1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <basegfx/numeric/ftools.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <osl/diagnose.h>
#include <rtl/math.hxx>
#include <rtl/instance.hxx>
#include <sal/log.hxx>
#include <basegfx/polygon/b2dpolygon.hxx>
#include <basegfx/polygon/b2dpolypolygon.hxx>
#include <basegfx/range/b2drange.hxx>
#include <basegfx/curve/b2dcubicbezier.hxx>
#include <basegfx/polygon/b2dpolypolygoncutter.hxx>
#include <basegfx/point/b3dpoint.hxx>
#include <basegfx/matrix/b3dhommatrix.hxx>
#include <basegfx/matrix/b2dhommatrix.hxx>
#include <basegfx/curve/b2dbeziertools.hxx>
#include <basegfx/matrix/b2dhommatrixtools.hxx>
#include <numeric>
#include <limits>
// #i37443#
#define ANGLE_BOUND_START_VALUE (2.25)
#define ANGLE_BOUND_MINIMUM_VALUE (0.1)
#ifdef DBG_UTIL
static double fAngleBoundStartValue = ANGLE_BOUND_START_VALUE;
#endif
#define STEPSPERQUARTER (3)
namespace basegfx
{
namespace tools
{
void openWithGeometryChange(B2DPolygon& rCandidate)
{
if(rCandidate.isClosed())
{
if(rCandidate.count())
{
rCandidate.append(rCandidate.getB2DPoint(0));
if(rCandidate.areControlPointsUsed() && rCandidate.isPrevControlPointUsed(0))
{
rCandidate.setPrevControlPoint(rCandidate.count() - 1, rCandidate.getPrevControlPoint(0));
rCandidate.resetPrevControlPoint(0);
}
}
rCandidate.setClosed(false);
}
}
void closeWithGeometryChange(B2DPolygon& rCandidate)
{
if(!rCandidate.isClosed())
{
while(rCandidate.count() > 1 && rCandidate.getB2DPoint(0) == rCandidate.getB2DPoint(rCandidate.count() - 1))
{
if(rCandidate.areControlPointsUsed() && rCandidate.isPrevControlPointUsed(rCandidate.count() - 1))
{
rCandidate.setPrevControlPoint(0, rCandidate.getPrevControlPoint(rCandidate.count() - 1));
}
rCandidate.remove(rCandidate.count() - 1);
}
rCandidate.setClosed(true);
}
}
void checkClosed(B2DPolygon& rCandidate)
{
// #i80172# Removed unnecessary assertion
// OSL_ENSURE(!rCandidate.isClosed(), "checkClosed: already closed (!)");
if(rCandidate.count() > 1 && rCandidate.getB2DPoint(0) == rCandidate.getB2DPoint(rCandidate.count() - 1))
{
closeWithGeometryChange(rCandidate);
}
}
// Get successor and predecessor indices. Returning the same index means there
// is none. Same for successor.
sal_uInt32 getIndexOfPredecessor(sal_uInt32 nIndex, const B2DPolygon& rCandidate)
{
OSL_ENSURE(nIndex < rCandidate.count(), "getIndexOfPredecessor: Access to polygon out of range (!)");
if(nIndex)
{
return nIndex - 1;
}
else if(rCandidate.count())
{
return rCandidate.count() - 1;
}
else
{
return nIndex;
}
}
sal_uInt32 getIndexOfSuccessor(sal_uInt32 nIndex, const B2DPolygon& rCandidate)
{
OSL_ENSURE(nIndex < rCandidate.count(), "getIndexOfPredecessor: Access to polygon out of range (!)");
if(nIndex + 1 < rCandidate.count())
{
return nIndex + 1;
}
else if(nIndex + 1 == rCandidate.count())
{
return 0;
}
else
{
return nIndex;
}
}
B2VectorOrientation getOrientation(const B2DPolygon& rCandidate)
{
B2VectorOrientation eRetval(B2VectorOrientation::Neutral);
if(rCandidate.count() > 2 || rCandidate.areControlPointsUsed())
{
const double fSignedArea(getSignedArea(rCandidate));
if(fTools::equalZero(fSignedArea))
{
// B2VectorOrientation::Neutral, already set
}
if(fSignedArea > 0.0)
{
eRetval = B2VectorOrientation::Positive;
}
else if(fSignedArea < 0.0)
{
eRetval = B2VectorOrientation::Negative;
}
}
return eRetval;
}
B2VectorContinuity getContinuityInPoint(const B2DPolygon& rCandidate, sal_uInt32 nIndex)
{
return rCandidate.getContinuityInPoint(nIndex);
}
B2DPolygon adaptiveSubdivideByDistance(const B2DPolygon& rCandidate, double fDistanceBound)
{
if(rCandidate.areControlPointsUsed())
{
const sal_uInt32 nPointCount(rCandidate.count());
B2DPolygon aRetval;
if(nPointCount)
{
// prepare edge-oriented loop
const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1);
B2DCubicBezier aBezier;
aBezier.setStartPoint(rCandidate.getB2DPoint(0));
// perf: try to avoid too many realloctions by guessing the result's pointcount
aRetval.reserve(nPointCount*4);
// add start point (always)
aRetval.append(aBezier.getStartPoint());
for(sal_uInt32 a(0); a < nEdgeCount; a++)
{
// get next and control points
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
aBezier.setEndPoint(rCandidate.getB2DPoint(nNextIndex));
aBezier.setControlPointA(rCandidate.getNextControlPoint(a));
aBezier.setControlPointB(rCandidate.getPrevControlPoint(nNextIndex));
aBezier.testAndSolveTrivialBezier();
if(aBezier.isBezier())
{
// add curved edge and generate DistanceBound
double fBound(0.0);
if(fDistanceBound == 0.0)
{
// If not set, use B2DCubicBezier functionality to guess a rough value
const double fRoughLength((aBezier.getEdgeLength() + aBezier.getControlPolygonLength()) / 2.0);
// take 1/100th of the rough curve length
fBound = fRoughLength * 0.01;
}
else
{
// use given bound value
fBound = fDistanceBound;
}
// make sure bound value is not too small. The base units are 1/100th mm, thus
// just make sure it's not smaller then 1/100th of that
if(fBound < 0.01)
{
fBound = 0.01;
}
// call adaptive subdivide which adds edges to aRetval accordingly
aBezier.adaptiveSubdivideByDistance(aRetval, fBound);
}
else
{
// add non-curved edge
aRetval.append(aBezier.getEndPoint());
}
// prepare next step
aBezier.setStartPoint(aBezier.getEndPoint());
}
if(rCandidate.isClosed())
{
// set closed flag and correct last point (which is added double now).
closeWithGeometryChange(aRetval);
}
}
return aRetval;
}
else
{
return rCandidate;
}
}
B2DPolygon adaptiveSubdivideByAngle(const B2DPolygon& rCandidate, double fAngleBound)
{
if(rCandidate.areControlPointsUsed())
{
const sal_uInt32 nPointCount(rCandidate.count());
B2DPolygon aRetval;
if(nPointCount)
{
// prepare edge-oriented loop
const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1);
B2DCubicBezier aBezier;
aBezier.setStartPoint(rCandidate.getB2DPoint(0));
// perf: try to avoid too many realloctions by guessing the result's pointcount
aRetval.reserve(nPointCount*4);
// add start point (always)
aRetval.append(aBezier.getStartPoint());
// #i37443# prepare convenient AngleBound if none was given
if(fAngleBound == 0.0)
{
#ifdef DBG_UTIL
fAngleBound = fAngleBoundStartValue;
#else
fAngleBound = ANGLE_BOUND_START_VALUE;
#endif
}
else if(fTools::less(fAngleBound, ANGLE_BOUND_MINIMUM_VALUE))
{
fAngleBound = 0.1;
}
for(sal_uInt32 a(0); a < nEdgeCount; a++)
{
// get next and control points
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
aBezier.setEndPoint(rCandidate.getB2DPoint(nNextIndex));
aBezier.setControlPointA(rCandidate.getNextControlPoint(a));
aBezier.setControlPointB(rCandidate.getPrevControlPoint(nNextIndex));
aBezier.testAndSolveTrivialBezier();
if(aBezier.isBezier())
{
// call adaptive subdivide
aBezier.adaptiveSubdivideByAngle(aRetval, fAngleBound);
}
else
{
// add non-curved edge
aRetval.append(aBezier.getEndPoint());
}
// prepare next step
aBezier.setStartPoint(aBezier.getEndPoint());
}
if(rCandidate.isClosed())
{
// set closed flag and correct last point (which is added double now).
closeWithGeometryChange(aRetval);
}
}
return aRetval;
}
else
{
return rCandidate;
}
}
bool isInside(const B2DPolygon& rCandidate, const B2DPoint& rPoint, bool bWithBorder)
{
const B2DPolygon aCandidate(rCandidate.areControlPointsUsed() ? rCandidate.getDefaultAdaptiveSubdivision() : rCandidate);
if(bWithBorder && isPointOnPolygon(aCandidate, rPoint))
{
return true;
}
else
{
bool bRetval(false);
const sal_uInt32 nPointCount(aCandidate.count());
if(nPointCount)
{
B2DPoint aCurrentPoint(aCandidate.getB2DPoint(nPointCount - 1));
for(sal_uInt32 a(0); a < nPointCount; a++)
{
const B2DPoint aPreviousPoint(aCurrentPoint);
aCurrentPoint = aCandidate.getB2DPoint(a);
// cross-over in Y?
const bool bCompYA(fTools::more(aPreviousPoint.getY(), rPoint.getY()));
const bool bCompYB(fTools::more(aCurrentPoint.getY(), rPoint.getY()));
if(bCompYA != bCompYB)
{
// cross-over in X?
const bool bCompXA(fTools::more(aPreviousPoint.getX(), rPoint.getX()));
const bool bCompXB(fTools::more(aCurrentPoint.getX(), rPoint.getX()));
if(bCompXA == bCompXB)
{
if(bCompXA)
{
bRetval = !bRetval;
}
}
else
{
const double fCompare(
aCurrentPoint.getX() - (aCurrentPoint.getY() - rPoint.getY()) *
(aPreviousPoint.getX() - aCurrentPoint.getX()) /
(aPreviousPoint.getY() - aCurrentPoint.getY()));
if(fTools::more(fCompare, rPoint.getX()))
{
bRetval = !bRetval;
}
}
}
}
}
return bRetval;
}
}
bool isInside(const B2DPolygon& rCandidate, const B2DPolygon& rPolygon, bool bWithBorder)
{
const B2DPolygon aCandidate(rCandidate.areControlPointsUsed() ? rCandidate.getDefaultAdaptiveSubdivision() : rCandidate);
const B2DPolygon aPolygon(rPolygon.areControlPointsUsed() ? rPolygon.getDefaultAdaptiveSubdivision() : rPolygon);
const sal_uInt32 nPointCount(aPolygon.count());
for(sal_uInt32 a(0); a < nPointCount; a++)
{
const B2DPoint aTestPoint(aPolygon.getB2DPoint(a));
if(!isInside(aCandidate, aTestPoint, bWithBorder))
{
return false;
}
}
return true;
}
B2DRange getRange(const B2DPolygon& rCandidate)
{
// changed to use internally buffered version at B2DPolygon
return rCandidate.getB2DRange();
}
double getSignedArea(const B2DPolygon& rCandidate)
{
const B2DPolygon aCandidate(rCandidate.areControlPointsUsed() ? rCandidate.getDefaultAdaptiveSubdivision() : rCandidate);
double fRetval(0.0);
const sal_uInt32 nPointCount(aCandidate.count());
if(nPointCount > 2)
{
for(sal_uInt32 a(0); a < nPointCount; a++)
{
const B2DPoint aPreviousPoint(aCandidate.getB2DPoint((!a) ? nPointCount - 1 : a - 1));
const B2DPoint aCurrentPoint(aCandidate.getB2DPoint(a));
fRetval += aPreviousPoint.getX() * aCurrentPoint.getY();
fRetval -= aPreviousPoint.getY() * aCurrentPoint.getX();
}
// correct to zero if small enough. Also test the quadratic
// of the result since the precision is near quadratic due to
// the algorithm
if(fTools::equalZero(fRetval) || fTools::equalZero(fRetval * fRetval))
{
fRetval = 0.0;
}
}
return fRetval;
}
double getArea(const B2DPolygon& rCandidate)
{
double fRetval(0.0);
if(rCandidate.count() > 2 || rCandidate.areControlPointsUsed())
{
fRetval = getSignedArea(rCandidate);
const double fZero(0.0);
if(fTools::less(fRetval, fZero))
{
fRetval = -fRetval;
}
}
return fRetval;
}
double getEdgeLength(const B2DPolygon& rCandidate, sal_uInt32 nIndex)
{
const sal_uInt32 nPointCount(rCandidate.count());
OSL_ENSURE(nIndex < nPointCount, "getEdgeLength: Access to polygon out of range (!)");
double fRetval(0.0);
if(nPointCount)
{
const sal_uInt32 nNextIndex((nIndex + 1) % nPointCount);
if(rCandidate.areControlPointsUsed())
{
B2DCubicBezier aEdge;
aEdge.setStartPoint(rCandidate.getB2DPoint(nIndex));
aEdge.setControlPointA(rCandidate.getNextControlPoint(nIndex));
aEdge.setControlPointB(rCandidate.getPrevControlPoint(nNextIndex));
aEdge.setEndPoint(rCandidate.getB2DPoint(nNextIndex));
fRetval = aEdge.getLength();
}
else
{
const B2DPoint aCurrent(rCandidate.getB2DPoint(nIndex));
const B2DPoint aNext(rCandidate.getB2DPoint(nNextIndex));
fRetval = B2DVector(aNext - aCurrent).getLength();
}
}
return fRetval;
}
double getLength(const B2DPolygon& rCandidate)
{
double fRetval(0.0);
const sal_uInt32 nPointCount(rCandidate.count());
if(nPointCount)
{
const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1);
if(rCandidate.areControlPointsUsed())
{
B2DCubicBezier aEdge;
aEdge.setStartPoint(rCandidate.getB2DPoint(0));
for(sal_uInt32 a(0); a < nEdgeCount; a++)
{
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
aEdge.setControlPointA(rCandidate.getNextControlPoint(a));
aEdge.setControlPointB(rCandidate.getPrevControlPoint(nNextIndex));
aEdge.setEndPoint(rCandidate.getB2DPoint(nNextIndex));
fRetval += aEdge.getLength();
aEdge.setStartPoint(aEdge.getEndPoint());
}
}
else
{
B2DPoint aCurrent(rCandidate.getB2DPoint(0));
for(sal_uInt32 a(0); a < nEdgeCount; a++)
{
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
const B2DPoint aNext(rCandidate.getB2DPoint(nNextIndex));
fRetval += B2DVector(aNext - aCurrent).getLength();
aCurrent = aNext;
}
}
}
return fRetval;
}
B2DPoint getPositionAbsolute(const B2DPolygon& rCandidate, double fDistance, double fLength)
{
B2DPoint aRetval;
const sal_uInt32 nPointCount(rCandidate.count());
if( nPointCount == 1 )
{
// only one point (i.e. no edge) - simply take that point
aRetval = rCandidate.getB2DPoint(0);
}
else if(nPointCount > 1)
{
const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1);
sal_uInt32 nIndex(0);
bool bIndexDone(false);
// get length if not given
if(fTools::equalZero(fLength))
{
fLength = getLength(rCandidate);
}
if(fTools::less(fDistance, 0.0))
{
// handle fDistance < 0.0
if(rCandidate.isClosed())
{
// if fDistance < 0.0 increment with multiple of fLength
sal_uInt32 nCount(sal_uInt32(-fDistance / fLength));
fDistance += double(nCount + 1) * fLength;
}
else
{
// crop to polygon start
fDistance = 0.0;
bIndexDone = true;
}
}
else if(fTools::moreOrEqual(fDistance, fLength))
{
// handle fDistance >= fLength
if(rCandidate.isClosed())
{
// if fDistance >= fLength decrement with multiple of fLength
sal_uInt32 nCount(sal_uInt32(fDistance / fLength));
fDistance -= (double)nCount * fLength;
}
else
{
// crop to polygon end
fDistance = 0.0;
nIndex = nEdgeCount;
bIndexDone = true;
}
}
// look for correct index. fDistance is now [0.0 .. fLength[
double fEdgeLength(getEdgeLength(rCandidate, nIndex));
while(!bIndexDone)
{
// edge found must be on the half-open range
// [0,fEdgeLength).
