1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <basegfx/curve/b2dcubicbezier.hxx>
#include <basegfx/vector/b2dvector.hxx>
#include <basegfx/polygon/b2dpolygon.hxx>
#include <basegfx/matrix/b2dhommatrix.hxx>
#include <basegfx/numeric/ftools.hxx>
#include <osl/diagnose.h>
#include <limits>
// #i37443#
#define FACTOR_FOR_UNSHARPEN (1.6)
#ifdef DBG_UTIL
static double fMultFactUnsharpen = FACTOR_FOR_UNSHARPEN;
#endif
namespace basegfx
{
namespace
{
void ImpSubDivAngle(
const B2DPoint& rfPA, // start point
const B2DPoint& rfEA, // edge on A
const B2DPoint& rfEB, // edge on B
const B2DPoint& rfPB, // end point
B2DPolygon& rTarget, // target polygon
double fAngleBound, // angle bound in [0.0 .. 2PI]
bool bAllowUnsharpen, // #i37443# allow the criteria to get unsharp in recursions
sal_uInt16 nMaxRecursionDepth) // endless loop protection
{
if(nMaxRecursionDepth)
{
// do angle test
B2DVector aLeft(rfEA - rfPA);
B2DVector aRight(rfEB - rfPB);
// #i72104#
if(aLeft.equalZero())
{
aLeft = rfEB - rfPA;
}
if(aRight.equalZero())
{
aRight = rfEA - rfPB;
}
const double fCurrentAngle(aLeft.angle(aRight));
if(fabs(fCurrentAngle) > (F_PI - fAngleBound))
{
// end recursion
nMaxRecursionDepth = 0;
}
else
{
if(bAllowUnsharpen)
{
// #i37443# unsharpen criteria
#ifdef DBG_UTIL
fAngleBound *= fMultFactUnsharpen;
#else
fAngleBound *= FACTOR_FOR_UNSHARPEN;
#endif
}
}
}
if(nMaxRecursionDepth)
{
// divide at 0.5
const B2DPoint aS1L(average(rfPA, rfEA));
const B2DPoint aS1C(average(rfEA, rfEB));
const B2DPoint aS1R(average(rfEB, rfPB));
const B2DPoint aS2L(average(aS1L, aS1C));
const B2DPoint aS2R(average(aS1C, aS1R));
const B2DPoint aS3C(average(aS2L, aS2R));
// left recursion
ImpSubDivAngle(rfPA, aS1L, aS2L, aS3C, rTarget, fAngleBound, bAllowUnsharpen, nMaxRecursionDepth - 1);
// right recursion
ImpSubDivAngle(aS3C, aS2R, aS1R, rfPB, rTarget, fAngleBound, bAllowUnsharpen, nMaxRecursionDepth - 1);
}
else
{
rTarget.append(rfPB);
}
}
void ImpSubDivAngleStart(
const B2DPoint& rfPA, // start point
const B2DPoint& rfEA, // edge on A
const B2DPoint& rfEB, // edge on B
const B2DPoint& rfPB, // end point
B2DPolygon& rTarget, // target polygon
const double& rfAngleBound) // angle bound in [0.0 .. 2PI]
{
sal_uInt16 nMaxRecursionDepth(8);
const B2DVector aLeft(rfEA - rfPA);
const B2DVector aRight(rfEB - rfPB);
bool bLeftEqualZero(aLeft.equalZero());
bool bRightEqualZero(aRight.equalZero());
bool bAllParallel(false);
if(bLeftEqualZero && bRightEqualZero)
{
nMaxRecursionDepth = 0;
}
else
{
const B2DVector aBase(rfPB - rfPA);
const bool bBaseEqualZero(aBase.equalZero()); // #i72104#
if(!bBaseEqualZero)
{
const bool bLeftParallel(bLeftEqualZero || areParallel(aLeft, aBase));
const bool bRightParallel(bRightEqualZero || areParallel(aRight, aBase));
if(bLeftParallel && bRightParallel)
{
bAllParallel = true;
if(!bLeftEqualZero)
{
double fFactor;
if(fabs(aBase.getX()) > fabs(aBase.getY()))
{
fFactor = aLeft.getX() / aBase.getX();
}
else
