() methods const sal_uInt32 nY = mnYpos >> mnPreviewShift; const BYTE* pTmp = mpInflateInBuf + 1; if ( mpAcc->HasPalette() ) // alphachannel is not allowed by pictures including palette entries { switch ( mpAcc->GetBitCount() ) { case 1 : { if ( mbTransparent ) { for ( sal_Int32 nX = nXStart, nShift = 0; nX < maOrigSize.Width(); nX += nXAdd ) { BYTE nCol; nShift = (nShift - 1) & 7; if ( nShift == 0 ) nCol = *(pTmp++); else nCol = static_cast( *pTmp >> nShift ); nCol &= 1; ImplSetAlphaPixel( nY, nX, nCol, mpTransTab[ nCol ] ); } } else { // BMP_FORMAT_1BIT_MSB_PAL for ( sal_Int32 nX = nXStart, nShift = 0; nX < maOrigSize.Width(); nX += nXAdd ) { nShift = (nShift - 1) & 7; BYTE nCol; if ( nShift == 0 ) nCol = *(pTmp++); else nCol = static_cast( *pTmp >> nShift ); nCol &= 1; ImplSetPixel( nY, nX, nCol ); } } } break; case 4 : { if ( mbTransparent ) { if ( mnPngDepth == 4 ) // check if source has a two bit pixel format { for ( sal_Int32 nX = nXStart, nXIndex = 0; nX < maOrigSize.Width(); nX += nXAdd, ++nXIndex ) { if( nXIndex & 1 ) { ImplSetAlphaPixel( nY, nX, *pTmp & 0x0f, mpTransTab[ *pTmp & 0x0f ] ); pTmp++; } else { ImplSetAlphaPixel( nY, nX, ( *pTmp >> 4 ) & 0x0f, mpTransTab[ *pTmp >> 4 ] ); } } } else // if ( mnPngDepth == 2 ) { for ( sal_Int32 nX = nXStart, nXIndex = 0; nX < maOrigSize.Width(); nX += nXAdd, nXIndex++ ) { BYTE nCol; switch( nXIndex & 3 ) { case 0 : nCol = *pTmp >> 6; break; case 1 : nCol = ( *pTmp >> 4 ) & 0x03 ; break; case 2 : nCol = ( *pTmp >> 2 ) & 0x03; break; case 3 : nCol = ( *pTmp++ ) & 0x03; break; default: // get rid of nCol uninitialized warning nCol = 0; break; } ImplSetAlphaPixel( nY, nX, nCol, mpTransTab[ nCol ] ); } } } else { if ( mnPngDepth == 4 ) // maybe the source is a two bitmap graphic { // BMP_FORMAT_4BIT_LSN_PAL for ( sal_Int32 nX = nXStart, nXIndex = 0; nX < maOrigSize.Width(); nX += nXAdd, nXIndex++ ) { if( nXIndex & 1 ) ImplSetPixel( nY, nX, *pTmp++ & 0x0f ); else ImplSetPixel( nY, nX, ( *pTmp >> 4 ) & 0x0f ); } } else // if ( mnPngDepth == 2 ) { for ( sal_Int32 nX = nXStart, nXIndex = 0; nX < maOrigSize.Width(); nX += nXAdd, nXIndex++ ) { switch( nXIndex & 3 ) { case 0 : ImplSetPixel( nY, nX, *pTmp >> 6 ); break; case 1 : ImplSetPixel( nY, nX, ( *pTmp >> 4 ) & 0x03 ); break; case 2 : ImplSetPixel( nY, nX, ( *pTmp >> 2 ) & 0x03 ); break; case 3 : ImplSetPixel( nY, nX, *pTmp++ & 0x03 ); break; } } } } } break; case 8 : { if ( mbAlphaChannel ) { if ( mnPngDepth == 8 ) // maybe the source is a 16 bit grayscale { for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 2 ) ImplSetAlphaPixel( nY, nX, pTmp[ 0 ], pTmp[ 1 ] ); } else { for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 4 ) ImplSetAlphaPixel( nY, nX, pTmp[ 0 ], pTmp[ 2 ] ); } } else if ( mbTransparent ) { if ( mnPngDepth == 8 ) // maybe the source is a 16 bit grayscale { for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp++ ) ImplSetAlphaPixel( nY, nX, *pTmp, mpTransTab[ *pTmp ] ); } else { for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 2 ) ImplSetAlphaPixel( nY, nX, *pTmp, mpTransTab[ *pTmp ] ); } } else // neither alpha nor transparency { if ( mnPngDepth == 8 ) // maybe the source is a 16 bit grayscale { if( nXAdd == 1 && mnPreviewShift == 0 ) // copy raw line data if possible { int nLineBytes = maOrigSize.Width(); mpAcc->CopyScanline( nY, pTmp, BMP_FORMAT_8BIT_PAL, nLineBytes ); pTmp += nLineBytes; } else { for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd ) ImplSetPixel( nY, nX, *pTmp++ ); } } else { for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 2 ) ImplSetPixel( nY, nX, *pTmp ); } } } break; default : mbStatus = FALSE; break; } } else // no palette => truecolor { if( mbAlphaChannel ) // has RGB + alpha { // BMP_FORMAT_32BIT_TC_RGBA if ( mnPngDepth == 8 ) // maybe the source has 16 bit per sample { if ( mpColorTable != mpDefaultColorTable ) { for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 4 ) ImplSetAlphaPixel( nY, nX, BitmapColor( mpColorTable[ pTmp[ 0 ] ], mpColorTable[ pTmp[ 1 ] ], mpColorTable[ pTmp[ 2 ] ] ), pTmp[ 3 ] ); } else { // if ( nXAdd == 1 && mnPreviewShift == 0 ) // copy raw line data if possible // { // int nLineBytes = 4 * maOrigSize.Width(); // mpAcc->CopyScanline( nY, pTmp, BMP_FORMAT_32BIT_TC_RGBA, nLineBytes ); // pTmp += nLineBytes; // } // else { for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 4 ) ImplSetAlphaPixel( nY, nX, BitmapColor( pTmp[0], pTmp[1], pTmp[2] ), pTmp[3] ); } } } else { // BMP_FORMAT_64BIT_TC_RGBA for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 8 ) ImplSetAlphaPixel( nY, nX, BitmapColor( mpColorTable[ pTmp[ 0 ] ], mpColorTable[ pTmp[ 2 ] ], mpColorTable[ pTmp[ 4 ] ] ), pTmp[6] ); } } else if( mbTransparent ) // has RGB + transparency { // BMP_FORMAT_24BIT_TC_RGB if ( mnPngDepth == 8 ) // maybe the source has 16 bit per sample { for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 3 ) { sal_uInt8 nRed = pTmp[ 0 ]; sal_uInt8 nGreen = pTmp[ 1 ]; sal_uInt8 nBlue = pTmp[ 2 ]; sal_Bool bTransparent = ( ( nRed == mnTransRed ) && ( nGreen == mnTransGreen ) && ( nBlue == mnTransBlue ) ); ImplSetTranspPixel( nY, nX, BitmapColor( mpColorTable[ nRed ], mpColorTable[ nGreen ], mpColorTable[ nBlue ] ), bTransparent ); } } else { // BMP_FORMAT_48BIT_TC_RGB for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 6 ) { sal_uInt8 nRed = pTmp[ 0 ]; sal_uInt8 nGreen = pTmp[ 2 ]; sal_uInt8 nBlue = pTmp[ 4 ]; sal_Bool bTransparent = ( ( nRed == mnTransRed ) && ( nGreen == mnTransGreen ) && ( nBlue == mnTransBlue ) ); ImplSetTranspPixel( nY, nX, BitmapColor( mpColorTable[ nRed ], mpColorTable[ nGreen ], mpColorTable[ nBlue ] ), bTransparent ); } } } else // has RGB but neither alpha nor transparency { // BMP_FORMAT_24BIT_TC_RGB if ( mnPngDepth == 8 ) // maybe the source has 16 bit per sample { if ( mpColorTable != mpDefaultColorTable ) { for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 3 ) ImplSetPixel( nY, nX, BitmapColor( mpColorTable[ pTmp[ 0 ] ], mpColorTable[ pTmp[ 1 ] ], mpColorTable[ pTmp[ 2 ] ] ) ); } else { if( nXAdd == 1 && mnPreviewShift == 0 ) // copy raw line data if possible { int nLineBytes = maOrigSize.Width() * 3; mpAcc->CopyScanline( nY, pTmp, BMP_FORMAT_24BIT_TC_RGB, nLineBytes ); pTmp += nLineBytes; } else { for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 3 ) ImplSetPixel( nY, nX, BitmapColor( pTmp[0], pTmp[1], pTmp[2] ) ); } } } else { // BMP_FORMAT_48BIT_TC_RGB