/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace ::com::sun::star; namespace vcl { namespace unotools { uno::Reference< rendering::XBitmap > xBitmapFromBitmapEx(const ::BitmapEx& inputBitmap ) { SAL_INFO( "vcl.helper", "vcl::unotools::xBitmapFromBitmapEx()" ); return new vcl::unotools::VclCanvasBitmap( inputBitmap ); } namespace { bool equalsLayout( const rendering::IntegerBitmapLayout& rLHS, const rendering::IntegerBitmapLayout& rRHS ) { return rLHS.ScanLineBytes == rRHS.ScanLineBytes && rLHS.ScanLineStride == rRHS.ScanLineStride && rLHS.PlaneStride == rRHS.PlaneStride && rLHS.ColorSpace == rRHS.ColorSpace && rLHS.Palette == rRHS.Palette && rLHS.IsMsbFirst == rRHS.IsMsbFirst; } bool readBmp( sal_Int32 nWidth, sal_Int32 nHeight, const rendering::IntegerBitmapLayout& rLayout, const uno::Reference< rendering::XIntegerReadOnlyBitmap >& xInputBitmap, BitmapScopedWriteAccess& rWriteAcc, BitmapScopedWriteAccess& rAlphaAcc ) { rendering::IntegerBitmapLayout aCurrLayout; geometry::IntegerRectangle2D aRect; uno::Sequence aPixelData; uno::Sequence aRGBColors; uno::Sequence aARGBColors; for( aRect.Y1=0; aRect.Y1getData(aCurrLayout,aRect); } catch( rendering::VolatileContentDestroyedException& ) { // re-read bmp from the start return false; } if( !equalsLayout(aCurrLayout, rLayout) ) return false; // re-read bmp from the start Scanline pScanline = rWriteAcc->GetScanline( aRect.Y1 ); if( rAlphaAcc.get() ) { Scanline pScanlineAlpha = rAlphaAcc->GetScanline( aRect.Y1 ); // read ARGB color aARGBColors = rLayout.ColorSpace->convertIntegerToARGB(aPixelData); if( rWriteAcc->HasPalette() ) { for( sal_Int32 x=0; xSetPixelOnData( pScanline, x, BitmapColor(static_cast(rWriteAcc->GetBestPaletteIndex( BitmapColor( toByteColor(rColor.Red), toByteColor(rColor.Green), toByteColor(rColor.Blue))))) ); rAlphaAcc->SetPixelOnData( pScanlineAlpha, x, BitmapColor( 255 - toByteColor(rColor.Alpha) )); } } else { for( sal_Int32 x=0; xSetPixelOnData( pScanline, x, BitmapColor( toByteColor(rColor.Red), toByteColor(rColor.Green), toByteColor(rColor.Blue) )); rAlphaAcc->SetPixelOnData( pScanlineAlpha, x, BitmapColor( 255 - toByteColor(rColor.Alpha) )); } } } else { // read RGB color aRGBColors = rLayout.ColorSpace->convertIntegerToRGB(aPixelData); if( rWriteAcc->HasPalette() ) { for( sal_Int32 x=0; xSetPixelOnData( pScanline, x, BitmapColor(static_cast(rWriteAcc->GetBestPaletteIndex( BitmapColor( toByteColor(rColor.Red), toByteColor(rColor.Green), toByteColor(rColor.Blue))))) ); } } else { for( sal_Int32 x=0; xSetPixelOnData( pScanline, x, BitmapColor( toByteColor(rColor.Red), toByteColor(rColor.Green), toByteColor(rColor.Blue) )); } } } } return true; } } ::BitmapEx bitmapExFromXBitmap( const uno::Reference< rendering::XIntegerReadOnlyBitmap >& xInputBitmap ) { SAL_INFO( "vcl.helper", "vcl::unotools::bitmapExFromXBitmap()" ); if( !xInputBitmap.is() ) return ::BitmapEx(); // tunnel directly for known implementation VclCanvasBitmap* pImplBitmap = dynamic_cast(xInputBitmap.get()); if( pImplBitmap ) return pImplBitmap->getBitmapEx(); // retrieve data via UNO interface // volatile bitmaps are a bit more complicated to read // from... // loop a few times, until successfully read (for XVolatileBitmap) for( int i=0; i<10; ++i ) { sal_Int32 nDepth=0; sal_Int32 nAlphaDepth=0; const rendering::IntegerBitmapLayout aLayout( xInputBitmap->getMemoryLayout()); OSL_ENSURE(aLayout.ColorSpace.is(), "Cannot convert image without color space!"); if( !aLayout.ColorSpace.is() ) return ::BitmapEx(); nDepth = aLayout.ColorSpace->getBitsPerPixel(); if( xInputBitmap->hasAlpha() ) { // determine alpha channel depth const uno::Sequence aTags( aLayout.ColorSpace->getComponentTags() ); const sal_Int8* pStart(aTags.getConstArray()); const std::size_t nLen(aTags.getLength()); const sal_Int8* pEnd(pStart+nLen); const std::ptrdiff_t nAlphaIndex = std::find(pStart,pEnd, rendering::ColorComponentTag::ALPHA) - pStart; if( nAlphaIndex < sal::static_int_cast(nLen) ) { nAlphaDepth = aLayout.ColorSpace->getComponentBitCounts()[nAlphaIndex] > 1 ? 