{
fFactor = aLeft.getY() / aBase.getY();
}
if(fFactor >= 0.0 && fFactor <= 1.0)
{
bLeftEqualZero = true;
}
}
if(!bRightEqualZero)
{
double fFactor;
if(fabs(aBase.getX()) > fabs(aBase.getY()))
{
fFactor = aRight.getX() / -aBase.getX();
}
else
{
fFactor = aRight.getY() / -aBase.getY();
}
if(fFactor >= 0.0 && fFactor <= 1.0)
{
bRightEqualZero = true;
}
}
if(bLeftEqualZero && bRightEqualZero)
{
nMaxRecursionDepth = 0;
}
}
}
}
if(nMaxRecursionDepth)
{
// divide at 0.5 ad test both edges for angle criteria
const B2DPoint aS1L(average(rfPA, rfEA));
const B2DPoint aS1C(average(rfEA, rfEB));
const B2DPoint aS1R(average(rfEB, rfPB));
const B2DPoint aS2L(average(aS1L, aS1C));
const B2DPoint aS2R(average(aS1C, aS1R));
const B2DPoint aS3C(average(aS2L, aS2R));
// test left
bool bAngleIsSmallerLeft(bAllParallel && bLeftEqualZero);
if(!bAngleIsSmallerLeft)
{
const B2DVector aLeftLeft(bLeftEqualZero ? aS2L - aS1L : aS1L - rfPA); // #i72104#
const B2DVector aRightLeft(aS2L - aS3C);
const double fCurrentAngleLeft(aLeftLeft.angle(aRightLeft));
bAngleIsSmallerLeft = (fabs(fCurrentAngleLeft) > (F_PI - rfAngleBound));
}
// test right
bool bAngleIsSmallerRight(bAllParallel && bRightEqualZero);
if(!bAngleIsSmallerRight)
{
const B2DVector aLeftRight(aS2R - aS3C);
const B2DVector aRightRight(bRightEqualZero ? aS2R - aS1R : aS1R - rfPB); // #i72104#
const double fCurrentAngleRight(aLeftRight.angle(aRightRight));
bAngleIsSmallerRight = (fabs(fCurrentAngleRight) > (F_PI - rfAngleBound));
}
if(bAngleIsSmallerLeft && bAngleIsSmallerRight)
{
// no recursion necessary at all
nMaxRecursionDepth = 0;
}
else
{
// left
if(bAngleIsSmallerLeft)
{
rTarget.append(aS3C);
}
else
{
ImpSubDivAngle(rfPA, aS1L, aS2L, aS3C, rTarget, rfAngleBound, true/*bAllowUnsharpen*/, nMaxRecursionDepth);
}
// right
if(bAngleIsSmallerRight)
{
rTarget.append(rfPB);
}
else
{
ImpSubDivAngle(aS3C, aS2R, aS1R, rfPB, rTarget, rfAngleBound, true/*bAllowUnsharpen*/, nMaxRecursionDepth);
}
}
}
if(!nMaxRecursionDepth)
{
rTarget.append(rfPB);
}
}
void ImpSubDivDistance(
const B2DPoint& rfPA, // start point
const B2DPoint& rfEA, // edge on A
const B2DPoint& rfEB, // edge on B
const B2DPoint& rfPB, // end point
B2DPolygon& rTarget, // target polygon
double fDistanceBound2, // quadratic distance criteria
double fLastDistanceError2, // the last quadratic distance error
sal_uInt16 nMaxRecursionDepth) // endless loop protection
{
if(nMaxRecursionDepth)
{
// decide if another recursion is needed. If not, set
// nMaxRecursionDepth to zero
// Perform bezier flatness test (lecture notes from R. Schaback,
// Mathematics of Computer-Aided Design, Uni Goettingen, 2000)
// ||P(t) - L(t)|| <= max ||b_j - b_0 - j/n(b_n - b_0)||
// 0<=j<=n
// What is calculated here is an upper bound to the distance from
// a line through b_0 and b_3 (rfPA and P4 in our notation) and the
// curve. We can drop 0 and n from the running indices, since the
// argument of max becomes zero for those cases.