// Note that in theory, we cannot move beyond
// the last polygon point, since fDistance>=fLength
// is checked above. Unfortunately, with floating-
// point calculations, this case might happen.
// Handled by nIndex check below
if (nIndex+1 < nEdgeCount && fTools::moreOrEqual(fDistance, fEdgeLength))
{
// go to next edge
fDistance -= fEdgeLength;
fEdgeLength = getEdgeLength(rCandidate, ++nIndex);
}
else
{
// it's on this edge, stop
bIndexDone = true;
}
}
// get the point using nIndex
aRetval = rCandidate.getB2DPoint(nIndex);
// if fDistance != 0.0, move that length on the edge. The edge
// length is in fEdgeLength.
if(!fTools::equalZero(fDistance))
{
if(fTools::moreOrEqual(fDistance, fEdgeLength))
{
// end point of chosen edge
const sal_uInt32 nNextIndex((nIndex + 1) % nPointCount);
aRetval = rCandidate.getB2DPoint(nNextIndex);
}
else if(fTools::equalZero(fDistance))
{
// start point of chosen edge
aRetval = aRetval;
}
else
{
// inside edge
const sal_uInt32 nNextIndex((nIndex + 1) % nPointCount);
const B2DPoint aNextPoint(rCandidate.getB2DPoint(nNextIndex));
bool bDone(false);
// add calculated average value to the return value
if(rCandidate.areControlPointsUsed())
{
// get as bezier segment
const B2DCubicBezier aBezierSegment(
aRetval, rCandidate.getNextControlPoint(nIndex),
rCandidate.getPrevControlPoint(nNextIndex), aNextPoint);
if(aBezierSegment.isBezier())
{
// use B2DCubicBezierHelper to bridge the non-linear gap between
// length and bezier distances
const B2DCubicBezierHelper aBezierSegmentHelper(aBezierSegment);
const double fBezierDistance(aBezierSegmentHelper.distanceToRelative(fDistance));
aRetval = aBezierSegment.interpolatePoint(fBezierDistance);
bDone = true;
}
}
if(!bDone)
{
const double fRelativeInEdge(fDistance / fEdgeLength);
aRetval = interpolate(aRetval, aNextPoint, fRelativeInEdge);
}
}
}
}
return aRetval;
}
B2DPoint getPositionRelative(const B2DPolygon& rCandidate, double fDistance, double fLength)
{
// get length if not given
if(fTools::equalZero(fLength))
{
fLength = getLength(rCandidate);
}
// multiply fDistance with real length to get absolute position and
// use getPositionAbsolute
return getPositionAbsolute(rCandidate, fDistance * fLength, fLength);
}
B2DPolygon getSnippetAbsolute(const B2DPolygon& rCandidate, double fFrom, double fTo, double fLength)
{
const sal_uInt32 nPointCount(rCandidate.count());
if(nPointCount)
{
// get length if not given
if(fTools::equalZero(fLength))
{
fLength = getLength(rCandidate);
}
// test and correct fFrom
if(fTools::less(fFrom, 0.0))
{
fFrom = 0.0;
}
// test and correct fTo
if(fTools::more(fTo, fLength))
{
fTo = fLength;
}
// test and correct relationship of fFrom, fTo
if(fTools::more(fFrom, fTo))
{
fFrom = fTo = (fFrom + fTo) / 2.0;
}
if(fTools::equalZero(fFrom) && fTools::equal(fTo, fLength))
{
// no change, result is the whole polygon
return rCandidate;
}
else
{
B2DPolygon aRetval;
const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1);
double fPositionOfStart(0.0);
bool bStartDone(false);
bool bEndDone(false);
for(sal_uInt32 a(0); !(bStartDone && bEndDone) && a < nEdgeCount; a++)
{
const double fEdgeLength(getEdgeLength(rCandidate, a));
if(!bStartDone)
{
if(fTools::equalZero(fFrom))
{
aRetval.append(rCandidate.getB2DPoint(a));
if(rCandidate.areControlPointsUsed())
{
aRetval.setNextControlPoint(aRetval.count() - 1, rCandidate.getNextControlPoint(a));
}
bStartDone = true;
}
else if(fTools::moreOrEqual(fFrom, fPositionOfStart) && fTools::less(fFrom, fPositionOfStart + fEdgeLength))
{
// calculate and add start point
if(fTools::equalZero(fEdgeLength))
{
aRetval.append(rCandidate.getB2DPoint(a));
if(rCandidate.areControlPointsUsed())
{
aRetval.setNextControlPoint(aRetval.count() - 1, rCandidate.getNextControlPoint(a));
}
}
else
{
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
const B2DPoint aStart(rCandidate.getB2DPoint(a));
const B2DPoint aEnd(rCandidate.getB2DPoint(nNextIndex));
bool bDone(false);
if(rCandidate.areControlPointsUsed())
{
const B2DCubicBezier aBezierSegment(
aStart, rCandidate.getNextControlPoint(a),
rCandidate.getPrevControlPoint(nNextIndex), aEnd);
if(aBezierSegment.isBezier())
{
// use B2DCubicBezierHelper to bridge the non-linear gap between
// length and bezier distances
const B2DCubicBezierHelper aBezierSegmentHelper(aBezierSegment);
const double fBezierDistance(aBezierSegmentHelper.distanceToRelative(fFrom - fPositionOfStart));
B2DCubicBezier aRight;
aBezierSegment.split(fBezierDistance, nullptr, &aRight);
aRetval.append(aRight.getStartPoint());
aRetval.setNextControlPoint(aRetval.count() - 1, aRight.getControlPointA());
bDone = true;
}
}
if(!bDone)
{
const double fRelValue((fFrom - fPositionOfStart) / fEdgeLength);
aRetval.append(interpolate(aStart, aEnd, fRelValue));
}
}
bStartDone = true;
// if same point, end is done, too.
if(rtl::math::approxEqual(fFrom, fTo))
{
bEndDone = true;
}
}
}
if(!bEndDone && fTools::moreOrEqual(fTo, fPositionOfStart) && fTools::less(fTo, fPositionOfStart + fEdgeLength))
{
// calculate and add end point
if(fTools::equalZero(fEdgeLength))
{
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
aRetval.append(rCandidate.getB2DPoint(nNextIndex));
if(rCandidate.areControlPointsUsed())
{
aRetval.setPrevControlPoint(aRetval.count() - 1, rCandidate.getPrevControlPoint(nNextIndex));
}
}
else
{
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
const B2DPoint aStart(rCandidate.getB2DPoint(a));
const B2DPoint aEnd(rCandidate.getB2DPoint(nNextIndex));
bool bDone(false);
if(rCandidate.areControlPointsUsed())
{
const B2DCubicBezier aBezierSegment(
aStart, rCandidate.getNextControlPoint(a),
rCandidate.getPrevControlPoint(nNextIndex), aEnd);
if(aBezierSegment.isBezier())
{
// use B2DCubicBezierHelper to bridge the non-linear gap between
// length and bezier distances
const B2DCubicBezierHelper aBezierSegmentHelper(aBezierSegment);
const double fBezierDistance(aBezierSegmentHelper.distanceToRelative(fTo - fPositionOfStart));
B2DCubicBezier aLeft;
aBezierSegment.split(fBezierDistance, &aLeft, nullptr);
aRetval.append(aLeft.getEndPoint());
aRetval.setPrevControlPoint(aRetval.count() - 1, aLeft.getControlPointB());
bDone = true;
}
}
if(!bDone)
{
const double fRelValue((fTo - fPositionOfStart) / fEdgeLength);
aRetval.append(interpolate(aStart, aEnd, fRelValue));
}
}
bEndDone = true;
}
if(!bEndDone)
{
if(bStartDone)
{
// add segments end point
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
aRetval.append(rCandidate.getB2DPoint(nNextIndex));
if(rCandidate.areControlPointsUsed())
{
aRetval.setPrevControlPoint(aRetval.count() - 1, rCandidate.getPrevControlPoint(nNextIndex));
aRetval.setNextControlPoint(aRetval.count() - 1, rCandidate.getNextControlPoint(nNextIndex));
}
}
// increment fPositionOfStart
fPositionOfStart += fEdgeLength;
}
}
return aRetval;
}
}
else
{
return rCandidate;
}
}
CutFlagValue findCut(
const B2DPoint& rEdge1Start, const B2DVector& rEdge1Delta,
const B2DPoint& rEdge2Start, const B2DVector& rEdge2Delta,
CutFlagValue aCutFlags,
double* pCut1, double* pCut2)
{
CutFlagValue aRetval(CutFlagValue::NONE);
double fCut1(0.0);
double fCut2(0.0);
bool bFinished(!((bool)(aCutFlags & CutFlagValue::ALL)));
// test for same points?
if(!bFinished
&& (aCutFlags & (CutFlagValue::START1|CutFlagValue::END1))
&& (aCutFlags & (CutFlagValue::START2|CutFlagValue::END2)))
{
// same startpoint?
if((aCutFlags & (CutFlagValue::START1|CutFlagValue::START2)) == (CutFlagValue::START1|CutFlagValue::START2))
{
if(rEdge1Start.equal(rEdge2Start))
{
bFinished = true;
aRetval = (CutFlagValue::START1|CutFlagValue::START2);
}
}
// same endpoint?
if(!bFinished && (aCutFlags & (CutFlagValue::END1|CutFlagValue::END2)) == (CutFlagValue::END1|CutFlagValue::END2))
{
const B2DPoint aEnd1(rEdge1Start + rEdge1Delta);
const B2DPoint aEnd2(rEdge2Start + rEdge2Delta);
if(aEnd1.equal(aEnd2))
{
bFinished = true;
aRetval = (CutFlagValue::END1|CutFlagValue::END2);
fCut1 = fCut2 = 1.0;
}
}
// startpoint1 == endpoint2?
if(!bFinished && (aCutFlags & (CutFlagValue::START1|CutFlagValue::END2)) == (CutFlagValue::START1|CutFlagValue::END2))
{
const B2DPoint aEnd2(rEdge2Start + rEdge2Delta);
if(rEdge1Start.equal(aEnd2))
{
bFinished = true;
aRetval = (CutFlagValue::START1|CutFlagValue::END2);
fCut1 = 0.0;
fCut2 = 1.0;
}
}
// startpoint2 == endpoint1?