8 : 1; nDepth -= nAlphaDepth; } } BitmapPalette aPalette; if( aLayout.Palette.is() ) { uno::Reference< rendering::XColorSpace > xPaletteColorSpace( aLayout.Palette->getColorSpace()); ENSURE_OR_THROW(xPaletteColorSpace.is(), "Palette without color space"); const sal_Int32 nEntryCount( aLayout.Palette->getNumberOfEntries() ); if( nEntryCount <= 256 ) { if( nEntryCount <= 2 ) nDepth = 1; else nDepth = 8; const sal_uInt16 nPaletteEntries( sal::static_int_cast( std::min(sal_Int32(255), nEntryCount))); // copy palette entries aPalette.SetEntryCount(nPaletteEntries); uno::Reference xPalette( aLayout.Palette ); uno::Reference xPalColorSpace( xPalette->getColorSpace() ); uno::Sequence aPaletteEntry; for( sal_uInt16 j=0; jgetIndex(aPaletteEntry,j) && nAlphaDepth == 0 ) { nAlphaDepth = 1; } uno::Sequence aColors=xPalColorSpace->convertToRGB(aPaletteEntry); ENSURE_OR_THROW(aColors.getLength() == 1, "Palette returned more or less than one entry"); const rendering::RGBColor& rColor=aColors[0]; aPalette[j] = BitmapColor(toByteColor(rColor.Red), toByteColor(rColor.Green), toByteColor(rColor.Blue)); } } } const ::Size aPixelSize( sizeFromIntegerSize2D(xInputBitmap->getSize())); // normalize bitcount nDepth = ( nDepth <= 1 ) ? 1 : ( nDepth <= 4 ) ? 4 : ( nDepth <= 8 ) ? 8 : 24; ::Bitmap aBitmap( aPixelSize, sal::static_int_cast(nDepth), aLayout.Palette.is() ? &aPalette : nullptr ); ::Bitmap aAlpha; if( nAlphaDepth ) aAlpha = ::Bitmap( aPixelSize, sal::static_int_cast(nAlphaDepth), &::Bitmap::GetGreyPalette( sal::static_int_cast(1 << nAlphaDepth)) ); { // limit scoped access BitmapScopedWriteAccess pWriteAccess( aBitmap ); BitmapScopedWriteAccess pAlphaWriteAccess( nAlphaDepth ? aAlpha.AcquireWriteAccess() : nullptr, aAlpha ); ENSURE_OR_THROW(pWriteAccess.get() != nullptr, "Cannot get write access to bitmap"); const sal_Int32 nWidth(aPixelSize.Width()); const sal_Int32 nHeight(aPixelSize.Height()); if( !readBmp(nWidth,nHeight,aLayout,xInputBitmap, pWriteAccess,pAlphaWriteAccess) ) continue; } // limit scoped access if( nAlphaDepth ) return ::BitmapEx( aBitmap, AlphaMask( aAlpha ) ); else return ::BitmapEx( aBitmap ); } // failed to read data 10 times - bail out return ::BitmapEx(); } geometry::RealSize2D size2DFromSize( const Size& rSize ) { return geometry::RealSize2D( rSize.Width(), rSize.Height() ); } Size sizeFromRealSize2D( const geometry::RealSize2D& rSize ) { return Size( static_cast(rSize.Width + .5), static_cast(rSize.Height + .5) ); } ::Size sizeFromB2DSize( const basegfx::B2DVector& rVec ) { return ::Size( FRound( rVec.getX() ), FRound( rVec.getY() ) ); } ::Point pointFromB2DPoint( const basegfx::B2DPoint& rPoint ) { return pointFromB2IPoint(basegfx::fround(rPoint)); } ::tools::Rectangle rectangleFromB2DRectangle( const basegfx::B2DRange& rRect ) { return rectangleFromB2IRectangle(basegfx::fround(rRect)); } Point pointFromB2IPoint( const basegfx::B2IPoint& rPoint ) { return ::Point( rPoint.getX(), rPoint.getY() ); } basegfx::B2IPoint b2IPointFromPoint(Point const& rPoint) { return basegfx::B2IPoint(rPoint.X(), rPoint.Y()); } tools::Rectangle rectangleFromB2IRectangle( const basegfx::B2IRange& rRect ) { return ::tools::Rectangle( rRect.getMinX(), rRect.getMinY(), rRect.getMaxX(), rRect.getMaxY() ); } basegfx::B2IRectangle