const double fJ1x(rfEA.getX() - rfPA.getX() - 1.0/3.0*(rfPB.getX() - rfPA.getX()));
const double fJ1y(rfEA.getY() - rfPA.getY() - 1.0/3.0*(rfPB.getY() - rfPA.getY()));
const double fJ2x(rfEB.getX() - rfPA.getX() - 2.0/3.0*(rfPB.getX() - rfPA.getX()));
const double fJ2y(rfEB.getY() - rfPA.getY() - 2.0/3.0*(rfPB.getY() - rfPA.getY()));
const double fDistanceError2(std::max(fJ1x*fJ1x + fJ1y*fJ1y, fJ2x*fJ2x + fJ2y*fJ2y));
// stop if error measure does not improve anymore. This is a
// safety guard against floating point inaccuracies.
// stop if distance from line is guaranteed to be bounded by d
const bool bFurtherDivision(fLastDistanceError2 > fDistanceError2 && fDistanceError2 >= fDistanceBound2);
if(bFurtherDivision)
{
// remember last error value
fLastDistanceError2 = fDistanceError2;
}
else
{
// stop recursion
nMaxRecursionDepth = 0;
}
}
if(nMaxRecursionDepth)
{
// divide at 0.5
const B2DPoint aS1L(average(rfPA, rfEA));
const B2DPoint aS1C(average(rfEA, rfEB));
const B2DPoint aS1R(average(rfEB, rfPB));
const B2DPoint aS2L(average(aS1L, aS1C));
const B2DPoint aS2R(average(aS1C, aS1R));
const B2DPoint aS3C(average(aS2L, aS2R));
// left recursion
ImpSubDivDistance(rfPA, aS1L, aS2L, aS3C, rTarget, fDistanceBound2, fLastDistanceError2, nMaxRecursionDepth - 1);
// right recursion
ImpSubDivDistance(aS3C, aS2R, aS1R, rfPB, rTarget, fDistanceBound2, fLastDistanceError2, nMaxRecursionDepth - 1);
}
else
{
rTarget.append(rfPB);
}
}
} // end of anonymous namespace
} // end of namespace basegfx
namespace basegfx
{
B2DCubicBezier::B2DCubicBezier(const B2DCubicBezier&) = default;
B2DCubicBezier::B2DCubicBezier() = default;
B2DCubicBezier::B2DCubicBezier(const B2DPoint& rStart, const B2DPoint& rControlPointA, const B2DPoint& rControlPointB, const B2DPoint& rEnd)
: maStartPoint(rStart),
maEndPoint(rEnd),
maControlPointA(rControlPointA),
maControlPointB(rControlPointB)
{
}
B2DCubicBezier::~B2DCubicBezier() = default;
// assignment operator
B2DCubicBezier& B2DCubicBezier::operator=(const B2DCubicBezier&) = default;
// compare operators
bool B2DCubicBezier::operator==(const B2DCubicBezier& rBezier) const
{
return (
maStartPoint == rBezier.maStartPoint
&& maEndPoint == rBezier.maEndPoint
&& maControlPointA == rBezier.maControlPointA
&& maControlPointB == rBezier.maControlPointB
);
}
bool B2DCubicBezier::operator!=(const B2DCubicBezier& rBezier) const
{
return (
maStartPoint != rBezier.maStartPoint
|| maEndPoint != rBezier.maEndPoint
|| maControlPointA != rBezier.maControlPointA
|| maControlPointB != rBezier.maControlPointB
);
}
bool B2DCubicBezier::equal(const B2DCubicBezier& rBezier) const
{
return (
maStartPoint.equal(rBezier.maStartPoint)
&& maEndPoint.equal(rBezier.maEndPoint)
&& maControlPointA.equal(rBezier.maControlPointA)
&& maControlPointB.equal(rBezier.maControlPointB)
);
}
// test if vectors are used
bool B2DCubicBezier::isBezier() const
{
return maControlPointA != maStartPoint || maControlPointB != maEndPoint;
}
void B2DCubicBezier::testAndSolveTrivialBezier()
{
if(maControlPointA != maStartPoint || maControlPointB != maEndPoint)
{
const B2DVector aEdge(maEndPoint - maStartPoint);
// controls parallel to edge can be trivial. No edge -> not parallel -> control can
// still not be trivial (e.g. ballon loop)
if(!aEdge.equalZero())
{
// get control vectors
const B2DVector aVecA(maControlPointA - maStartPoint);
const B2DVector aVecB(maControlPointB - maEndPoint);
// check if trivial per se
bool bAIsTrivial(aVecA.equalZero());
bool bBIsTrivial(aVecB.equalZero());
// #i102241# prepare inverse edge length to normalize cross values;
// else the small compare value used in fTools::equalZero
// will be length dependent and this detection will work as less
// precise as longer the edge is. In principle, the length of the control
// vector would need to be used too, but to be trivial it is assumed to
// be of roughly equal length to the edge, so edge length can be used
// for both. Only needed when one of both is not trivial per se.