if(!bFinished&& (aCutFlags & (CutFlagValue::START2|CutFlagValue::END1)) == (CutFlagValue::START2|CutFlagValue::END1))
{
const B2DPoint aEnd1(rEdge1Start + rEdge1Delta);
if(rEdge2Start.equal(aEnd1))
{
bFinished = true;
aRetval = (CutFlagValue::START2|CutFlagValue::END1);
fCut1 = 1.0;
fCut2 = 0.0;
}
}
}
if(!bFinished && (aCutFlags & CutFlagValue::LINE))
{
if((aCutFlags & CutFlagValue::START1))
{
// start1 on line 2 ?
if(isPointOnEdge(rEdge1Start, rEdge2Start, rEdge2Delta, &fCut2))
{
bFinished = true;
aRetval = (CutFlagValue::LINE|CutFlagValue::START1);
}
}
if(!bFinished && (aCutFlags & CutFlagValue::START2))
{
// start2 on line 1 ?
if(isPointOnEdge(rEdge2Start, rEdge1Start, rEdge1Delta, &fCut1))
{
bFinished = true;
aRetval = (CutFlagValue::LINE|CutFlagValue::START2);
}
}
if(!bFinished && (aCutFlags & CutFlagValue::END1))
{
// end1 on line 2 ?
const B2DPoint aEnd1(rEdge1Start + rEdge1Delta);
if(isPointOnEdge(aEnd1, rEdge2Start, rEdge2Delta, &fCut2))
{
bFinished = true;
aRetval = (CutFlagValue::LINE|CutFlagValue::END1);
}
}
if(!bFinished && (aCutFlags & CutFlagValue::END2))
{
// end2 on line 1 ?
const B2DPoint aEnd2(rEdge2Start + rEdge2Delta);
if(isPointOnEdge(aEnd2, rEdge1Start, rEdge1Delta, &fCut1))
{
bFinished = true;
aRetval = (CutFlagValue::LINE|CutFlagValue::END2);
}
}
if(!bFinished)
{
// cut in line1, line2 ?
fCut1 = (rEdge1Delta.getX() * rEdge2Delta.getY()) - (rEdge1Delta.getY() * rEdge2Delta.getX());
if(!fTools::equalZero(fCut1))
{
fCut1 = (rEdge2Delta.getY() * (rEdge2Start.getX() - rEdge1Start.getX())
+ rEdge2Delta.getX() * (rEdge1Start.getY() - rEdge2Start.getY())) / fCut1;
const double fZero(0.0);
const double fOne(1.0);
// inside parameter range edge1 AND fCut2 is calculable
if(fTools::more(fCut1, fZero) && fTools::less(fCut1, fOne)
&& (!fTools::equalZero(rEdge2Delta.getX()) || !fTools::equalZero(rEdge2Delta.getY())))
{
// take the more precise calculation of the two possible
if(fabs(rEdge2Delta.getX()) > fabs(rEdge2Delta.getY()))
{
fCut2 = (rEdge1Start.getX() + fCut1
* rEdge1Delta.getX() - rEdge2Start.getX()) / rEdge2Delta.getX();
}
else
{
fCut2 = (rEdge1Start.getY() + fCut1
* rEdge1Delta.getY() - rEdge2Start.getY()) / rEdge2Delta.getY();
}
// inside parameter range edge2, too
if(fTools::more(fCut2, fZero) && fTools::less(fCut2, fOne))
{
aRetval = CutFlagValue::LINE;
}
}
}
}
}
// copy values if wanted
if(pCut1)
{
*pCut1 = fCut1;
}
if(pCut2)
{
*pCut2 = fCut2;
}
return aRetval;
}
bool isPointOnEdge(
const B2DPoint& rPoint,
const B2DPoint& rEdgeStart,
const B2DVector& rEdgeDelta,
double* pCut)
{
bool bDeltaXIsZero(fTools::equalZero(rEdgeDelta.getX()));
bool bDeltaYIsZero(fTools::equalZero(rEdgeDelta.getY()));
const double fZero(0.0);
const double fOne(1.0);
if(bDeltaXIsZero && bDeltaYIsZero)
{
// no line, just a point
return false;
}
else if(bDeltaXIsZero)
{
// vertical line
if(fTools::equal(rPoint.getX(), rEdgeStart.getX()))
{
double fValue = (rPoint.getY() - rEdgeStart.getY()) / rEdgeDelta.getY();
if(fTools::more(fValue, fZero) && fTools::less(fValue, fOne))
{
if(pCut)
{
*pCut = fValue;
}
return true;
}
}
}
else if(bDeltaYIsZero)
{
// horizontal line
if(fTools::equal(rPoint.getY(), rEdgeStart.getY()))
{
double fValue = (rPoint.getX() - rEdgeStart.getX()) / rEdgeDelta.getX();
if(fTools::more(fValue, fZero) && fTools::less(fValue, fOne))
{
if(pCut)
{
*pCut = fValue;
}
return true;
}
}
}
else
{
// any angle line
double fTOne = (rPoint.getX() - rEdgeStart.getX()) / rEdgeDelta.getX();
double fTTwo = (rPoint.getY() - rEdgeStart.getY()) / rEdgeDelta.getY();
if(fTools::equal(fTOne, fTTwo))
{
// same parameter representation, point is on line. Take
// middle value for better results
double fValue = (fTOne + fTTwo) / 2.0;
if(fTools::more(fValue, fZero) && fTools::less(fValue, fOne))
{
// point is inside line bounds, too
if(pCut)
{
*pCut = fValue;
}
return true;
}
}
}
return false;
}
void applyLineDashing(const B2DPolygon& rCandidate, const std::vector<double>& rDotDashArray, B2DPolyPolygon* pLineTarget, B2DPolyPolygon* pGapTarget, double fDotDashLength)
{
const sal_uInt32 nPointCount(rCandidate.count());
const sal_uInt32 nDotDashCount(rDotDashArray.size());
if(fTools::lessOrEqual(fDotDashLength, 0.0))
{
fDotDashLength = std::accumulate(rDotDashArray.begin(), rDotDashArray.end(), 0.0);
}
if(fTools::more(fDotDashLength, 0.0) && (pLineTarget || pGapTarget) && nPointCount)
{
// clear targets
if(pLineTarget)
{
pLineTarget->clear();
}
if(pGapTarget)
{
pGapTarget->clear();
}
// prepare current edge's start
B2DCubicBezier aCurrentEdge;
const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1);
aCurrentEdge.setStartPoint(rCandidate.getB2DPoint(0));
// prepare DotDashArray iteration and the line/gap switching bool
sal_uInt32 nDotDashIndex(0);
bool bIsLine(true);
double fDotDashMovingLength(rDotDashArray[0]);
B2DPolygon aSnippet;
// iterate over all edges
for(sal_uInt32 a(0); a < nEdgeCount; a++)
{
// update current edge (fill in C1, C2 and end point)
double fLastDotDashMovingLength(0.0);
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
aCurrentEdge.setControlPointA(rCandidate.getNextControlPoint(a));
aCurrentEdge.setControlPointB(rCandidate.getPrevControlPoint(nNextIndex));
aCurrentEdge.setEndPoint(rCandidate.getB2DPoint(nNextIndex));
// check if we have a trivial bezier segment -> possible fallback to edge
aCurrentEdge.testAndSolveTrivialBezier();
if(aCurrentEdge.isBezier())
{
// bezier segment
const B2DCubicBezierHelper aCubicBezierHelper(aCurrentEdge);
const double fEdgeLength(aCubicBezierHelper.getLength());
if(!fTools::equalZero(fEdgeLength))
{
while(fTools::less(fDotDashMovingLength, fEdgeLength))
{
// new split is inside edge, create and append snippet [fLastDotDashMovingLength, fDotDashMovingLength]
const bool bHandleLine(bIsLine && pLineTarget);
const bool bHandleGap(!bIsLine && pGapTarget);
if(bHandleLine || bHandleGap)
{
const double fBezierSplitStart(aCubicBezierHelper.distanceToRelative(fLastDotDashMovingLength));
const double fBezierSplitEnd(aCubicBezierHelper.distanceToRelative(fDotDashMovingLength));
B2DCubicBezier aBezierSnippet(aCurrentEdge.snippet(fBezierSplitStart, fBezierSplitEnd));
if(!aSnippet.count())
{
aSnippet.append(aBezierSnippet.getStartPoint());
}
aSnippet.appendBezierSegment(aBezierSnippet.getControlPointA(), aBezierSnippet.getControlPointB(), aBezierSnippet.getEndPoint());
if(bHandleLine)
{
pLineTarget->append(aSnippet);
}
else
{
pGapTarget->append(aSnippet);
}
aSnippet.clear();
}
// prepare next DotDashArray step and flip line/gap flag
fLastDotDashMovingLength = fDotDashMovingLength;
fDotDashMovingLength += rDotDashArray[(++nDotDashIndex) % nDotDashCount];
bIsLine = !bIsLine;
}
// append closing snippet [fLastDotDashMovingLength, fEdgeLength]
const bool bHandleLine(bIsLine && pLineTarget);
const bool bHandleGap(!bIsLine && pGapTarget);
if(bHandleLine || bHandleGap)
{
B2DCubicBezier aRight;
const double fBezierSplit(aCubicBezierHelper.distanceToRelative(fLastDotDashMovingLength));
aCurrentEdge.split(fBezierSplit, nullptr, &aRight);
if(!aSnippet.count())
{
aSnippet.append(aRight.getStartPoint());
}
aSnippet.appendBezierSegment(aRight.getControlPointA(), aRight.getControlPointB(), aRight.getEndPoint());
}
// prepare move to next edge
fDotDashMovingLength -= fEdgeLength;
}
}
else
{
// simple edge
const double fEdgeLength(aCurrentEdge.getEdgeLength());
if(!fTools::equalZero(fEdgeLength))
{
while(fTools::less(fDotDashMovingLength, fEdgeLength))
{
// new split is inside edge, create and append snippet [fLastDotDashMovingLength, fDotDashMovingLength]
const bool bHandleLine(bIsLine && pLineTarget);
const bool bHandleGap(!bIsLine && pGapTarget);
if(bHandleLine || bHandleGap)
{
if(!aSnippet.count())
{
aSnippet.append(interpolate(aCurrentEdge.getStartPoint(), aCurrentEdge.getEndPoint(), fLastDotDashMovingLength / fEdgeLength));
}
aSnippet.append(interpolate(aCurrentEdge.getStartPoint(), aCurrentEdge.getEndPoint(), fDotDashMovingLength / fEdgeLength));
if(bHandleLine)
{
pLineTarget->append(aSnippet);
}
else
{
pGapTarget->append(aSnippet);
}
aSnippet.clear();
}
// prepare next DotDashArray step and flip line/gap flag
fLastDotDashMovingLength = fDotDashMovingLength;
fDotDashMovingLength += rDotDashArray[(++nDotDashIndex) % nDotDashCount];
bIsLine = !bIsLine;
}
// append snippet [fLastDotDashMovingLength, fEdgeLength]
const bool bHandleLine(bIsLine && pLineTarget);
const bool bHandleGap(!bIsLine && pGapTarget);
if(bHandleLine || bHandleGap)
{
if(!aSnippet.count())
{
aSnippet.append(interpolate(aCurrentEdge.getStartPoint(), aCurrentEdge.getEndPoint(), fLastDotDashMovingLength / fEdgeLength));
}
aSnippet.append(aCurrentEdge.getEndPoint());
}
// prepare move to next edge
fDotDashMovingLength -= fEdgeLength;
}
}
// prepare next edge step (end point gets new start point)
aCurrentEdge.setStartPoint(aCurrentEdge.getEndPoint());
}
// append last intermediate results (if exists)
if(aSnippet.count())
{
if(bIsLine && pLineTarget)
{
pLineTarget->append(aSnippet);
}
else if(!bIsLine && pGapTarget)
{
pGapTarget->append(aSnippet);
}
}
// check if start and end polygon may be merged
if(pLineTarget)
{
const sal_uInt32 nCount(pLineTarget->count());
if(nCount > 1)
{
// these polygons were created above, there exists none with less than two points,
// thus dircet point access below is allowed
const B2DPolygon aFirst(pLineTarget->getB2DPolygon(0));
B2DPolygon aLast(pLineTarget->getB2DPolygon(nCount - 1));
if(aFirst.getB2DPoint(0).equal(aLast.getB2DPoint(aLast.count() - 1)))
{
// start of first and end of last are the same -> merge them
aLast.append(aFirst);
aLast.removeDoublePoints();
pLineTarget->setB2DPolygon(0, aLast);
pLineTarget->remove(nCount - 1);
}
}
}
if(pGapTarget)
{
const sal_uInt32 nCount(pGapTarget->count());
if(nCount > 1)
{
// these polygons were created above, there exists none with less than two points,
// thus dircet point access below is allowed
const B2DPolygon aFirst(pGapTarget->getB2DPolygon(0));
B2DPolygon aLast(pGapTarget->getB2DPolygon(nCount - 1));
if(aFirst.getB2DPoint(0).equal(aLast.getB2DPoint(aLast.count() - 1)))
{
// start of first and end of last are the same -> merge them
aLast.append(aFirst);
aLast.removeDoublePoints();
pGapTarget->setB2DPolygon(0, aLast);
pGapTarget->remove(nCount - 1);
}
}
}
}
else
{
// parameters make no sense, just add source to targets
if(pLineTarget)
{
pLineTarget->append(rCandidate);
}
if(pGapTarget)
{
pGapTarget->append(rCandidate);
}
}
}
// test if point is inside epsilon-range around an edge defined
// by the two given points. Can be used for HitTesting. The epsilon-range
// is defined to be the rectangle centered to the given edge, using height
// 2 x fDistance, and the circle around both points with radius fDistance.
