1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
|
/*************************************************************************
*
* OpenOffice.org - a multi-platform office productivity suite
*
* $RCSfile: b2dbeziertools.cxx,v $
*
* $Revision: 1.9 $
*
* last change: $Author: rt $ $Date: 2005-09-07 20:40:13 $
*
* The Contents of this file are made available subject to
* the terms of GNU Lesser General Public License Version 2.1.
*
*
* GNU Lesser General Public License Version 2.1
* =============================================
* Copyright 2005 by Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, CA 94303, USA
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
************************************************************************/
#include <limits>
#include <algorithm>
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES // needed by Visual C++ for math constants
#endif
#include <math.h> // M_PI definition
#ifndef _BGFX_CURVE_B2DCUBICBEZIER_HXX
#include <basegfx/curve/b2dcubicbezier.hxx>
#endif
#ifndef _BGFX_CURVE_B2DQUADRATICBEZIER_HXX
#include <basegfx/curve/b2dquadraticbezier.hxx>
#endif
#ifndef _BGFX_POLYGON_B2DPOLYGON_HXX
#include <basegfx/polygon/b2dpolygon.hxx>
#endif
#ifndef _BGFX_VECTOR_B2DVECTOR_HXX
#include <basegfx/vector/b2dvector.hxx>
#endif
#ifndef _BGFX_POINT_B2DPOINT_HXX
#include <basegfx/point/b2dpoint.hxx>
#endif
#ifndef _BGFX_NUMERIC_FTOOLS_HXX
#include <basegfx/numeric/ftools.hxx>
#endif
#include <basegfx/curve/b2dbeziertools.hxx>
namespace
{
class DistanceErrorFunctor
{
public:
DistanceErrorFunctor( const double& distance ) :
mfDistance2( distance*distance ),
mfLastDistanceError2( ::std::numeric_limits<double>::max() )
{
}
bool needsFurtherSubdivision( const double& P1x, const double& P1y,
const double& P2x, const double& P2y,
const double& P3x, const double& P3y,
const double& P4x, const double& P4y,
const double&, const double& ) // last two values not used here
{
// Perform bezier flatness test (lecture notes from R. Schaback,
// Mathematics of Computer-Aided Design, Uni Goettingen, 2000)
//
// ||P(t) - L(t)|| <= max ||b_j - b_0 - j/n(b_n - b_0)||
// 0<=j<=n
//
// What is calculated here is an upper bound to the distance from
// a line through b_0 and b_3 (P1 and P4 in our notation) and the
// curve. We can drop 0 and n from the running indices, since the
// argument of max becomes zero for those cases.
const double fJ1x( P2x - P1x - 1.0/3.0*(P4x - P1x) );
const double fJ1y( P2y - P1y - 1.0/3.0*(P4y - P1y) );
const double fJ2x( P3x - P1x - 2.0/3.0*(P4x - P1x) );
const double fJ2y( P3y - P1y - 2.0/3.0*(P4y - P1y) );
const double distanceError2( ::std::max( fJ1x*fJ1x + fJ1y*fJ1y,
fJ2x*fJ2x + fJ2y*fJ2y) );
// stop if error measure does not improve anymore. This is a
// safety guard against floating point inaccuracies.
// stop if distance from line is guaranteed to be bounded by d
bool bRet( mfLastDistanceError2 > distanceError2 &&
distanceError2 >= mfDistance2 );
mfLastDistanceError2 = distanceError2;
return bRet;
}
private:
double mfDistance2;
double mfLastDistanceError2;
};
class AngleErrorFunctor
{
public:
AngleErrorFunctor( const double& angleBounds ) :
// take positive branch, convert from degree to radiant
mfTanAngle( tan( fabs(angleBounds)/180.0*M_PI ) ),
mfLastTanAngle( ::std::numeric_limits<double>::max() )
{
}
bool needsFurtherSubdivision( const double P1x, const double P1y,
const double P2x, const double P2y,
const double P3x, const double P3y,
const double P4x, const double P4y,
const double Pdx, const double Pdy )
{
// Test angle differences between two lines (ad
// and bd), meeting in the t=0.5 division point
// (d), and the angle from the other ends of those
// lines (b and a, resp.) to the tangents to the
// curve at this points:
//
// *__________
// ......*b
// ...