const double fInverseEdgeLength(bAIsTrivial && bBIsTrivial
? 1.0
: 1.0 / aEdge.getLength());
// if A is not zero, check if it could be
if(!bAIsTrivial)
{
// #i102241# parallel to edge? Check aVecA, aEdge. Use cross() which does what
// we need here with the precision we need
const double fCross(aVecA.cross(aEdge) * fInverseEdgeLength);
if(fTools::equalZero(fCross))
{
// get scale to edge. Use bigger distance for numeric quality
const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY())
? aVecA.getX() / aEdge.getX()
: aVecA.getY() / aEdge.getY());
// relative end point of vector in edge range?
if (fTools::betweenOrEqualEither(fScale, 0.0, 1.0))
{
bAIsTrivial = true;
}
}
}
// if B is not zero, check if it could be, but only if A is already trivial;
// else solve to trivial will not be possible for whole edge
if(bAIsTrivial && !bBIsTrivial)
{
// parallel to edge? Check aVecB, aEdge
const double fCross(aVecB.cross(aEdge) * fInverseEdgeLength);
if(fTools::equalZero(fCross))
{
// get scale to edge. Use bigger distance for numeric quality
const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY())
? aVecB.getX() / aEdge.getX()
: aVecB.getY() / aEdge.getY());
// end point of vector in edge range? Caution: controlB is directed AGAINST edge
if (fTools::betweenOrEqualEither(fScale, -1.0, 0.0))
{
bBIsTrivial = true;
}
}
}
// if both are/can be reduced, do it.
// Not possible if only one is/can be reduced (!)
if(bAIsTrivial && bBIsTrivial)
{
maControlPointA = maStartPoint;
maControlPointB = maEndPoint;
}
}
}
}
namespace {
double impGetLength(const B2DCubicBezier& rEdge, double fDeviation, sal_uInt32 nRecursionWatch)
{
const double fEdgeLength(rEdge.getEdgeLength());
const double fControlPolygonLength(rEdge.getControlPolygonLength());
const double fCurrentDeviation(fTools::equalZero(fControlPolygonLength) ? 0.0 : 1.0 - (fEdgeLength / fControlPolygonLength));
if(!nRecursionWatch || fTools:: lessOrEqual(fCurrentDeviation, fDeviation))
{
return (fEdgeLength + fControlPolygonLength) * 0.5;
}
else
{
B2DCubicBezier aLeft, aRight;
const double fNewDeviation(fDeviation * 0.5);
const sal_uInt32 nNewRecursionWatch(nRecursionWatch - 1);
rEdge.split(0.5, &aLeft, &aRight);
return impGetLength(aLeft, fNewDeviation, nNewRecursionWatch)
+ impGetLength(aRight, fNewDeviation, nNewRecursionWatch);
}
}
}
double B2DCubicBezier::getLength(double fDeviation) const
{
if(isBezier())
{
if(fDeviation < 0.00000001)
{
fDeviation = 0.00000001;
}
return impGetLength(*this, fDeviation, 6);
}
else
{
return B2DVector(getEndPoint() - getStartPoint()).getLength();
}
}
double B2DCubicBezier::getEdgeLength() const
{
const B2DVector aEdge(maEndPoint - maStartPoint);
return aEdge.getLength();
}
double B2DCubicBezier::getControlPolygonLength() const
{
const B2DVector aVectorA(maControlPointA - maStartPoint);
const B2DVector aVectorB(maEndPoint - maControlPointB);
if(!aVectorA.equalZero() || !aVectorB.equalZero())
{
const B2DVector aTop(maControlPointB - maControlPointA);
return (aVectorA.getLength() + aVectorB.getLength() + aTop.getLength());
}