bool isInEpsilonRange(const B2DPoint& rEdgeStart, const B2DPoint& rEdgeEnd, const B2DPoint& rTestPosition, double fDistance)
{
// build edge vector
const B2DVector aEdge(rEdgeEnd - rEdgeStart);
bool bDoDistanceTestStart(false);
bool bDoDistanceTestEnd(false);
if(aEdge.equalZero())
{
// no edge, just a point. Do one of the distance tests.
bDoDistanceTestStart = true;
}
else
{
// edge has a length. Create perpendicular vector.
const B2DVector aPerpend(getPerpendicular(aEdge));
double fCut(
(aPerpend.getY() * (rTestPosition.getX() - rEdgeStart.getX())
+ aPerpend.getX() * (rEdgeStart.getY() - rTestPosition.getY())) /
(aEdge.getX() * aEdge.getX() + aEdge.getY() * aEdge.getY()));
const double fZero(0.0);
const double fOne(1.0);
if(fTools::less(fCut, fZero))
{
// left of rEdgeStart
bDoDistanceTestStart = true;
}
else if(fTools::more(fCut, fOne))
{
// right of rEdgeEnd
bDoDistanceTestEnd = true;
}
else
{
// inside line [0.0 .. 1.0]
const B2DPoint aCutPoint(interpolate(rEdgeStart, rEdgeEnd, fCut));
const B2DVector aDelta(rTestPosition - aCutPoint);
const double fDistanceSquare(aDelta.scalar(aDelta));
return fDistanceSquare <= fDistance * fDistance;
}
}
if(bDoDistanceTestStart)
{
const B2DVector aDelta(rTestPosition - rEdgeStart);
const double fDistanceSquare(aDelta.scalar(aDelta));
if(fDistanceSquare <= fDistance * fDistance)
{
return true;
}
}
else if(bDoDistanceTestEnd)
{
const B2DVector aDelta(rTestPosition - rEdgeEnd);
const double fDistanceSquare(aDelta.scalar(aDelta));
if(fDistanceSquare <= fDistance * fDistance)
{
return true;
}
}
return false;
}
// test if point is inside epsilon-range around the given Polygon. Can be used
// for HitTesting. The epsilon-range is defined to be the tube around the polygon
// with distance fDistance and rounded edges (start and end point).
bool isInEpsilonRange(const B2DPolygon& rCandidate, const B2DPoint& rTestPosition, double fDistance)
{
// force to non-bezier polygon
const B2DPolygon aCandidate(rCandidate.getDefaultAdaptiveSubdivision());
const sal_uInt32 nPointCount(aCandidate.count());
if(nPointCount)
{
const sal_uInt32 nEdgeCount(aCandidate.isClosed() ? nPointCount : nPointCount - 1);
B2DPoint aCurrent(aCandidate.getB2DPoint(0));
if(nEdgeCount)
{
// edges
for(sal_uInt32 a(0); a < nEdgeCount; a++)
{
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
const B2DPoint aNext(aCandidate.getB2DPoint(nNextIndex));
if(isInEpsilonRange(aCurrent, aNext, rTestPosition, fDistance))
{
return true;
}
// prepare next step
aCurrent = aNext;
}
}
else
{
// no edges, but points -> not closed. Check single point. Just
// use isInEpsilonRange with twice the same point, it handles those well
if(isInEpsilonRange(aCurrent, aCurrent, rTestPosition, fDistance))
{
return true;
}
}
}
return false;
}
B2DPolygon createPolygonFromRect( const B2DRectangle& rRect, double fRadiusX, double fRadiusY )
{
const double fZero(0.0);
const double fOne(1.0);
// crop to useful values
if(fTools::less(fRadiusX, fZero))
{
fRadiusX = fZero;
}
else if(fTools::more(fRadiusX, fOne))
{
fRadiusX = fOne;
}
if(fTools::less(fRadiusY, fZero))
{
fRadiusY = fZero;
}
else if(fTools::more(fRadiusY, fOne))
{
fRadiusY = fOne;
}
if(rtl::math::approxEqual(fZero, fRadiusX) || rtl::math::approxEqual(fZero, fRadiusY))
{
// at least in one direction no radius, use rectangle.
// Do not use createPolygonFromRect() here since original
// creator (historical reasons) still creates a start point at the
// bottom center, so do the same here to get the same line patterns.
// Due to this the order of points is different, too.
const B2DPoint aBottomCenter(rRect.getCenter().getX(), rRect.getMaxY());
B2DPolygon aPolygon {
aBottomCenter,
{ rRect.getMinX(), rRect.getMaxY() },
{ rRect.getMinX(), rRect.getMinY() },
{ rRect.getMaxX(), rRect.getMinY() },
{ rRect.getMaxX(), rRect.getMaxY() }
};
// close
aPolygon.setClosed( true );
return aPolygon;
}
else if(rtl::math::approxEqual(fOne, fRadiusX) && rtl::math::approxEqual(fOne, fRadiusY))
{
// in both directions full radius, use ellipse
const B2DPoint aCenter(rRect.getCenter());
const double fRectRadiusX(rRect.getWidth() / 2.0);
const double fRectRadiusY(rRect.getHeight() / 2.0);
return createPolygonFromEllipse( aCenter, fRectRadiusX, fRectRadiusY );
}
else
{
B2DPolygon aRetval;
const double fBowX((rRect.getWidth() / 2.0) * fRadiusX);
const double fBowY((rRect.getHeight() / 2.0) * fRadiusY);
const double fKappa((M_SQRT2 - 1.0) * 4.0 / 3.0);
// create start point at bottom center
if(!rtl::math::approxEqual(fOne, fRadiusX))
{
const B2DPoint aBottomCenter(rRect.getCenter().getX(), rRect.getMaxY());
aRetval.append(aBottomCenter);
}
// create first bow
{
const B2DPoint aBottomRight(rRect.getMaxX(), rRect.getMaxY());
const B2DPoint aStart(aBottomRight + B2DPoint(-fBowX, 0.0));
const B2DPoint aStop(aBottomRight + B2DPoint(0.0, -fBowY));
aRetval.append(aStart);
aRetval.appendBezierSegment(interpolate(aStart, aBottomRight, fKappa), interpolate(aStop, aBottomRight, fKappa), aStop);
}
// create second bow
{
const B2DPoint aTopRight(rRect.getMaxX(), rRect.getMinY());
const B2DPoint aStart(aTopRight + B2DPoint(0.0, fBowY));
const B2DPoint aStop(aTopRight + B2DPoint(-fBowX, 0.0));
aRetval.append(aStart);
aRetval.appendBezierSegment(interpolate(aStart, aTopRight, fKappa), interpolate(aStop, aTopRight, fKappa), aStop);
}
// create third bow
{
const B2DPoint aTopLeft(rRect.getMinX(), rRect.getMinY());
const B2DPoint aStart(aTopLeft + B2DPoint(fBowX, 0.0));
const B2DPoint aStop(aTopLeft + B2DPoint(0.0, fBowY));
aRetval.append(aStart);
aRetval.appendBezierSegment(interpolate(aStart, aTopLeft, fKappa), interpolate(aStop, aTopLeft, fKappa), aStop);
}
// create forth bow
{
const B2DPoint aBottomLeft(rRect.getMinX(), rRect.getMaxY());
const B2DPoint aStart(aBottomLeft + B2DPoint(0.0, -fBowY));
const B2DPoint aStop(aBottomLeft + B2DPoint(fBowX, 0.0));
aRetval.append(aStart);
aRetval.appendBezierSegment(interpolate(aStart, aBottomLeft, fKappa), interpolate(aStop, aBottomLeft, fKappa), aStop);
}
// close
aRetval.setClosed( true );
// remove double created points if there are extreme radii involved
if(rtl::math::approxEqual(fOne, fRadiusX) || rtl::math::approxEqual(fOne, fRadiusY))
{
aRetval.removeDoublePoints();
}
return aRetval;
}
}
B2DPolygon createPolygonFromRect( const B2DRectangle& rRect )
{
B2DPolygon aPolygon {
{ rRect.getMinX(), rRect.getMinY() },
{ rRect.getMaxX(), rRect.getMinY() },
{ rRect.getMaxX(), rRect.getMaxY() },
{ rRect.getMinX(), rRect.getMaxY() }
};
// close
aPolygon.setClosed( true );
return aPolygon;
}
namespace
{
struct theUnitPolygon :
public rtl::StaticWithInit<B2DPolygon, theUnitPolygon>
{
B2DPolygon operator () ()
{
B2DPolygon aPolygon {
{ 0.0, 0.0 },
{ 1.0, 0.0 },
{ 1.0, 1.0 },
{ 0.0, 1.0 }
};
// close
aPolygon.setClosed( true );
return aPolygon;
}
};
}
B2DPolygon createUnitPolygon()
{
return theUnitPolygon::get();
}
B2DPolygon createPolygonFromCircle( const B2DPoint& rCenter, double fRadius )
{
return createPolygonFromEllipse( rCenter, fRadius, fRadius );
}
B2DPolygon impCreateUnitCircle(sal_uInt32 nStartQuadrant)
{
B2DPolygon aUnitCircle;
const double fKappa((M_SQRT2 - 1.0) * 4.0 / 3.0);
const double fScaledKappa(fKappa * (1.0 / STEPSPERQUARTER));
const B2DHomMatrix aRotateMatrix(createRotateB2DHomMatrix(F_PI2 / STEPSPERQUARTER));
B2DPoint aPoint(1.0, 0.0);
B2DPoint aForward(1.0, fScaledKappa);
B2DPoint aBackward(1.0, -fScaledKappa);
if(nStartQuadrant != 0)
{
const B2DHomMatrix aQuadrantMatrix(createRotateB2DHomMatrix(F_PI2 * (nStartQuadrant % 4)));
aPoint *= aQuadrantMatrix;
aBackward *= aQuadrantMatrix;
aForward *= aQuadrantMatrix;
}
aUnitCircle.append(aPoint);
for(sal_uInt32 a(0); a < STEPSPERQUARTER * 4; a++)
{
aPoint *= aRotateMatrix;
aBackward *= aRotateMatrix;
aUnitCircle.appendBezierSegment(aForward, aBackward, aPoint);
aForward *= aRotateMatrix;
}
aUnitCircle.setClosed(true);
aUnitCircle.removeDoublePoints();
return aUnitCircle;
}
namespace
{
struct theUnitHalfCircle :
public rtl::StaticWithInit<B2DPolygon, theUnitHalfCircle>
{
B2DPolygon operator()()
{
B2DPolygon aUnitHalfCircle;
const double fKappa((M_SQRT2 - 1.0) * 4.0 / 3.0);
const double fScaledKappa(fKappa * (1.0 / STEPSPERQUARTER));
const B2DHomMatrix aRotateMatrix(createRotateB2DHomMatrix(F_PI2 / STEPSPERQUARTER));
B2DPoint aPoint(1.0, 0.0);
B2DPoint aForward(1.0, fScaledKappa);
B2DPoint aBackward(1.0, -fScaledKappa);
aUnitHalfCircle.append(aPoint);
for(sal_uInt32 a(0); a < STEPSPERQUARTER * 2; a++)
{
aPoint *= aRotateMatrix;
aBackward *= aRotateMatrix;
aUnitHalfCircle.appendBezierSegment(aForward, aBackward, aPoint);
aForward *= aRotateMatrix;
}
return aUnitHalfCircle;
}
};
}
B2DPolygon createHalfUnitCircle()
{
return theUnitHalfCircle::get();
}
namespace
{
struct theUnitCircleStartQuadrantOne :
public rtl::StaticWithInit<B2DPolygon, theUnitCircleStartQuadrantOne>
{
B2DPolygon operator()() { return impCreateUnitCircle(1); }
};
struct theUnitCircleStartQuadrantTwo :
public rtl::StaticWithInit<B2DPolygon, theUnitCircleStartQuadrantTwo>
{
B2DPolygon operator()() { return impCreateUnitCircle(2); }
};
struct theUnitCircleStartQuadrantThree :
public rtl::StaticWithInit<B2DPolygon, theUnitCircleStartQuadrantThree>
{
B2DPolygon operator()() { return impCreateUnitCircle(3); }
};
struct theUnitCircleStartQuadrantZero :
public rtl::StaticWithInit<B2DPolygon, theUnitCircleStartQuadrantZero>
{
B2DPolygon operator()() { return impCreateUnitCircle(0); }
};
}
B2DPolygon createPolygonFromUnitCircle(sal_uInt32 nStartQuadrant)
{
switch(nStartQuadrant % 4)
{
case 1 :
return theUnitCircleStartQuadrantOne::get();
case 2 :
return theUnitCircleStartQuadrantTwo::get();
case 3 :
return theUnitCircleStartQuadrantThree::get();
default : // case 0 :
return theUnitCircleStartQuadrantZero::get();
}
}
B2DPolygon createPolygonFromEllipse( const B2DPoint& rCenter, double fRadiusX, double fRadiusY )
{
B2DPolygon aRetval(createPolygonFromUnitCircle());
const B2DHomMatrix aMatrix(createScaleTranslateB2DHomMatrix(fRadiusX, fRadiusY, rCenter.getX(), rCenter.getY()));
aRetval.transform(aMatrix);
return aRetval;
}
B2DPolygon createPolygonFromUnitEllipseSegment( double fStart, double fEnd )
{
B2DPolygon aRetval;
// truncate fStart, fEnd to a range of [0.0 .. F_2PI[ where F_2PI
// falls back to 0.0 to ensure a unique definition
if(fTools::less(fStart, 0.0))
{
fStart = 0.0;
}
if(fTools::moreOrEqual(fStart, F_2PI))
{
fStart = 0.0;
}
if(fTools::less(fEnd, 0.0))
{
fEnd = 0.0;
}
if(fTools::moreOrEqual(fEnd, F_2PI))
{
fEnd = 0.0;
}
if(fTools::equal(fStart, fEnd))
{
// same start and end angle, add single point
aRetval.append(B2DPoint(cos(fStart), sin(fStart)));
}
else
{
const sal_uInt32 nSegments(STEPSPERQUARTER * 4);
const double fAnglePerSegment(F_PI2 / STEPSPERQUARTER);
const sal_uInt32 nStartSegment(sal_uInt32(fStart / fAnglePerSegment) % nSegments);
const sal_uInt32 nEndSegment(sal_uInt32(fEnd / fAnglePerSegment) % nSegments);
const double fKappa((M_SQRT2 - 1.0) * 4.0 / 3.0);
const double fScaledKappa(fKappa * (1.0 / STEPSPERQUARTER));
B2DPoint aSegStart(cos(fStart), sin(fStart));
aRetval.append(aSegStart);
if(nStartSegment == nEndSegment && fTools::more(fEnd, fStart))
{
// start and end in one sector and in the right order, create in one segment
const B2DPoint aSegEnd(cos(fEnd), sin(fEnd));
const double fFactor(fScaledKappa * ((fEnd - fStart) / fAnglePerSegment));
aRetval.appendBezierSegment(
aSegStart + (B2DPoint(-aSegStart.getY(), aSegStart.getX()) * fFactor),
aSegEnd - (B2DPoint(-aSegEnd.getY(), aSegEnd.getX()) * fFactor),
aSegEnd);
}
else
{
double fSegEndRad((nStartSegment + 1) * fAnglePerSegment);
double fFactor(fScaledKappa * ((fSegEndRad - fStart) / fAnglePerSegment));
B2DPoint aSegEnd(cos(fSegEndRad), sin(fSegEndRad));
aRetval.appendBezierSegment(
aSegStart + (B2DPoint(-aSegStart.getY(), aSegStart.getX()) * fFactor),
aSegEnd - (B2DPoint(-aSegEnd.getY(), aSegEnd.getX()) * fFactor),
aSegEnd);
sal_uInt32 nSegment((nStartSegment + 1) % nSegments);
aSegStart = aSegEnd;
while(nSegment != nEndSegment)
{
// No end in this sector, add full sector.