// ..
// .
// * *d
// | .
// | .
// | .
// | .
// |.
// |.
// *
// a
//
// The idea of this test is based on the fact that
// small angle deviations between straight lines
// go by mostly unnoticed by the human eye. When
// we stop subdivision according to this test, the
// resulting line polygon is guaranteed to have
// angle differences between adjacent lines lower
// than the given threshold.
//
// When using half of the angle bound for the
// difference to the tangents at a or b, resp.,
// this procedure guarantees that no angle in the
// resulting line polygon is larger than the
// specified angle bound. This is because during
// subdivision, adjacent curve segments will have
// collinear tangent vectors, thus, when each
// side's line segments differs by at most angle/2
// from that tangent, the summed difference will
// be at most angle (this was modeled after an
// idea from Armin Weiss).
// To stay within the notation above, a equals P1,
// the other end point of the tangent starting at
// a is P2, d is Pd, and so forth.
const ::basegfx::B2DVector vecAD( Pdx - P1x, Pdy - P1y );
const ::basegfx::B2DVector vecDB( P4x - Pdx, P4y - Pdy );
const double scalarVecADDB( vecAD.scalar( vecDB ) );
const double crossVecADDB( vecAD.cross( vecDB ) );
const ::basegfx::B2DVector vecStartTangent( P2x - P1x, P2y - P1y );
const ::basegfx::B2DVector vecEndTangent( P4x - P3x, P4y - P3y );
const double scalarVecStartTangentAD( vecStartTangent.scalar( vecAD ) );
const double crossVecStartTangentAD( vecStartTangent.cross( vecAD ) );
const double scalarVecDBEndTangent( vecDB.scalar( vecEndTangent ) );
const double crossVecDBEndTangent( vecDB.cross( vecEndTangent ) );
double fCurrAngle( ::std::numeric_limits<double>::max() );
// are vecAD, vecDB, start and end tangent collinear? If
// yes, we're already done, and no further subdivision can
// bring us any closer to a straight line...
if( ::basegfx::fTools::equalZero( crossVecADDB ) &&
::basegfx::fTools::equalZero( crossVecStartTangentAD ) &&
::basegfx::fTools::equalZero( crossVecDBEndTangent ) )
{
mfLastTanAngle = 0.0;
return false;
}
// anyone has zero denominator? then we're at
// +infinity, anyway, and should better keep on
// subdividing
if( ::basegfx::fTools::equalZero( scalarVecADDB ) ||
::basegfx::fTools::equalZero( scalarVecStartTangentAD ) ||
::basegfx::fTools::equalZero( scalarVecDBEndTangent ) )
{
mfLastTanAngle = fCurrAngle;
return true;
}
// now, sieve out quadrants which have
// deviating angles of more than 90
// degrees. By inspection, this is everything
// with a negative scalar product. If we
// encounter such a negative scalar product,
// we can simply keep on subdividing, since at
// least one angle is then >90 degrees.
if( ::basegfx::fTools::less( scalarVecADDB, 0.0 ) ||
::basegfx::fTools::less( scalarVecStartTangentAD, 0.0 ) ||
::basegfx::fTools::less( scalarVecDBEndTangent, 0.0 ) )
{
mfLastTanAngle = fCurrAngle; // TODO: Do we need the
// correct value here?
return true;
}
// take the maximum tangens of angle
// deviation, to compare against the threshold
// below
fCurrAngle = ::std::max( fabs( crossVecADDB / scalarVecADDB ),
::std::max( fabs( crossVecStartTangentAD / scalarVecStartTangentAD ),
fabs( crossVecDBEndTangent / scalarVecDBEndTangent ) ) );
// stop if error measure does not improve anymore. This is a
// safety guard against floating point inaccuracies.
// stop if angle difference is guaranteed to be bounded by mfTanAngle
bool bRet( mfLastTanAngle > fCurrAngle &&
fCurrAngle >= mfTanAngle );
mfLastTanAngle = fCurrAngle;
return bRet;
}
private:
double mfTanAngle;
double mfLastTanAngle;
};
/* Recursively subdivide cubic bezier curve via deCasteljau.