else
{
return getEdgeLength();
}
}
void B2DCubicBezier::adaptiveSubdivideByAngle(B2DPolygon& rTarget, double fAngleBound) const
{
if(isBezier())
{
// use support method #i37443# and allow unsharpen the criteria
ImpSubDivAngleStart(maStartPoint, maControlPointA, maControlPointB, maEndPoint, rTarget,
deg2rad(fAngleBound));
}
else
{
rTarget.append(getEndPoint());
}
}
B2DVector B2DCubicBezier::getTangent(double t) const
{
if(fTools::lessOrEqual(t, 0.0))
{
// tangent in start point
B2DVector aTangent(getControlPointA() - getStartPoint());
if(!aTangent.equalZero())
{
return aTangent;
}
// start point and control vector are the same, fallback
// to implicit start vector to control point B
aTangent = (getControlPointB() - getStartPoint()) * 0.3;
if(!aTangent.equalZero())
{
return aTangent;
}
// not a bezier at all, return edge vector
return (getEndPoint() - getStartPoint()) * 0.3;
}
else if(fTools::moreOrEqual(t, 1.0))
{
// tangent in end point
B2DVector aTangent(getEndPoint() - getControlPointB());
if(!aTangent.equalZero())
{
return aTangent;
}
// end point and control vector are the same, fallback
// to implicit start vector from control point A
aTangent = (getEndPoint() - getControlPointA()) * 0.3;
if(!aTangent.equalZero())
{
return aTangent;
}
// not a bezier at all, return edge vector
return (getEndPoint() - getStartPoint()) * 0.3;
}
else
{
// t is in ]0.0 .. 1.0[. Split and extract
B2DCubicBezier aRight;
split(t, nullptr, &aRight);
return aRight.getControlPointA() - aRight.getStartPoint();
}
}
// #i37443# adaptive subdivide by nCount subdivisions
void B2DCubicBezier::adaptiveSubdivideByCount(B2DPolygon& rTarget, sal_uInt32 nCount) const
{
const double fLenFact(1.0 / static_cast< double >(nCount + 1));
for(sal_uInt32 a(1); a <= nCount; a++)
{
const double fPos(static_cast< double >(a) * fLenFact);
rTarget.append(interpolatePoint(fPos));
}
rTarget.append(getEndPoint());
}
// adaptive subdivide by distance
void B2DCubicBezier::adaptiveSubdivideByDistance(B2DPolygon& rTarget, double fDistanceBound) const
{
if(isBezier())
{
ImpSubDivDistance(maStartPoint, maControlPointA, maControlPointB, maEndPoint, rTarget,
fDistanceBound * fDistanceBound, std::numeric_limits<double>::max(), 30);
}
else
{
rTarget.append(getEndPoint());
}
}
B2DPoint B2DCubicBezier::interpolatePoint(double t) const
{
OSL_ENSURE(t >= 0.0 && t <= 1.0, "B2DCubicBezier::interpolatePoint: Access out of range (!)");
if(isBezier())
{
const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, t));
const B2DPoint aS1C(interpolate(maControlPointA, maControlPointB, t));
const B2DPoint aS1R(interpolate(maControlPointB, maEndPoint, t));
const B2DPoint aS2L(interpolate(aS1L, aS1C, t));
const B2DPoint aS2R(interpolate(aS1C, aS1R, t));
return interpolate(aS2L, aS2R, t);
}
else
{
return interpolate(maStartPoint, maEndPoint, t);
}
}
double B2DCubicBezier::getSmallestDistancePointToBezierSegment(const B2DPoint& rTestPoint, double& rCut) const
{
const sal_uInt32 nInitialDivisions(3);
B2DPolygon aInitialPolygon;
// as start make a fix division, creates nInitialDivisions + 2 points