for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 6 ) ImplSetPixel( nY, nX, BitmapColor( mpColorTable[ pTmp[ 0 ] ], mpColorTable[ pTmp[ 2 ] ], mpColorTable[ pTmp[ 4 ] ] ) ); } } } } // ------------------------------------------------------------------------ void PNGReaderImpl::ImplSetPixel( sal_uInt32 nY, sal_uInt32 nX, const BitmapColor& rBitmapColor ) { // TODO: get preview mode checks out of inner loop if( nX & mnPreviewMask ) return; nX >>= mnPreviewShift; mpAcc->SetPixel( nY, nX, rBitmapColor ); } // ------------------------------------------------------------------------ void PNGReaderImpl::ImplSetPixel( sal_uInt32 nY, sal_uInt32 nX, BYTE nPalIndex ) { // TODO: get preview mode checks out of inner loop if( nX & mnPreviewMask ) return; nX >>= mnPreviewShift; mpAcc->SetPixel( nY, nX, nPalIndex ); } // ------------------------------------------------------------------------ void PNGReaderImpl::ImplSetTranspPixel( sal_uInt32 nY, sal_uInt32 nX, const BitmapColor& rBitmapColor, BOOL bTrans ) { // TODO: get preview mode checks out of inner loop if( nX & mnPreviewMask ) return; nX >>= mnPreviewShift; mpAcc->SetPixel( nY, nX, rBitmapColor ); if ( bTrans ) mpMaskAcc->SetPixel( nY, nX, mcTranspColor ); else mpMaskAcc->SetPixel( nY, nX, mcOpaqueColor ); } // ------------------------------------------------------------------------ void PNGReaderImpl::ImplSetAlphaPixel( sal_uInt32 nY, sal_uInt32 nX, BYTE nPalIndex, BYTE nAlpha ) { // TODO: get preview mode checks out of inner loop if( nX & mnPreviewMask ) return; nX >>= mnPreviewShift; mpAcc->SetPixel( nY, nX, nPalIndex ); mpMaskAcc->SetPixel( nY, nX, ~nAlpha ); } // ------------------------------------------------------------------------ void PNGReaderImpl::ImplSetAlphaPixel( sal_uInt32 nY, sal_uInt32 nX, const BitmapColor& rBitmapColor, BYTE nAlpha ) { // TODO: get preview mode checks out of inner loop if( nX & mnPreviewMask ) return; nX >>= mnPreviewShift; mpAcc->SetPixel( nY, nX, rBitmapColor ); mpMaskAcc->SetPixel( nY, nX, ~nAlpha ); } // ------------------------------------------------------------------------ sal_uInt32 PNGReaderImpl::ImplReadsal_uInt32() { sal_uInt32 nRet; nRet = *maDataIter++; nRet <<= 8; nRet |= *maDataIter++; nRet <<= 8; nRet |= *maDataIter++; nRet <<= 8; nRet |= *maDataIter++; return nRet; } // ------------------------------------------------------------------------ // ------------- // - PNGReader - // ------------- PNGReader::PNGReader( SvStream& rIStm ) : mpImpl( new ::vcl::PNGReaderImpl( rIStm ) ) { } // ------------------------------------------------------------------------ PNGReader::~PNGReader() { delete mpImpl; } // ------------------------------------------------------------------------ BitmapEx PNGReader::Read( const Size& i_rPreviewSizeHint ) { return mpImpl->GetBitmapEx( i_rPreviewSizeHint ); } // ------------------------------------------------------------------------ const std::vector< vcl::PNGReader::ChunkData >& PNGReader::GetChunks() const { return mpImpl->GetAllChunks(); } // ------------------------------------------------------------------------ void PNGReader::SetIgnoreGammaChunk( sal_Bool b ) { mpImpl->SetIgnoreGammaChunk( b ); } } // namespace vcl