@param rPoly
Polygon to append generated points to
@param d2
Maximal squared difference of curve to a straight line
@param P*
Exactly four points, interpreted as support and control points of
a cubic bezier curve.
@param old_distance2
Last squared distance to line for this recursion
path. Used as an end condition, if it is no longer
improving.
@param recursionDepth
Depth of recursion. Used as a termination criterion, to
prevent endless looping.
*/
template < class ErrorFunctor > int ImplAdaptiveSubdivide( ::basegfx::B2DPolygon& rPoly,
ErrorFunctor rErrorFunctor,
const double P1x, const double P1y,
const double P2x, const double P2y,
const double P3x, const double P3y,
const double P4x, const double P4y,
int recursionDepth )
{
// Hard limit on recursion depth, empiric number. Note that if
// for some obscure reason, we're subdividing always, this
// would lead to 2^maxRecursionDepth points generated
enum {maxRecursionDepth=30};
// deCasteljau bezier arc, split at t=0.5
// Foley/vanDam, p. 508
// Note that for the pure distance error method, this
// subdivision could be moved into the if-branch. But
// since this accounts for saved work only for the
// very last subdivision step, and we need the
// subdivided curve for the angle criterium, I think
// it's justified here.
const double L1x( P1x ), L1y( P1y );
const double L2x( (P1x + P2x)*0.5 ), L2y( (P1y + P2y)*0.5 );
const double Hx ( (P2x + P3x)*0.5 ), Hy ( (P2y + P3y)*0.5 );
const double L3x( (L2x + Hx)*0.5 ), L3y( (L2y + Hy)*0.5 );
const double R4x( P4x ), R4y( P4y );
const double R3x( (P3x + P4x)*0.5 ), R3y( (P3y + P4y)*0.5 );
const double R2x( (Hx + R3x)*0.5 ), R2y( (Hy + R3y)*0.5 );
const double R1x( (L3x + R2x)*0.5 ), R1y( (L3y + R2y)*0.5 );
const double L4x( R1x ), L4y( R1y );
// stop at recursion level 128. This is a safety guard against
// floating point inaccuracies.
if( recursionDepth < maxRecursionDepth &&
rErrorFunctor.needsFurtherSubdivision( P1x, P1y,
P2x, P2y,
P3x, P3y,
P4x, P4y,
R1x, R1y ) )
{
// subdivide further
++recursionDepth;
int nGeneratedPoints(0);
nGeneratedPoints += ImplAdaptiveSubdivide(rPoly, rErrorFunctor, L1x, L1y, L2x, L2y, L3x, L3y, L4x, L4y, recursionDepth);
nGeneratedPoints += ImplAdaptiveSubdivide(rPoly, rErrorFunctor, R1x, R1y, R2x, R2y, R3x, R3y, R4x, R4y, recursionDepth);
// return number of points generated in this
// recursion branch
return nGeneratedPoints;
}
else
{
// requested resolution reached. Add end points to
// output iterator. order is preserved, since
// this is so to say depth first traversal.