fSegEndRad = (nSegment + 1) * fAnglePerSegment;
aSegEnd = B2DPoint(cos(fSegEndRad), sin(fSegEndRad));
aRetval.appendBezierSegment(
aSegStart + (B2DPoint(-aSegStart.getY(), aSegStart.getX()) * fScaledKappa),
aSegEnd - (B2DPoint(-aSegEnd.getY(), aSegEnd.getX()) * fScaledKappa),
aSegEnd);
nSegment = (nSegment + 1) % nSegments;
aSegStart = aSegEnd;
}
// End in this sector
const double fSegStartRad(nSegment * fAnglePerSegment);
fFactor = fScaledKappa * ((fEnd - fSegStartRad) / fAnglePerSegment);
aSegEnd = B2DPoint(cos(fEnd), sin(fEnd));
aRetval.appendBezierSegment(
aSegStart + (B2DPoint(-aSegStart.getY(), aSegStart.getX()) * fFactor),
aSegEnd - (B2DPoint(-aSegEnd.getY(), aSegEnd.getX()) * fFactor),
aSegEnd);
}
}
// remove double points between segments created by segmented creation
aRetval.removeDoublePoints();
return aRetval;
}
B2DPolygon createPolygonFromEllipseSegment( const B2DPoint& rCenter, double fRadiusX, double fRadiusY, double fStart, double fEnd )
{
B2DPolygon aRetval(createPolygonFromUnitEllipseSegment(fStart, fEnd));
const B2DHomMatrix aMatrix(createScaleTranslateB2DHomMatrix(fRadiusX, fRadiusY, rCenter.getX(), rCenter.getY()));
aRetval.transform(aMatrix);
return aRetval;
}
bool hasNeutralPoints(const B2DPolygon& rCandidate)
{
OSL_ENSURE(!rCandidate.areControlPointsUsed(), "hasNeutralPoints: ATM works not for curves (!)");
const sal_uInt32 nPointCount(rCandidate.count());
if(nPointCount > 2)
{
B2DPoint aPrevPoint(rCandidate.getB2DPoint(nPointCount - 1));
B2DPoint aCurrPoint(rCandidate.getB2DPoint(0));
for(sal_uInt32 a(0); a < nPointCount; a++)
{
const B2DPoint aNextPoint(rCandidate.getB2DPoint((a + 1) % nPointCount));
const B2DVector aPrevVec(aPrevPoint - aCurrPoint);
const B2DVector aNextVec(aNextPoint - aCurrPoint);
const B2VectorOrientation aOrientation(getOrientation(aNextVec, aPrevVec));
if(aOrientation == B2VectorOrientation::Neutral)
{
// current has neutral orientation
return true;
}
else
{
// prepare next
aPrevPoint = aCurrPoint;
aCurrPoint = aNextPoint;
}
}
}
return false;
}
B2DPolygon removeNeutralPoints(const B2DPolygon& rCandidate)
{
if(hasNeutralPoints(rCandidate))
{
const sal_uInt32 nPointCount(rCandidate.count());
B2DPolygon aRetval;
B2DPoint aPrevPoint(rCandidate.getB2DPoint(nPointCount - 1));
B2DPoint aCurrPoint(rCandidate.getB2DPoint(0));
for(sal_uInt32 a(0); a < nPointCount; a++)
{
const B2DPoint aNextPoint(rCandidate.getB2DPoint((a + 1) % nPointCount));
const B2DVector aPrevVec(aPrevPoint - aCurrPoint);
const B2DVector aNextVec(aNextPoint - aCurrPoint);
const B2VectorOrientation aOrientation(getOrientation(aNextVec, aPrevVec));
if(aOrientation == B2VectorOrientation::Neutral)
{
// current has neutral orientation, leave it out and prepare next
aCurrPoint = aNextPoint;
}
else
{
// add current point
aRetval.append(aCurrPoint);
// prepare next
aPrevPoint = aCurrPoint;
aCurrPoint = aNextPoint;
}
}
while(aRetval.count() && getOrientationForIndex(aRetval, 0) == B2VectorOrientation::Neutral)
{
aRetval.remove(0);
}
// copy closed state
aRetval.setClosed(rCandidate.isClosed());
return aRetval;
}
else
{
return rCandidate;
}
}
bool isConvex(const B2DPolygon& rCandidate)
{
OSL_ENSURE(!rCandidate.areControlPointsUsed(), "isConvex: ATM works not for curves (!)");
const sal_uInt32 nPointCount(rCandidate.count());
if(nPointCount > 2)
{
const B2DPoint aPrevPoint(rCandidate.getB2DPoint(nPointCount - 1));
B2DPoint aCurrPoint(rCandidate.getB2DPoint(0));
B2DVector aCurrVec(aPrevPoint - aCurrPoint);
B2VectorOrientation aOrientation(B2VectorOrientation::Neutral);
for(sal_uInt32 a(0); a < nPointCount; a++)
{
const B2DPoint aNextPoint(rCandidate.getB2DPoint((a + 1) % nPointCount));
const B2DVector aNextVec(aNextPoint - aCurrPoint);
const B2VectorOrientation aCurrentOrientation(getOrientation(aNextVec, aCurrVec));
if(aOrientation == B2VectorOrientation::Neutral)
{
// set start value, maybe neutral again
aOrientation = aCurrentOrientation;
}
else
{
if(aCurrentOrientation != B2VectorOrientation::Neutral && aCurrentOrientation != aOrientation)
{
// different orientations found, that's it
return false;
}
}
// prepare next
aCurrPoint = aNextPoint;
aCurrVec = -aNextVec;
}
}
return true;
}
B2VectorOrientation getOrientationForIndex(const B2DPolygon& rCandidate, sal_uInt32 nIndex)
{
OSL_ENSURE(nIndex < rCandidate.count(), "getOrientationForIndex: index out of range (!)");
const B2DPoint aPrev(rCandidate.getB2DPoint(getIndexOfPredecessor(nIndex, rCandidate)));
const B2DPoint aCurr(rCandidate.getB2DPoint(nIndex));
const B2DPoint aNext(rCandidate.getB2DPoint(getIndexOfSuccessor(nIndex, rCandidate)));
const B2DVector aBack(aPrev - aCurr);
const B2DVector aForw(aNext - aCurr);
return getOrientation(aForw, aBack);
}
bool isPointOnLine(const B2DPoint& rStart, const B2DPoint& rEnd, const B2DPoint& rCandidate, bool bWithPoints)
{
if(rCandidate.equal(rStart) || rCandidate.equal(rEnd))
{
// candidate is in epsilon around start or end -> inside
return bWithPoints;
}
else if(rStart.equal(rEnd))
{
// start and end are equal, but candidate is outside their epsilon -> outside
return false;
}
else
{
const B2DVector aEdgeVector(rEnd - rStart);
const B2DVector aTestVector(rCandidate - rStart);
if(areParallel(aEdgeVector, aTestVector))
{
const double fZero(0.0);
const double fOne(1.0);
const double fParamTestOnCurr(fabs(aEdgeVector.getX()) > fabs(aEdgeVector.getY())
? aTestVector.getX() / aEdgeVector.getX()
: aTestVector.getY() / aEdgeVector.getY());
if(fTools::more(fParamTestOnCurr, fZero) && fTools::less(fParamTestOnCurr, fOne))
{
return true;
}
}
return false;
}
}
bool isPointOnPolygon(const B2DPolygon& rCandidate, const B2DPoint& rPoint, bool bWithPoints)
{
const B2DPolygon aCandidate(rCandidate.areControlPointsUsed() ? rCandidate.getDefaultAdaptiveSubdivision() : rCandidate);
const sal_uInt32 nPointCount(aCandidate.count());
if(nPointCount > 1)
{
const sal_uInt32 nLoopCount(aCandidate.isClosed() ? nPointCount : nPointCount - 1);
B2DPoint aCurrentPoint(aCandidate.getB2DPoint(0));
for(sal_uInt32 a(0); a < nLoopCount; a++)
{
const B2DPoint aNextPoint(aCandidate.getB2DPoint((a + 1) % nPointCount));
if(isPointOnLine(aCurrentPoint, aNextPoint, rPoint, bWithPoints))
{
return true;
}
aCurrentPoint = aNextPoint;
}
}
else if(nPointCount && bWithPoints)
{
return rPoint.equal(aCandidate.getB2DPoint(0));
}
return false;
}
bool isPointInTriangle(const B2DPoint& rA, const B2DPoint& rB, const B2DPoint& rC, const B2DPoint& rCandidate, bool bWithBorder)
{
if(arePointsOnSameSideOfLine(rA, rB, rC, rCandidate, bWithBorder))
{
if(arePointsOnSameSideOfLine(rB, rC, rA, rCandidate, bWithBorder))
{
if(arePointsOnSameSideOfLine(rC, rA, rB, rCandidate, bWithBorder))
{
return true;
}
}
}
return false;
}
bool arePointsOnSameSideOfLine(const B2DPoint& rStart, const B2DPoint& rEnd, const B2DPoint& rCandidateA, const B2DPoint& rCandidateB, bool bWithLine)
{
const B2DVector aLineVector(rEnd - rStart);
const B2DVector aVectorToA(rEnd - rCandidateA);
const double fCrossA(aLineVector.cross(aVectorToA));
// tdf#88352 increase numerical correctness and use rtl::math::approxEqual
// instead of fTools::equalZero which compares with a fixed small value
if(fCrossA == 0.0)
{
// one point on the line
return bWithLine;
}
const B2DVector aVectorToB(rEnd - rCandidateB);
const double fCrossB(aLineVector.cross(aVectorToB));
// increase numerical correctness
if(fCrossB == 0.0)
{
// one point on the line
return bWithLine;
}
// return true if they both have the same sign
return ((fCrossA > 0.0) == (fCrossB > 0.0));
}
void addTriangleFan(const B2DPolygon& rCandidate, B2DPolygon& rTarget)
{
const sal_uInt32 nCount(rCandidate.count());
if(nCount > 2)
{
const B2DPoint aStart(rCandidate.getB2DPoint(0));
B2DPoint aLast(rCandidate.getB2DPoint(1));
for(sal_uInt32 a(2); a < nCount; a++)
{
const B2DPoint aCurrent(rCandidate.getB2DPoint(a));
rTarget.append(aStart);
rTarget.append(aLast);
rTarget.append(aCurrent);
// prepare next
aLast = aCurrent;
}
}
}
namespace
{
/// return 0 for input of 0, -1 for negative and 1 for positive input
inline int lcl_sgn( const double n )
{
return n == 0.0 ? 0 : 1 - 2*int(rtl::math::isSignBitSet(n));
}
}
bool isRectangle( const B2DPolygon& rPoly )
{
// polygon must be closed to resemble a rect, and contain
// at least four points.
if( !rPoly.isClosed() ||
rPoly.count() < 4 ||
rPoly.areControlPointsUsed() )
{
return false;
}
// number of 90 degree turns the polygon has taken
int nNumTurns(0);
int nVerticalEdgeType=0;
int nHorizontalEdgeType=0;
bool bNullVertex(true);
bool bCWPolygon(false); // when true, polygon is CW
// oriented, when false, CCW
bool bOrientationSet(false); // when false, polygon
// orientation has not yet
// been determined.