aInitialPolygon.append(getStartPoint());
adaptiveSubdivideByCount(aInitialPolygon, nInitialDivisions);
// now look for the closest point
const sal_uInt32 nPointCount(aInitialPolygon.count());
B2DVector aVector(rTestPoint - aInitialPolygon.getB2DPoint(0));
double fQuadDist(aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY());
double fNewQuadDist;
sal_uInt32 nSmallestIndex(0);
for(sal_uInt32 a(1); a < nPointCount; a++)
{
aVector = B2DVector(rTestPoint - aInitialPolygon.getB2DPoint(a));
fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY();
if(fNewQuadDist < fQuadDist)
{
fQuadDist = fNewQuadDist;
nSmallestIndex = a;
}
}
// look right and left for even smaller distances
double fStepValue(1.0 / static_cast<double>((nPointCount - 1) * 2)); // half the edge step width
double fPosition(static_cast<double>(nSmallestIndex) / static_cast<double>(nPointCount - 1));
while(true)
{
// test left
double fPosLeft(fPosition - fStepValue);
if(fPosLeft < 0.0)
{
fPosLeft = 0.0;
aVector = B2DVector(rTestPoint - maStartPoint);
}
else
{
aVector = B2DVector(rTestPoint - interpolatePoint(fPosLeft));
}
fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY();
if(fTools::less(fNewQuadDist, fQuadDist))
{
fQuadDist = fNewQuadDist;
fPosition = fPosLeft;
}
else
{
// test right
double fPosRight(fPosition + fStepValue);
if(fPosRight > 1.0)
{
fPosRight = 1.0;
aVector = B2DVector(rTestPoint - maEndPoint);
}
else
{
aVector = B2DVector(rTestPoint - interpolatePoint(fPosRight));
}
fNewQuadDist = aVector.getX() * aVector.getX() + aVector.getY() * aVector.getY();
if(fTools::less(fNewQuadDist, fQuadDist))
{
fQuadDist = fNewQuadDist;
fPosition = fPosRight;
}
else
{
// not less left or right, done
break;
}
}
if(fPosition == 0.0 || fPosition == 1.0)
{
// if we are completely left or right, we are done
break;
}
// prepare next step value
fStepValue /= 2.0;
}
rCut = fPosition;
return sqrt(fQuadDist);
}
void B2DCubicBezier::split(double t, B2DCubicBezier* pBezierA, B2DCubicBezier* pBezierB) const
{
OSL_ENSURE(t >= 0.0 && t <= 1.0, "B2DCubicBezier::split: Access out of range (!)");
if(!pBezierA && !pBezierB)
{
return;
}
if(isBezier())
{
const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, t));
const B2DPoint aS1C(interpolate(maControlPointA, maControlPointB, t));
const B2DPoint aS1R(interpolate(maControlPointB, maEndPoint, t));
const B2DPoint aS2L(interpolate(aS1L, aS1C, t));
const B2DPoint aS2R(interpolate(aS1C, aS1R, t));
const B2DPoint aS3C(interpolate(aS2L, aS2R, t));
if(pBezierA)
{
pBezierA->setStartPoint(maStartPoint);
pBezierA->setEndPoint(aS3C);
pBezierA->setControlPointA(aS1L);
pBezierA->setControlPointB(aS2L);
}
if(pBezierB)
{
pBezierB->setStartPoint(aS3C);
pBezierB->setEndPoint(maEndPoint);
pBezierB->setControlPointA(aS2R);
pBezierB->setControlPointB(aS1R);
}
}
else
{
const B2DPoint aSplit(interpolate(maStartPoint, maEndPoint, t));
if(pBezierA)
{
pBezierA->setStartPoint(maStartPoint);
pBezierA->setEndPoint(aSplit);
pBezierA->setControlPointA(maStartPoint);
pBezierA->setControlPointB(aSplit);
}