rPoly.append( ::basegfx::B2DPoint( P1x, P1y ) );
// return number of points generated in this
// recursion branch
return 1;
}
}
}
namespace basegfx
{
// TODO: For bezier length calculations, use Jens Gravesens algorithm (e.g. Graphic Gems V, p. 199)
// LATER
#if 0
/* Approximate given cubic bezier curve by quadratic bezier segments */
void ImplQuadBezierApprox( B2DPolygon& rPoly,
BitStream& rBits,
Point& rLastPoint,
const double d2,
const double P1x, const double P1y,
const double P2x, const double P2y,
const double P3x, const double P3y,
const double P4x, const double P4y )
{
// Check for degenerate case, where the given cubic bezier curve
// is already quadratic: P4 == 3P3 - 3P2 + P1
if( P4x == 3.0*P3x - 3.0*P2x + P1x &&
P4y == 3.0*P3y - 3.0*P2y + P1y )
{
Impl_addQuadBezier( rBits, rLastPoint,
3.0/2.0*P2x - 1.0/2.0*P1x, 3.0/2.0*P2y - 1.0/2.0*P1y,
P4x, P4y);
}
else
{
// Create quadratic segment for given cubic:
// Start and end point must coincide, determine quadratic control
// point in such a way that it lies on the intersection of the
// tangents at start and end point, resp. Thus, both cubic and
// quadratic curve segments will match in 0th and 1st derivative
// at the start and end points
// Intersection of P2P1 and P4P3
// (P2y-P4y)(P3x-P4x)-(P2x-P4x)(P3y-P4y)
// lambda = -------------------------------------
// (P1x-P2x)(P3y-P4y)-(P1y-P2y)(P3x-P4x)
//
// Intersection point IP is now
// IP = P2 + lambda(P1-P2)
//
const double nominator( (P2y-P4y)*(P3x-P4x) - (P2x-P4x)*(P3y-P4y) );
const double denominator( (P1x-P2x)*(P3y-P4y) - (P1y-P2y)*(P3x-P4x) );
const double lambda( nominator / denominator );
const double IPx( P2x + lambda*( P1x - P2x) );
const double IPy( P2y + lambda*( P1y - P2y) );
// Introduce some alias names: quadratic start point is P1, end
// point is P4, control point is IP
const double QP1x( P1x );
const double QP1y( P1y );
const double QP2x( IPx );
const double QP2y( IPy );
const double QP3x( P4x );
const double QP3y( P4y );
// Adapted bezier flatness test (lecture notes from R. Schaback,
// Mathematics of Computer-Aided Design, Uni Goettingen, 2000)
//
// ||C(t) - Q(t)|| <= max ||c_j - q_j||
// 0<=j<=n
//
// In this case, we don't need the distance from the cubic bezier
// to a straight line, but to a quadratic bezier. The c_j's are
// the cubic bezier's bernstein coefficients, the q_j's the
// quadratic bezier's. We have the c_j's given, the q_j's can be
// calculated from QPi like this (sorry, mixed index notation, we
// use [1,n], formulas use [0,n-1]):
//
// q_0 = QP1 = P1
// q_1 = 1/3 QP1 + 2/3 QP2
// q_2 = 2/3 QP2 + 1/3 QP3
// q_3 = QP3 = P4
//
// We can drop case 0 and 3, since there the curves coincide
// (distance is zero)
// calculate argument of max for j=1 and j=2
const double fJ1x( P2x - 1.0/3.0*QP1x - 2.0/3.0*QP2x );
const double fJ1y( P2y - 1.0/3.0*QP1y - 2.0/3.0*QP2y );
const double fJ2x( P3x - 2.0/3.0*QP2x - 1.0/3.0*QP3x );
const double fJ2y( P3y - 2.0/3.0*QP2y - 1.0/3.0*QP3y );
// stop if distance from cubic curve is guaranteed to be bounded by d
// Should denominator be 0: then P1P2 and P3P4 are parallel (P1P2^T R[90,P3P4] = 0.0),
// meaning that either we have a straight line or an inflexion point (see else block below)
if( 0.0 != denominator &&
::std::max( fJ1x*fJ1x + fJ1y*fJ1y,
fJ2x*fJ2x + fJ2y*fJ2y) < d2 )
{
// requested resolution reached.
// Add end points to output file.
// order is preserved, since this is so to say depth first traversal.
Impl_addQuadBezier( rBits, rLastPoint,
QP2x, QP2y,
QP3x, QP3y);
}
else
{
// Maybe subdivide further
// This is for robustness reasons, since the line intersection
// method below gets instable if the curve gets closer to a
// straight line. If the given cubic bezier does not deviate by
// more than d/4 from a straight line, either:
// - take the line (that's what we do here)
// - express the line by a quadratic bezier
// Perform bezier flatness test (lecture notes from R. Schaback,
// Mathematics of Computer-Aided Design, Uni Goettingen, 2000)
//
// ||P(t) - L(t)|| <= max ||b_j - b_0 - j/n(b_n - b_0)||
// 0<=j<=n
//
// What is calculated here is an upper bound to the distance from
// a line through b_0 and b_3 (P1 and P4 in our notation) and the
// curve. We can drop 0 and n from the running indices, since the
// argument of max becomes zero for those cases.