// scan all _edges_ (which involves coming back to point 0
// for the last edge - thus the modulo operation below)
const sal_Int32 nCount( rPoly.count() );
for( sal_Int32 i=0; i<nCount; ++i )
{
const B2DPoint& rPoint0( rPoly.getB2DPoint(i % nCount) );
const B2DPoint& rPoint1( rPoly.getB2DPoint((i+1) % nCount) );
// is 0 for zero direction vector, 1 for south edge and -1
// for north edge (standard screen coordinate system)
int nCurrVerticalEdgeType( lcl_sgn( rPoint1.getY() - rPoint0.getY() ) );
// is 0 for zero direction vector, 1 for east edge and -1
// for west edge (standard screen coordinate system)
int nCurrHorizontalEdgeType( lcl_sgn(rPoint1.getX() - rPoint0.getX()) );
if( nCurrVerticalEdgeType && nCurrHorizontalEdgeType )
return false; // oblique edge - for sure no rect
const bool bCurrNullVertex( !nCurrVerticalEdgeType && !nCurrHorizontalEdgeType );
// current vertex is equal to previous - just skip,
// until we have a real edge
if( bCurrNullVertex )
continue;
// if previous edge has two identical points, because
// no previous edge direction was available, simply
// take this first non-null edge as the start
// direction. That's what will happen here, if
// bNullVertex is false
if( !bNullVertex )
{
// 2D cross product - is 1 for CW and -1 for CCW turns
const int nCrossProduct( nHorizontalEdgeType*nCurrVerticalEdgeType -
nVerticalEdgeType*nCurrHorizontalEdgeType );
if( !nCrossProduct )
continue; // no change in orientation -
// collinear edges - just go on
// if polygon orientation is not set, we'll
// determine it now
if( !bOrientationSet )
{
bCWPolygon = nCrossProduct == 1;
bOrientationSet = true;
}
else
{
// if current turn orientation is not equal
// initial orientation, this is not a
// rectangle (as rectangles have consistent
// orientation).
if( (nCrossProduct == 1) != bCWPolygon )
return false;
}
++nNumTurns;
// More than four 90 degree turns are an
// indication that this must not be a rectangle.
if( nNumTurns > 4 )
return false;
}
// store current state for the next turn
nVerticalEdgeType = nCurrVerticalEdgeType;
nHorizontalEdgeType = nCurrHorizontalEdgeType;
bNullVertex = false; // won't reach this line,
// if bCurrNullVertex is
// true - see above
}
return true;
}
B3DPolygon createB3DPolygonFromB2DPolygon(const B2DPolygon& rCandidate, double fZCoordinate)
{
if(rCandidate.areControlPointsUsed())
{
// call myself recursively with subdivided input
const B2DPolygon aCandidate(adaptiveSubdivideByAngle(rCandidate));
return createB3DPolygonFromB2DPolygon(aCandidate, fZCoordinate);
}
else
{
B3DPolygon aRetval;
for(sal_uInt32 a(0); a < rCandidate.count(); a++)
{
B2DPoint aPoint(rCandidate.getB2DPoint(a));
aRetval.append(B3DPoint(aPoint.getX(), aPoint.getY(), fZCoordinate));
}
// copy closed state
aRetval.setClosed(rCandidate.isClosed());
return aRetval;
}
}
B2DPolygon createB2DPolygonFromB3DPolygon(const B3DPolygon& rCandidate, const B3DHomMatrix& rMat)
{
B2DPolygon aRetval;
const sal_uInt32 nCount(rCandidate.count());
const bool bIsIdentity(rMat.isIdentity());
for(sal_uInt32 a(0); a < nCount; a++)
{
B3DPoint aCandidate(rCandidate.getB3DPoint(a));
if(!bIsIdentity)
{
aCandidate *= rMat;
}
aRetval.append(B2DPoint(aCandidate.getX(), aCandidate.getY()));
}
// copy closed state
aRetval.setClosed(rCandidate.isClosed());
return aRetval;
}
double getSmallestDistancePointToEdge(const B2DPoint& rPointA, const B2DPoint& rPointB, const B2DPoint& rTestPoint, double& rCut)
{
if(rPointA.equal(rPointB))
{
rCut = 0.0;
const B2DVector aVector(rTestPoint - rPointA);
return aVector.getLength();
}
else
{
// get the relative cut value on line vector (Vector1) for cut with perpendicular through TestPoint
const B2DVector aVector1(rPointB - rPointA);
const B2DVector aVector2(rTestPoint - rPointA);
const double fDividend((aVector2.getX() * aVector1.getX()) + (aVector2.getY() * aVector1.getY()));
const double fDivisor((aVector1.getX() * aVector1.getX()) + (aVector1.getY() * aVector1.getY()));
const double fCut(fDividend / fDivisor);
if(fCut < 0.0)
{
// not in line range, get distance to PointA
rCut = 0.0;
return aVector2.getLength();
}
else if(fCut > 1.0)
{
// not in line range, get distance to PointB
rCut = 1.0;
const B2DVector aVector(rTestPoint - rPointB);
return aVector.getLength();
}
else
{
// in line range
const B2DPoint aCutPoint(rPointA + fCut * aVector1);
const B2DVector aVector(rTestPoint - aCutPoint);
rCut = fCut;
return aVector.getLength();
}
}
}
double getSmallestDistancePointToPolygon(const B2DPolygon& rCandidate, const B2DPoint& rTestPoint, sal_uInt32& rEdgeIndex, double& rCut)
{
double fRetval(DBL_MAX);
const sal_uInt32 nPointCount(rCandidate.count());
if(nPointCount > 1)
{
const double fZero(0.0);
const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1);
B2DCubicBezier aBezier;
aBezier.setStartPoint(rCandidate.getB2DPoint(0));
for(sal_uInt32 a(0); a < nEdgeCount; a++)
{
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
aBezier.setEndPoint(rCandidate.getB2DPoint(nNextIndex));
double fEdgeDist;
double fNewCut(0.0);
bool bEdgeIsCurve(false);
if(rCandidate.areControlPointsUsed())
{
aBezier.setControlPointA(rCandidate.getNextControlPoint(a));
aBezier.setControlPointB(rCandidate.getPrevControlPoint(nNextIndex));
aBezier.testAndSolveTrivialBezier();
bEdgeIsCurve = aBezier.isBezier();
}
if(bEdgeIsCurve)
{
fEdgeDist = aBezier.getSmallestDistancePointToBezierSegment(rTestPoint, fNewCut);
}
else
{
fEdgeDist = getSmallestDistancePointToEdge(aBezier.getStartPoint(), aBezier.getEndPoint(), rTestPoint, fNewCut);
}
if(fRetval == DBL_MAX || fEdgeDist < fRetval)
{
fRetval = fEdgeDist;
rEdgeIndex = a;
rCut = fNewCut;
if(fTools::equal(fRetval, fZero))
{
// already found zero distance, cannot get better. Ensure numerical zero value and end loop.
fRetval = 0.0;
break;
}
}
// prepare next step
aBezier.setStartPoint(aBezier.getEndPoint());
}
if(rtl::math::approxEqual(1.0, rCut))
{
// correct rEdgeIndex when not last point
if(rCandidate.isClosed())
{
rEdgeIndex = getIndexOfSuccessor(rEdgeIndex, rCandidate);
rCut = 0.0;
}
else
{
if(rEdgeIndex != nEdgeCount - 1)
{
rEdgeIndex++;
rCut = 0.0;
}
}
}
}
return fRetval;
}
B2DPoint distort(const B2DPoint& rCandidate, const B2DRange& rOriginal, const B2DPoint& rTopLeft, const B2DPoint& rTopRight, const B2DPoint& rBottomLeft, const B2DPoint& rBottomRight)
{
if(fTools::equalZero(rOriginal.getWidth()) || fTools::equalZero(rOriginal.getHeight()))
{
return rCandidate;
}
else
{
const double fRelativeX((rCandidate.getX() - rOriginal.getMinX()) / rOriginal.getWidth());
const double fRelativeY((rCandidate.getY() - rOriginal.getMinY()) / rOriginal.getHeight());
const double fOneMinusRelativeX(1.0 - fRelativeX);
const double fOneMinusRelativeY(1.0 - fRelativeY);
const double fNewX(fOneMinusRelativeY * (fOneMinusRelativeX * rTopLeft.getX() + fRelativeX * rTopRight.getX()) +
fRelativeY * (fOneMinusRelativeX * rBottomLeft.getX() + fRelativeX * rBottomRight.getX()));
const double fNewY(fOneMinusRelativeX * (fOneMinusRelativeY * rTopLeft.getY() + fRelativeY * rBottomLeft.getY()) +
fRelativeX * (fOneMinusRelativeY * rTopRight.getY() + fRelativeY * rBottomRight.getY()));
return B2DPoint(fNewX, fNewY);
}
}
B2DPolygon distort(const B2DPolygon& rCandidate, const B2DRange& rOriginal, const B2DPoint& rTopLeft, const B2DPoint& rTopRight, const B2DPoint& rBottomLeft, const B2DPoint& rBottomRight)
{
const sal_uInt32 nPointCount(rCandidate.count());
if(nPointCount && rOriginal.getWidth() != 0.0 && rOriginal.getHeight() != 0.0)
{
B2DPolygon aRetval;
for(sal_uInt32 a(0); a < nPointCount; a++)
{
aRetval.append(distort(rCandidate.getB2DPoint(a), rOriginal, rTopLeft, rTopRight, rBottomLeft, rBottomRight));
if(rCandidate.areControlPointsUsed())
{
if(!rCandidate.getPrevControlPoint(a).equalZero())
{
aRetval.setPrevControlPoint(a, distort(rCandidate.getPrevControlPoint(a), rOriginal, rTopLeft, rTopRight, rBottomLeft, rBottomRight));
}
if(!rCandidate.getNextControlPoint(a).equalZero())
{
aRetval.setNextControlPoint(a, distort(rCandidate.getNextControlPoint(a), rOriginal, rTopLeft, rTopRight, rBottomLeft, rBottomRight));
}
}
}
aRetval.setClosed(rCandidate.isClosed());
return aRetval;
}
else
{
return rCandidate;
}
}
B2DPolygon expandToCurve(const B2DPolygon& rCandidate)
{
B2DPolygon aRetval(rCandidate);
for(sal_uInt32 a(0); a < rCandidate.count(); a++)
{
expandToCurveInPoint(aRetval, a);
}
return aRetval;
}
bool expandToCurveInPoint(B2DPolygon& rCandidate, sal_uInt32 nIndex)
{
OSL_ENSURE(nIndex < rCandidate.count(), "expandToCurveInPoint: Access to polygon out of range (!)");
bool bRetval(false);
const sal_uInt32 nPointCount(rCandidate.count());
if(nPointCount)
{
// predecessor
if(!rCandidate.isPrevControlPointUsed(nIndex))
{
if(!rCandidate.isClosed() && nIndex == 0)
{
// do not create previous vector for start point of open polygon
}
else
{
const sal_uInt32 nPrevIndex((nIndex + (nPointCount - 1)) % nPointCount);
rCandidate.setPrevControlPoint(nIndex, interpolate(rCandidate.getB2DPoint(nIndex), rCandidate.getB2DPoint(nPrevIndex), 1.0 / 3.0));
bRetval = true;
}
}
// successor
if(!rCandidate.isNextControlPointUsed(nIndex))
{
if(!rCandidate.isClosed() && nIndex + 1 == nPointCount)
{
// do not create next vector for end point of open polygon
}
else
{
const sal_uInt32 nNextIndex((nIndex + 1) % nPointCount);
rCandidate.setNextControlPoint(nIndex, interpolate(rCandidate.getB2DPoint(nIndex), rCandidate.getB2DPoint(nNextIndex), 1.0 / 3.0));
bRetval = true;
}
}
}
return bRetval;
}
bool setContinuityInPoint(B2DPolygon& rCandidate, sal_uInt32 nIndex, B2VectorContinuity eContinuity)
{
OSL_ENSURE(nIndex < rCandidate.count(), "setContinuityInPoint: Access to polygon out of range (!)");
bool bRetval(false);
const sal_uInt32 nPointCount(rCandidate.count());
if(nPointCount)
{
const B2DPoint aCurrentPoint(rCandidate.getB2DPoint(nIndex));
switch(eContinuity)
{
case B2VectorContinuity::NONE :
{
if(rCandidate.isPrevControlPointUsed(nIndex))
{
if(!rCandidate.isClosed() && nIndex == 0)
{
// remove existing previous vector for start point of open polygon
rCandidate.resetPrevControlPoint(nIndex);
}
else
{
const sal_uInt32 nPrevIndex((nIndex + (nPointCount - 1)) % nPointCount);
rCandidate.setPrevControlPoint(nIndex, interpolate(aCurrentPoint, rCandidate.getB2DPoint(nPrevIndex), 1.0 / 3.0));
}
bRetval = true;
}
if(rCandidate.isNextControlPointUsed(nIndex))
{
if(!rCandidate.isClosed() && nIndex == nPointCount + 1)
{
// remove next vector for end point of open polygon
rCandidate.resetNextControlPoint(nIndex);
}
else
{
const sal_uInt32 nNextIndex((nIndex + 1) % nPointCount);
rCandidate.setNextControlPoint(nIndex, interpolate(aCurrentPoint, rCandidate.getB2DPoint(nNextIndex), 1.0 / 3.0));
}
bRetval = true;
}
break;
}
case B2VectorContinuity::C1 :
{
if(rCandidate.isPrevControlPointUsed(nIndex) && rCandidate.isNextControlPointUsed(nIndex))
{
// lengths both exist since both are used
B2DVector aVectorPrev(rCandidate.getPrevControlPoint(nIndex) - aCurrentPoint);
B2DVector aVectorNext(rCandidate.getNextControlPoint(nIndex) - aCurrentPoint);
const double fLenPrev(aVectorPrev.getLength());
const double fLenNext(aVectorNext.getLength());
aVectorPrev.normalize();
aVectorNext.normalize();
const B2VectorOrientation aOrientation(getOrientation(aVectorPrev, aVectorNext));
if(aOrientation == B2VectorOrientation::Neutral && aVectorPrev.scalar(aVectorNext) < 0.0)
{
// parallel and opposite direction; check length
if(fTools::equal(fLenPrev, fLenNext))
{
// this would be even C2, but we want C1. Use the lengths of the corresponding edges.