if(pBezierB)
{
pBezierB->setStartPoint(aSplit);
pBezierB->setEndPoint(maEndPoint);
pBezierB->setControlPointA(aSplit);
pBezierB->setControlPointB(maEndPoint);
}
}
}
B2DCubicBezier B2DCubicBezier::snippet(double fStart, double fEnd) const
{
B2DCubicBezier aRetval;
if(fTools::more(fStart, 1.0))
{
fStart = 1.0;
}
else if(fTools::less(fStart, 0.0))
{
fStart = 0.0;
}
if(fTools::more(fEnd, 1.0))
{
fEnd = 1.0;
}
else if(fTools::less(fEnd, 0.0))
{
fEnd = 0.0;
}
if(fEnd <= fStart)
{
// empty or NULL, create single point at center
const double fSplit((fEnd + fStart) * 0.5);
const B2DPoint aPoint(interpolate(getStartPoint(), getEndPoint(), fSplit));
aRetval.setStartPoint(aPoint);
aRetval.setEndPoint(aPoint);
aRetval.setControlPointA(aPoint);
aRetval.setControlPointB(aPoint);
}
else
{
if(isBezier())
{
// copy bezier; cut off right, then cut off left. Do not forget to
// adapt cut value when both cuts happen
const bool bEndIsOne(fTools::equal(fEnd, 1.0));
const bool bStartIsZero(fTools::equalZero(fStart));
aRetval = *this;
if(!bEndIsOne)
{
aRetval.split(fEnd, &aRetval, nullptr);
if(!bStartIsZero)
{
fStart /= fEnd;
}
}
if(!bStartIsZero)
{
aRetval.split(fStart, nullptr, &aRetval);
}
}
else
{
// no bezier, create simple edge
const B2DPoint aPointA(interpolate(getStartPoint(), getEndPoint(), fStart));
const B2DPoint aPointB(interpolate(getStartPoint(), getEndPoint(), fEnd));
aRetval.setStartPoint(aPointA);
aRetval.setEndPoint(aPointB);
aRetval.setControlPointA(aPointA);
aRetval.setControlPointB(aPointB);
}
}
return aRetval;
}
B2DRange B2DCubicBezier::getRange() const
{
B2DRange aRetval(maStartPoint, maEndPoint);
aRetval.expand(maControlPointA);
aRetval.expand(maControlPointB);
return aRetval;
}
bool B2DCubicBezier::getMinimumExtremumPosition(double& rfResult) const
{
std::vector< double > aAllResults;
aAllResults.reserve(4);
getAllExtremumPositions(aAllResults);
const sal_uInt32 nCount(aAllResults.size());
if(!nCount)
{
return false;
}
else if(nCount == 1)
{
rfResult = aAllResults[0];
return true;
}
else
{
rfResult = *(std::min_element(aAllResults.begin(), aAllResults.end()));
return true;
}
}
namespace
{
void impCheckExtremumResult(double fCandidate, std::vector< double >& rResult)
{
// check for range ]0.0 .. 1.0[ with excluding 1.0 and 0.0 clearly
// by using the equalZero test, NOT ::more or ::less which will use the
// ApproxEqual() which is too exact here
if(fCandidate > 0.0 && !fTools::equalZero(fCandidate))
{
if(fCandidate < 1.0 && !fTools::equalZero(fCandidate - 1.0))
{
rResult.push_back(fCandidate);
}
}
}
}
void B2DCubicBezier::getAllExtremumPositions(std::vector< double >& rResults) const
{
rResults.clear();
// calculate the x-extrema parameters by zeroing first x-derivative
// of the cubic bezier's parametric formula, which results in a
// quadratic equation: dBezier/dt = t*t*fAX - 2*t*fBX + fCX
const B2DPoint aControlDiff( maControlPointA - maControlPointB );
double fCX = maControlPointA.getX() - maStartPoint.getX();
const double fBX = fCX + aControlDiff.getX();