const double fJ1x( P2x - P1x - 1.0/3.0*(P4x - P1x) );
const double fJ1y( P2y - P1y - 1.0/3.0*(P4y - P1y) );
const double fJ2x( P3x - P1x - 2.0/3.0*(P4x - P1x) );
const double fJ2y( P3y - P1y - 2.0/3.0*(P4y - P1y) );
// stop if distance from line is guaranteed to be bounded by d/4
if( ::std::max( fJ1x*fJ1x + fJ1y*fJ1y,
fJ2x*fJ2x + fJ2y*fJ2y) < d2/16.0 )
{
// do not subdivide further, add straight line instead
Impl_addStraightLine( rBits, rLastPoint, P4x, P4y);
}
else
{
// deCasteljau bezier arc, split at t=0.5
// Foley/vanDam, p. 508
const double L1x( P1x ), L1y( P1y );
const double L2x( (P1x + P2x)*0.5 ), L2y( (P1y + P2y)*0.5 );
const double Hx ( (P2x + P3x)*0.5 ), Hy ( (P2y + P3y)*0.5 );
const double L3x( (L2x + Hx)*0.5 ), L3y( (L2y + Hy)*0.5 );
const double R4x( P4x ), R4y( P4y );
const double R3x( (P3x + P4x)*0.5 ), R3y( (P3y + P4y)*0.5 );
const double R2x( (Hx + R3x)*0.5 ), R2y( (Hy + R3y)*0.5 );
const double R1x( (L3x + R2x)*0.5 ), R1y( (L3y + R2y)*0.5 );
const double L4x( R1x ), L4y( R1y );
// subdivide further
Impl_quadBezierApprox(rBits, rLastPoint, d2, L1x, L1y, L2x, L2y, L3x, L3y, L4x, L4y);
Impl_quadBezierApprox(rBits, rLastPoint, d2, R1x, R1y, R2x, R2y, R3x, R3y, R4x, R4y);
}
}
}
}
}
#endif
sal_Int32 adaptiveSubdivideByDistance( B2DPolygon& rPoly,
const B2DCubicBezier& rCurve,
double distanceBounds,
bool bAddEndPoint )
{
const B2DPoint start( rCurve.getStartPoint() );
const B2DPoint control1( rCurve.getControlPointA() );
const B2DPoint control2( rCurve.getControlPointB() );
const B2DPoint end( rCurve.getEndPoint() );
sal_Int32 nPoints( ImplAdaptiveSubdivide( rPoly,
DistanceErrorFunctor( distanceBounds ),
start.getX(), start.getY(),
control1.getX(), control1.getY(),
control2.getX(), control2.getY(),
end.getX(), end.getY(),
0 ) );
// finish polygon
if ( bAddEndPoint )
{
rPoly.append( end );
nPoints++;
}
return nPoints;
}
sal_Int32 adaptiveSubdivideByAngle( B2DPolygon& rPoly,
const B2DCubicBezier& rCurve,
double angleBounds,
bool bAddEndPoint )
{
const B2DPoint start( rCurve.getStartPoint() );
const B2DPoint control1( rCurve.getControlPointA() );
const B2DPoint control2( rCurve.getControlPointB() );
const B2DPoint end( rCurve.getEndPoint() );
sal_Int32 nPoints( ImplAdaptiveSubdivide( rPoly,
AngleErrorFunctor( angleBounds ),
start.getX(), start.getY(),
control1.getX(), control1.getY(),
control2.getX(), control2.getY(),
end.getX(), end.getY(),
0 ) );
// finish polygon
if ( bAddEndPoint )
{
rPoly.append( end );
nPoints++;
}
return nPoints;
}
sal_Int32 adaptiveSubdivideByDistance( B2DPolygon& rPoly,
const B2DQuadraticBezier& rCurve,
double distanceBounds,
bool bAddEndPoint )
{
// TODO
return 0;
}
}
|