const sal_uInt32 nPrevIndex((nIndex + (nPointCount - 1)) % nPointCount);
const sal_uInt32 nNextIndex((nIndex + 1) % nPointCount);
const double fLenPrevEdge(B2DVector(rCandidate.getB2DPoint(nPrevIndex) - aCurrentPoint).getLength() * (1.0 / 3.0));
const double fLenNextEdge(B2DVector(rCandidate.getB2DPoint(nNextIndex) - aCurrentPoint).getLength() * (1.0 / 3.0));
rCandidate.setControlPoints(nIndex,
aCurrentPoint + (aVectorPrev * fLenPrevEdge),
aCurrentPoint + (aVectorNext * fLenNextEdge));
bRetval = true;
}
}
else
{
// not parallel or same direction, set vectors and length
const B2DVector aNormalizedPerpendicular(getNormalizedPerpendicular(aVectorPrev + aVectorNext));
if(aOrientation == B2VectorOrientation::Positive)
{
rCandidate.setControlPoints(nIndex,
aCurrentPoint - (aNormalizedPerpendicular * fLenPrev),
aCurrentPoint + (aNormalizedPerpendicular * fLenNext));
}
else
{
rCandidate.setControlPoints(nIndex,
aCurrentPoint + (aNormalizedPerpendicular * fLenPrev),
aCurrentPoint - (aNormalizedPerpendicular * fLenNext));
}
bRetval = true;
}
}
break;
}
case B2VectorContinuity::C2 :
{
if(rCandidate.isPrevControlPointUsed(nIndex) && rCandidate.isNextControlPointUsed(nIndex))
{
// lengths both exist since both are used
B2DVector aVectorPrev(rCandidate.getPrevControlPoint(nIndex) - aCurrentPoint);
B2DVector aVectorNext(rCandidate.getNextControlPoint(nIndex) - aCurrentPoint);
const double fCommonLength((aVectorPrev.getLength() + aVectorNext.getLength()) / 2.0);
aVectorPrev.normalize();
aVectorNext.normalize();
const B2VectorOrientation aOrientation(getOrientation(aVectorPrev, aVectorNext));
if(aOrientation == B2VectorOrientation::Neutral && aVectorPrev.scalar(aVectorNext) < 0.0)
{
// parallel and opposite direction; set length. Use one direction for better numerical correctness
const B2DVector aScaledDirection(aVectorPrev * fCommonLength);
rCandidate.setControlPoints(nIndex,
aCurrentPoint + aScaledDirection,
aCurrentPoint - aScaledDirection);
}
else
{
// not parallel or same direction, set vectors and length
const B2DVector aNormalizedPerpendicular(getNormalizedPerpendicular(aVectorPrev + aVectorNext));
const B2DVector aPerpendicular(aNormalizedPerpendicular * fCommonLength);
if(aOrientation == B2VectorOrientation::Positive)
{
rCandidate.setControlPoints(nIndex,
aCurrentPoint - aPerpendicular,
aCurrentPoint + aPerpendicular);
}
else
{
rCandidate.setControlPoints(nIndex,
aCurrentPoint + aPerpendicular,
aCurrentPoint - aPerpendicular);
}
}
bRetval = true;
}
break;
}
}
}
return bRetval;
}
B2DPolygon growInNormalDirection(const B2DPolygon& rCandidate, double fValue)
{
if(fValue != 0.0)
{
if(rCandidate.areControlPointsUsed())
{
// call myself recursively with subdivided input
const B2DPolygon aCandidate(adaptiveSubdivideByAngle(rCandidate));
return growInNormalDirection(aCandidate, fValue);
}
else
{
B2DPolygon aRetval;
const sal_uInt32 nPointCount(rCandidate.count());
if(nPointCount)
{
B2DPoint aPrev(rCandidate.getB2DPoint(nPointCount - 1));
B2DPoint aCurrent(rCandidate.getB2DPoint(0));
for(sal_uInt32 a(0); a < nPointCount; a++)
{
const B2DPoint aNext(rCandidate.getB2DPoint(a + 1 == nPointCount ? 0 : a + 1));
const B2DVector aBack(aPrev - aCurrent);
const B2DVector aForw(aNext - aCurrent);
const B2DVector aPerpBack(getNormalizedPerpendicular(aBack));
const B2DVector aPerpForw(getNormalizedPerpendicular(aForw));
B2DVector aDirection(aPerpBack - aPerpForw);
aDirection.normalize();
aDirection *= fValue;
aRetval.append(aCurrent + aDirection);
// prepare next step
aPrev = aCurrent;
aCurrent = aNext;
}
}
// copy closed state
aRetval.setClosed(rCandidate.isClosed());
return aRetval;
}
}
else
{
return rCandidate;
}
}
B2DPolygon reSegmentPolygon(const B2DPolygon& rCandidate, sal_uInt32 nSegments)
{
B2DPolygon aRetval;
const sal_uInt32 nPointCount(rCandidate.count());
if(nPointCount && nSegments)
{
// get current segment count
const sal_uInt32 nSegmentCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1);
if(nSegmentCount == nSegments)
{
aRetval = rCandidate;
}
else
{
const double fLength(getLength(rCandidate));
const sal_uInt32 nLoopCount(rCandidate.isClosed() ? nSegments : nSegments + 1);
for(sal_uInt32 a(0); a < nLoopCount; a++)
{
const double fRelativePos((double)a / (double)nSegments); // 0.0 .. 1.0
const B2DPoint aNewPoint(getPositionRelative(rCandidate, fRelativePos, fLength));
aRetval.append(aNewPoint);
}
// copy closed flag
aRetval.setClosed(rCandidate.isClosed());
}
}
return aRetval;
}
B2DPolygon interpolate(const B2DPolygon& rOld1, const B2DPolygon& rOld2, double t)
{
OSL_ENSURE(rOld1.count() == rOld2.count(), "B2DPolygon interpolate: Different geometry (!)");
if(fTools::lessOrEqual(t, 0.0) || rOld1 == rOld2)
{
return rOld1;
}
else if(fTools::moreOrEqual(t, 1.0))
{
return rOld2;
}
else
{
B2DPolygon aRetval;
const bool bInterpolateVectors(rOld1.areControlPointsUsed() || rOld2.areControlPointsUsed());
aRetval.setClosed(rOld1.isClosed() && rOld2.isClosed());
for(sal_uInt32 a(0); a < rOld1.count(); a++)
{
aRetval.append(interpolate(rOld1.getB2DPoint(a), rOld2.getB2DPoint(a), t));
if(bInterpolateVectors)
{
aRetval.setPrevControlPoint(a, interpolate(rOld1.getPrevControlPoint(a), rOld2.getPrevControlPoint(a), t));
aRetval.setNextControlPoint(a, interpolate(rOld1.getNextControlPoint(a), rOld2.getNextControlPoint(a), t));
}
}
return aRetval;
}
}
// #i76891#
B2DPolygon simplifyCurveSegments(const B2DPolygon& rCandidate)
{
const sal_uInt32 nPointCount(rCandidate.count());
if(nPointCount && rCandidate.areControlPointsUsed())
{
// prepare loop
const sal_uInt32 nEdgeCount(rCandidate.isClosed() ? nPointCount : nPointCount - 1);
B2DPolygon aRetval;
B2DCubicBezier aBezier;
aBezier.setStartPoint(rCandidate.getB2DPoint(0));
// try to avoid costly reallocations
aRetval.reserve( nEdgeCount+1);
// add start point
aRetval.append(aBezier.getStartPoint());
for(sal_uInt32 a(0); a < nEdgeCount; a++)
{
// get values for edge
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
aBezier.setEndPoint(rCandidate.getB2DPoint(nNextIndex));
aBezier.setControlPointA(rCandidate.getNextControlPoint(a));
aBezier.setControlPointB(rCandidate.getPrevControlPoint(nNextIndex));
aBezier.testAndSolveTrivialBezier();
// still bezier?
if(aBezier.isBezier())
{
// add edge with control vectors
aRetval.appendBezierSegment(aBezier.getControlPointA(), aBezier.getControlPointB(), aBezier.getEndPoint());
}
else
{
// add edge
aRetval.append(aBezier.getEndPoint());
}
// next point
aBezier.setStartPoint(aBezier.getEndPoint());
}
if(rCandidate.isClosed())
{
// set closed flag, rescue control point and correct last double point
closeWithGeometryChange(aRetval);
}
return aRetval;
}
else
{
return rCandidate;
}
}
// makes the given indexed point the new polygon start point. To do that, the points in the
// polygon will be rotated. This is only valid for closed polygons, for non-closed ones
// an assertion will be triggered
B2DPolygon makeStartPoint(const B2DPolygon& rCandidate, sal_uInt32 nIndexOfNewStatPoint)
{
const sal_uInt32 nPointCount(rCandidate.count());
if(nPointCount > 2 && nIndexOfNewStatPoint != 0 && nIndexOfNewStatPoint < nPointCount)
{
OSL_ENSURE(rCandidate.isClosed(), "makeStartPoint: only valid for closed polygons (!)");
B2DPolygon aRetval;
for(sal_uInt32 a(0); a < nPointCount; a++)
{
const sal_uInt32 nSourceIndex((a + nIndexOfNewStatPoint) % nPointCount);
aRetval.append(rCandidate.getB2DPoint(nSourceIndex));
if(rCandidate.areControlPointsUsed())
{
aRetval.setPrevControlPoint(a, rCandidate.getPrevControlPoint(nSourceIndex));
aRetval.setNextControlPoint(a, rCandidate.getNextControlPoint(nSourceIndex));
}
}
return aRetval;
}
return rCandidate;
}
B2DPolygon createEdgesOfGivenLength(const B2DPolygon& rCandidate, double fLength, double fStart, double fEnd)
{
B2DPolygon aRetval;
if(fLength < 0.0)
{
fLength = 0.0;
}
if(!fTools::equalZero(fLength))
{
if(fStart < 0.0)
{
fStart = 0.0;
}
if(fEnd < 0.0)
{
fEnd = 0.0;
}
if(fEnd < fStart)
{
fEnd = fStart;
}
// iterate and consume pieces with fLength. First subdivide to reduce input to line segments
const B2DPolygon aCandidate(rCandidate.areControlPointsUsed() ? rCandidate.getDefaultAdaptiveSubdivision() : rCandidate);
const sal_uInt32 nPointCount(aCandidate.count());
if(nPointCount > 1)
{
const bool bEndActive(!fTools::equalZero(fEnd));
const sal_uInt32 nEdgeCount(aCandidate.isClosed() ? nPointCount : nPointCount - 1);
B2DPoint aCurrent(aCandidate.getB2DPoint(0));
double fPositionInEdge(fStart);
double fAbsolutePosition(fStart);
for(sal_uInt32 a(0); a < nEdgeCount; a++)
{
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
const B2DPoint aNext(aCandidate.getB2DPoint(nNextIndex));
const B2DVector aEdge(aNext - aCurrent);
double fEdgeLength(aEdge.getLength());
if(!fTools::equalZero(fEdgeLength))
{
while(fTools::less(fPositionInEdge, fEdgeLength))
{
// move position on edge forward as long as on edge
const double fScalar(fPositionInEdge / fEdgeLength);
aRetval.append(aCurrent + (aEdge * fScalar));
fPositionInEdge += fLength;
if(bEndActive)
{
fAbsolutePosition += fLength;
if(fTools::more(fAbsolutePosition, fEnd))
{
break;
}
}
}
// subtract length of current edge
fPositionInEdge -= fEdgeLength;
}
if(bEndActive && fTools::more(fAbsolutePosition, fEnd))
{
break;
}
// prepare next step
aCurrent = aNext;
}
// keep closed state
aRetval.setClosed(aCandidate.isClosed());
}
else
{
// source polygon has only one point, return unchanged
aRetval = aCandidate;
}
}
return aRetval;
}
B2DPolygon createWaveline(const B2DPolygon& rCandidate, double fWaveWidth, double fWaveHeight)
{
B2DPolygon aRetval;
if(fWaveWidth < 0.0)
{
fWaveWidth = 0.0;
}
if(fWaveHeight < 0.0)
{
fWaveHeight = 0.0;
}
const bool bHasWidth(!fTools::equalZero(fWaveWidth));
if(bHasWidth)
{
const bool bHasHeight(!fTools::equalZero(fWaveHeight));
if(bHasHeight)
{
// width and height, create waveline. First subdivide to reduce input to line segments
// of WaveWidth. Last segment may be missing. If this turns out to be a problem, it
// may be added here again using the original last point from rCandidate. It may
// also be the case that rCandidate was closed. To simplify things it is handled here
// as if it was opened.