b2IRectangleFromRectangle(tools::Rectangle const& rRect) { // although B2IRange internally has separate height/width emptiness, it doesn't // expose any API to let us set them separately, so just do the best we can. if (rRect.IsWidthEmpty() && rRect.IsHeightEmpty()) return basegfx::B2IRange( basegfx::B2ITuple( rRect.Left(), rRect.Top() ) ); return basegfx::B2IRange( rRect.Left(), rRect.Top(), rRect.IsWidthEmpty() ? rRect.Left() : rRect.Right(), rRect.IsHeightEmpty() ? rRect.Top() : rRect.Bottom() ); } basegfx::B2DVector b2DSizeFromSize( const ::Size& rSize ) { return basegfx::B2DVector( rSize.Width(), rSize.Height() ); } basegfx::B2DPoint b2DPointFromPoint( const ::Point& rPoint ) { return basegfx::B2DPoint( rPoint.X(), rPoint.Y() ); } basegfx::B2DRange b2DRectangleFromRectangle( const ::tools::Rectangle& rRect ) { // although B2DRange internally has separate height/width emptiness, it doesn't // expose any API to let us set them separately, so just do the best we can. if (rRect.IsWidthEmpty() && rRect.IsHeightEmpty()) return basegfx::B2DRange( basegfx::B2DTuple( rRect.Left(), rRect.Top() ) ); return basegfx::B2DRectangle( rRect.Left(), rRect.Top(), rRect.IsWidthEmpty() ? rRect.Left() : rRect.Right(), rRect.IsHeightEmpty() ? rRect.Top() : rRect.Bottom() ); } geometry::IntegerSize2D integerSize2DFromSize( const Size& rSize ) { return geometry::IntegerSize2D( rSize.Width(), rSize.Height() ); } Size sizeFromIntegerSize2D( const geometry::IntegerSize2D& rSize ) { return Size( rSize.Width, rSize.Height ); } Point pointFromIntegerPoint2D( const geometry::IntegerPoint2D& rPoint ) { return Point( rPoint.X, rPoint.Y ); } tools::Rectangle rectangleFromIntegerRectangle2D( const geometry::IntegerRectangle2D& rRectangle ) { return tools::Rectangle( rRectangle.X1, rRectangle.Y1, rRectangle.X2, rRectangle.Y2 ); } namespace { class StandardColorSpace : public cppu::WeakImplHelper< css::rendering::XColorSpace > { private: uno::Sequence< sal_Int8 > m_aComponentTags; virtual ::sal_Int8 SAL_CALL getType( ) override { return rendering::ColorSpaceType::RGB; } virtual uno::Sequence< ::sal_Int8 > SAL_CALL getComponentTags( ) override { return m_aComponentTags; } virtual ::sal_Int8 SAL_CALL getRenderingIntent( ) override { return rendering::RenderingIntent::PERCEPTUAL; } virtual uno::Sequence< beans::PropertyValue > SAL_CALL getProperties( ) override { return uno::Sequence< beans::PropertyValue >(); } virtual uno::Sequence< double > SAL_CALL convertColorSpace( const uno::Sequence< double >& deviceColor, const uno::Reference< rendering::XColorSpace >& targetColorSpace ) override { // TODO(P3): if we know anything about target // colorspace, this can be greatly sped up uno::Sequence aIntermediate( convertToARGB(deviceColor)); return targetColorSpace->convertFromARGB(aIntermediate); } virtual uno::Sequence< rendering::RGBColor > SAL_CALL convertToRGB( const uno::Sequence< double >& deviceColor ) override { const double* pIn( deviceColor.getConstArray() ); const std::size_t nLen( deviceColor.getLength() ); ENSURE_ARG_OR_THROW2(nLen%4==0, "number of channels no multiple of 4", static_cast(this), 0); uno::Sequence< rendering::RGBColor > aRes(nLen/4); rendering::RGBColor* pOut( aRes.getArray() ); for( std::size_t i=0; i SAL_CALL convertToARGB( const uno::Sequence< double >& deviceColor ) override { const double* pIn( deviceColor.getConstArray() ); const std::size_t nLen( deviceColor.getLength() ); ENSURE_ARG_OR_THROW2(nLen%4==0, "number of channels no multiple of 4", static_cast(this), 0); uno::Sequence< rendering::ARGBColor > aRes(nLen/4); rendering::ARGBColor* pOut( aRes.getArray() ); for( std::size_t