const double fAX = 3 * aControlDiff.getX() + (maEndPoint.getX() - maStartPoint.getX());
if(fTools::equalZero(fCX))
{
// detect fCX equal zero and truncate to real zero value in that case
fCX = 0.0;
}
if( !fTools::equalZero(fAX) )
{
// derivative is polynomial of order 2 => use binomial formula
const double fD = fBX*fBX - fAX*fCX;
if( fD >= 0.0 )
{
const double fS = sqrt(fD);
// calculate both roots (avoiding a numerically unstable subtraction)
const double fQ = fBX + ((fBX >= 0) ? +fS : -fS);
impCheckExtremumResult(fQ / fAX, rResults);
if( !fTools::equalZero(fS) ) // ignore root multiplicity
impCheckExtremumResult(fCX / fQ, rResults);
}
}
else if( !fTools::equalZero(fBX) )
{
// derivative is polynomial of order 1 => one extrema
impCheckExtremumResult(fCX / (2 * fBX), rResults);
}
// calculate the y-extrema parameters by zeroing first y-derivative
double fCY = maControlPointA.getY() - maStartPoint.getY();
const double fBY = fCY + aControlDiff.getY();
const double fAY = 3 * aControlDiff.getY() + (maEndPoint.getY() - maStartPoint.getY());
if(fTools::equalZero(fCY))
{
// detect fCY equal zero and truncate to real zero value in that case
fCY = 0.0;
}
if( !fTools::equalZero(fAY) )
{
// derivative is polynomial of order 2 => use binomial formula
const double fD = fBY*fBY - fAY*fCY;
if( fD >= 0.0 )
{
const double fS = sqrt(fD);
// calculate both roots (avoiding a numerically unstable subtraction)
const double fQ = fBY + ((fBY >= 0) ? +fS : -fS);
impCheckExtremumResult(fQ / fAY, rResults);
if( !fTools::equalZero(fS) ) // ignore root multiplicity
impCheckExtremumResult(fCY / fQ, rResults);
}
}
else if( !fTools::equalZero(fBY) )
{
// derivative is polynomial of order 1 => one extrema
impCheckExtremumResult(fCY / (2 * fBY), rResults);
}
}
void B2DCubicBezier::transform(const basegfx::B2DHomMatrix& rMatrix)
{
if(!rMatrix.isIdentity())
{
if(maControlPointA == maStartPoint)
{
maControlPointA = maStartPoint = rMatrix * maStartPoint;
}
else
{
maStartPoint *= rMatrix;
maControlPointA *= rMatrix;
}
if(maControlPointB == maEndPoint)
{
maControlPointB = maEndPoint = rMatrix * maEndPoint;
}
else
{
maEndPoint *= rMatrix;
maControlPointB *= rMatrix;
}
}
}
void B2DCubicBezier::fround()
{
if(maControlPointA == maStartPoint)
{
maControlPointA = maStartPoint = basegfx::B2DPoint(
basegfx::fround(maStartPoint.getX()),
basegfx::fround(maStartPoint.getY()));
}
else
{
maStartPoint = basegfx::B2DPoint(
basegfx::fround(maStartPoint.getX()),
basegfx::fround(maStartPoint.getY()));
maControlPointA = basegfx::B2DPoint(
basegfx::fround(maControlPointA.getX()),
basegfx::fround(maControlPointA.getY()));
}
if(maControlPointB == maEndPoint)
{
maControlPointB = maEndPoint = basegfx::B2DPoint(
basegfx::fround(maEndPoint.getX()),
basegfx::fround(maEndPoint.getY()));
}
else
{
maEndPoint = basegfx::B2DPoint(
basegfx::fround(maEndPoint.getX()),
basegfx::fround(maEndPoint.getY()));
maControlPointB = basegfx::B2DPoint(
basegfx::fround(maControlPointB.getX()),
basegfx::fround(maControlPointB.getY()));
}
}
} // end of namespace basegfx
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|