i=0; i SAL_CALL convertToPARGB( const uno::Sequence< double >& deviceColor ) override { const double* pIn( deviceColor.getConstArray() ); const std::size_t nLen( deviceColor.getLength() ); ENSURE_ARG_OR_THROW2(nLen%4==0, "number of channels no multiple of 4", static_cast(this), 0); uno::Sequence< rendering::ARGBColor > aRes(nLen/4); rendering::ARGBColor* pOut( aRes.getArray() ); for( std::size_t i=0; i SAL_CALL convertFromRGB( const uno::Sequence< rendering::RGBColor >& rgbColor ) override { const std::size_t nLen( rgbColor.getLength() ); uno::Sequence< double > aRes(nLen*4); double* pColors=aRes.getArray(); for( const auto& rIn : rgbColor ) { *pColors++ = rIn.Red; *pColors++ = rIn.Green; *pColors++ = rIn.Blue; *pColors++ = 1.0; } return aRes; } virtual uno::Sequence< double > SAL_CALL convertFromARGB( const uno::Sequence< rendering::ARGBColor >& rgbColor ) override { const std::size_t nLen( rgbColor.getLength() ); uno::Sequence< double > aRes(nLen*4); double* pColors=aRes.getArray(); for( const auto& rIn : rgbColor ) { *pColors++ = rIn.Red; *pColors++ = rIn.Green; *pColors++ = rIn.Blue; *pColors++ = rIn.Alpha; } return aRes; } virtual uno::Sequence< double > SAL_CALL convertFromPARGB( const uno::Sequence< rendering::ARGBColor >& rgbColor ) override { const std::size_t nLen( rgbColor.getLength() ); uno::Sequence< double > aRes(nLen*4); double* pColors=aRes.getArray(); for( const auto& rIn : rgbColor ) { *pColors++ = rIn.Red/rIn.Alpha; *pColors++ = rIn.Green/rIn.Alpha; *pColors++ = rIn.Blue/rIn.Alpha; *pColors++ = rIn.Alpha; } return aRes; } public: StandardColorSpace() : m_aComponentTags(4) { sal_Int8* pTags = m_aComponentTags.getArray(); pTags[0] = rendering::ColorComponentTag::RGB_RED; pTags[1] = rendering::ColorComponentTag::RGB_GREEN; pTags[2] = rendering::ColorComponentTag::RGB_BLUE; pTags[3] = rendering::ColorComponentTag::ALPHA; } }; } uno::Reference createStandardColorSpace() { return new StandardColorSpace(); } uno::Sequence< double > colorToStdColorSpaceSequence( const Color& rColor ) { uno::Sequence< double > aRet(4); double* pRet = aRet.getArray(); pRet[0] = toDoubleColor(rColor.GetRed()); pRet[1] = toDoubleColor(rColor.GetGreen()); pRet[2] = toDoubleColor(rColor.GetBlue()); // VCL's notion of alpha is different from the rest of the world's pRet[3] = 1.0 - toDoubleColor(rColor.GetTransparency()); return aRet; } Color stdColorSpaceSequenceToColor( const uno::Sequence< double >& rColor ) { ENSURE_ARG_OR_THROW( rColor.getLength() == 4, "color must have 4 channels" ); Color aColor; aColor.SetRed ( toByteColor(rColor[0]) ); aColor.SetGreen( toByteColor(rColor[1]) ); aColor.SetBlue ( toByteColor(rColor[2]) ); // VCL's notion of alpha is different from the rest of the world's aColor.SetTransparency( 255 - toByteColor(rColor[3]) ); return aColor; } uno::Sequence< double > colorToDoubleSequence( const Color& rColor, const uno::Reference< rendering::XColorSpace >& xColorSpace ) { uno::Sequence aSeq(1); aSeq[0] = rendering::ARGBColor( 1.0-toDoubleColor(rColor.GetTransparency()), toDoubleColor(rColor.GetRed()), toDoubleColor(rColor.GetGreen()), toDoubleColor(rColor.GetBlue()) ); return xColorSpace->convertFromARGB(aSeq); } Color doubleSequenceToColor( const uno::Sequence< double >& rColor, const uno::Reference< rendering::XColorSpace >& xColorSpace ) { const rendering::ARGBColor aARGBColor( xColorSpace->convertToARGB(rColor)[0]); return Color( 255-toByteColor(aARGBColor.Alpha), toByteColor(aARGBColor.Red), toByteColor(aARGBColor.Green), toByteColor(aARGBColor.Blue) ); } } // namespace vcltools } // namespace canvas /* vim:set shiftwidth=4 softtabstop=4 expandtab: */