// Result from createEdgesOfGivenLength contains no curved segments, handle as straight
// edges.
const B2DPolygon aEqualLenghEdges(createEdgesOfGivenLength(rCandidate, fWaveWidth));
const sal_uInt32 nPointCount(aEqualLenghEdges.count());
if(nPointCount > 1)
{
// iterate over straight edges, add start point
B2DPoint aCurrent(aEqualLenghEdges.getB2DPoint(0));
aRetval.append(aCurrent);
for(sal_uInt32 a(0); a < nPointCount - 1; a++)
{
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
const B2DPoint aNext(aEqualLenghEdges.getB2DPoint(nNextIndex));
const B2DVector aEdge(aNext - aCurrent);
const B2DVector aPerpendicular(getNormalizedPerpendicular(aEdge));
const B2DVector aControlOffset((aEdge * 0.467308) - (aPerpendicular * fWaveHeight));
// add curve segment
aRetval.appendBezierSegment(
aCurrent + aControlOffset,
aNext - aControlOffset,
aNext);
// prepare next step
aCurrent = aNext;
}
}
}
else
{
// width but no height -> return original polygon
aRetval = rCandidate;
}
}
else
{
// no width -> no waveline, stay empty and return
}
return aRetval;
}
// snap points of horizontal or vertical edges to discrete values
B2DPolygon snapPointsOfHorizontalOrVerticalEdges(const B2DPolygon& rCandidate)
{
const sal_uInt32 nPointCount(rCandidate.count());
if(nPointCount > 1)
{
// Start by copying the source polygon to get a writeable copy. The closed state is
// copied by aRetval's initialisation, too, so no need to copy it in this method
B2DPolygon aRetval(rCandidate);
// prepare geometry data. Get rounded from original
B2ITuple aPrevTuple(basegfx::fround(rCandidate.getB2DPoint(nPointCount - 1)));
B2DPoint aCurrPoint(rCandidate.getB2DPoint(0));
B2ITuple aCurrTuple(basegfx::fround(aCurrPoint));
// loop over all points. This will also snap the implicit closing edge
// even when not closed, but that's no problem here
for(sal_uInt32 a(0); a < nPointCount; a++)
{
// get next point. Get rounded from original
const bool bLastRun(a + 1 == nPointCount);
const sal_uInt32 nNextIndex(bLastRun ? 0 : a + 1);
const B2DPoint aNextPoint(rCandidate.getB2DPoint(nNextIndex));
const B2ITuple aNextTuple(basegfx::fround(aNextPoint));
// get the states
const bool bPrevVertical(aPrevTuple.getX() == aCurrTuple.getX());
const bool bNextVertical(aNextTuple.getX() == aCurrTuple.getX());
const bool bPrevHorizontal(aPrevTuple.getY() == aCurrTuple.getY());
const bool bNextHorizontal(aNextTuple.getY() == aCurrTuple.getY());
const bool bSnapX(bPrevVertical || bNextVertical);
const bool bSnapY(bPrevHorizontal || bNextHorizontal);
if(bSnapX || bSnapY)
{
const B2DPoint aSnappedPoint(
bSnapX ? aCurrTuple.getX() : aCurrPoint.getX(),
bSnapY ? aCurrTuple.getY() : aCurrPoint.getY());
aRetval.setB2DPoint(a, aSnappedPoint);
}
// prepare next point
if(!bLastRun)
{
aPrevTuple = aCurrTuple;
aCurrPoint = aNextPoint;
aCurrTuple = aNextTuple;
}
}
return aRetval;
}
else
{
return rCandidate;
}
}
B2DVector getTangentEnteringPoint(const B2DPolygon& rCandidate, sal_uInt32 nIndex)
{
B2DVector aRetval(0.0, 0.0);
const sal_uInt32 nCount(rCandidate.count());
if(nIndex >= nCount)
{
// out of range
return aRetval;
}
// start immediately at prev point compared to nIndex
const bool bClosed(rCandidate.isClosed());
sal_uInt32 nPrev(bClosed ? (nIndex + nCount - 1) % nCount : nIndex ? nIndex - 1 : nIndex);
if(nPrev == nIndex)
{
// no previous, done
return aRetval;
}
B2DCubicBezier aSegment;
// go backward in the polygon; if closed, maximal back to start index (nIndex); if not closed,
// until zero. Use nIndex as stop criteria
while(nPrev != nIndex)
{
// get BezierSegment and tangent at the *end* of segment
rCandidate.getBezierSegment(nPrev, aSegment);
aRetval = aSegment.getTangent(1.0);
if(!aRetval.equalZero())
{
// if we have a tangent, return it
return aRetval;
}
// prepare index before checked one
nPrev = bClosed ? (nPrev + nCount - 1) % nCount : nPrev ? nPrev - 1 : nIndex;
}
return aRetval;
}
B2DVector getTangentLeavingPoint(const B2DPolygon& rCandidate, sal_uInt32 nIndex)
{
B2DVector aRetval(0.0, 0.0);
const sal_uInt32 nCount(rCandidate.count());
if(nIndex >= nCount)
{
// out of range
return aRetval;
}
// start at nIndex
const bool bClosed(rCandidate.isClosed());
sal_uInt32 nCurrent(nIndex);
B2DCubicBezier aSegment;
// go forward; if closed, do this until once around and back at start index (nIndex); if not
// closed, until last point (nCount - 1). Use nIndex as stop criteria
do
{
// get BezierSegment and tangent at the *beginning* of segment
rCandidate.getBezierSegment(nCurrent, aSegment);
aRetval = aSegment.getTangent(0.0);
if(!aRetval.equalZero())
{
// if we have a tangent, return it
return aRetval;
}
// prepare next index
nCurrent = bClosed ? (nCurrent + 1) % nCount : nCurrent + 1 < nCount ? nCurrent + 1 : nIndex;
}
while(nCurrent != nIndex);
return aRetval;
}
// converters for css::drawing::PointSequence
B2DPolygon UnoPointSequenceToB2DPolygon(
const css::drawing::PointSequence& rPointSequenceSource,
bool bCheckClosed)
{
B2DPolygon aRetval;
const sal_uInt32 nLength(rPointSequenceSource.getLength());
if(nLength)
{
aRetval.reserve(nLength);
const css::awt::Point* pArray = rPointSequenceSource.getConstArray();
const css::awt::Point* pArrayEnd = pArray + rPointSequenceSource.getLength();
for(;pArray != pArrayEnd; pArray++)
{
aRetval.append(B2DPoint(pArray->X, pArray->Y));
}
if(bCheckClosed)
{
// check for closed state flag
tools::checkClosed(aRetval);
}
}
return aRetval;
}
void B2DPolygonToUnoPointSequence(
const B2DPolygon& rPolygon,
css::drawing::PointSequence& rPointSequenceRetval)
{
B2DPolygon aPolygon(rPolygon);
if(aPolygon.areControlPointsUsed())
{
OSL_ENSURE(false, "B2DPolygonToUnoPointSequence: Source contains bezier segments, wrong UNO API data type may be used (!)");
aPolygon = aPolygon.getDefaultAdaptiveSubdivision();
}
const sal_uInt32 nPointCount(aPolygon.count());
if(nPointCount)
{
// Take closed state into account, the API polygon still uses the old closed definition
// with last/first point are identical (cannot hold information about open polygons with identical
// first and last point, though)
const bool bIsClosed(aPolygon.isClosed());
rPointSequenceRetval.realloc(bIsClosed ? nPointCount + 1 : nPointCount);
css::awt::Point* pSequence = rPointSequenceRetval.getArray();
for(sal_uInt32 b(0); b < nPointCount; b++)
{
const B2DPoint aPoint(aPolygon.getB2DPoint(b));
const css::awt::Point aAPIPoint(fround(aPoint.getX()), fround(aPoint.getY()));
*pSequence = aAPIPoint;
pSequence++;
}
// copy first point if closed
if(bIsClosed)
{
*pSequence = *rPointSequenceRetval.getArray();
}
}
else
{
rPointSequenceRetval.realloc(0);
}
}
// converters for css::drawing::PointSequence and
// css::drawing::FlagSequence to B2DPolygon (curved polygons)
B2DPolygon UnoPolygonBezierCoordsToB2DPolygon(
const css::drawing::PointSequence& rPointSequenceSource,
const css::drawing::FlagSequence& rFlagSequenceSource,
bool bCheckClosed)
{
const sal_uInt32 nCount((sal_uInt32)rPointSequenceSource.getLength());
OSL_ENSURE(nCount == (sal_uInt32)rFlagSequenceSource.getLength(),
"UnoPolygonBezierCoordsToB2DPolygon: Unequal count of Points and Flags (!)");
// prepare new polygon
B2DPolygon aRetval;
const css::awt::Point* pPointSequence = rPointSequenceSource.getConstArray();
const css::drawing::PolygonFlags* pFlagSequence = rFlagSequenceSource.getConstArray();
// get first point and flag
B2DPoint aNewCoordinatePair(pPointSequence->X, pPointSequence->Y); pPointSequence++;
css::drawing::PolygonFlags ePolygonFlag(*pFlagSequence); pFlagSequence++;
B2DPoint aControlA;
B2DPoint aControlB;
// first point is not allowed to be a control point
OSL_ENSURE(ePolygonFlag != css::drawing::PolygonFlags_CONTROL,
"UnoPolygonBezierCoordsToB2DPolygon: Start point is a control point, illegal input polygon (!)");
// add first point as start point
aRetval.append(aNewCoordinatePair);
for(sal_uInt32 b(1); b < nCount;)
{
// prepare loop
bool bControlA(false);
bool bControlB(false);
// get next point and flag
aNewCoordinatePair = B2DPoint(pPointSequence->X, pPointSequence->Y);
ePolygonFlag = *pFlagSequence;
pPointSequence++; pFlagSequence++; b++;
if(b < nCount && ePolygonFlag == css::drawing::PolygonFlags_CONTROL)
{
aControlA = aNewCoordinatePair;
bControlA = true;
// get next point and flag
aNewCoordinatePair = B2DPoint(pPointSequence->X, pPointSequence->Y);
ePolygonFlag = *pFlagSequence;
pPointSequence++; pFlagSequence++; b++;
}
if(b < nCount && ePolygonFlag == css::drawing::PolygonFlags_CONTROL)
{
aControlB = aNewCoordinatePair;
bControlB = true;
// get next point and flag
aNewCoordinatePair = B2DPoint(pPointSequence->X, pPointSequence->Y);
ePolygonFlag = *pFlagSequence;
pPointSequence++; pFlagSequence++; b++;
}
// two or no control points are consumed, another one would be an error.
// It's also an error if only one control point was read
SAL_WARN_IF(ePolygonFlag == css::drawing::PolygonFlags_CONTROL || bControlA != bControlB,
"basegfx", "UnoPolygonBezierCoordsToB2DPolygon: Illegal source polygon (!)");
// the previous writes used the B2DPolyPoygon -> tools::PolyPolygon converter
// which did not create minimal PolyPolygons, but created all control points
// as null vectors (identical points). Because of the former P(CA)(CB)-norm of
// B2DPolygon and it's unused sign of being the zero-vector and CA and CB being
// relative to P, an empty edge was exported as P == CA == CB. Luckily, the new
// export format can be read without errors by the old OOo-versions, so we need only
// to correct here at read and do not need to export a wrong but compatible version
// for the future.
if(bControlA
&& aControlA.equal(aControlB)
&& aControlA.equal(aRetval.getB2DPoint(aRetval.count() - 1)))
{
bControlA = false;
}
if(bControlA)
{
// add bezier edge
aRetval.appendBezierSegment(aControlA, aControlB, aNewCoordinatePair);
}
else
{
// add edge
aRetval.append(aNewCoordinatePair);
}
}
// #i72807# API import uses old line start/end-equal definition for closed,
// so we need to correct this to closed state here
if(bCheckClosed)
{
checkClosed(aRetval);
}
return aRetval;
}
void B2DPolygonToUnoPolygonBezierCoords(
const B2DPolygon& rPolygon,
css::drawing::PointSequence& rPointSequenceRetval,
css::drawing::FlagSequence& rFlagSequenceRetval)
{
const sal_uInt32 nPointCount(rPolygon.count());
if(nPointCount)
{
const bool bCurve(rPolygon.areControlPointsUsed());
const bool bClosed(rPolygon.isClosed());
if(bCurve)
{
// calculate target point count
const sal_uInt32 nLoopCount(bClosed ? nPointCount : nPointCount - 1);
if(nLoopCount)
{
// prepare target data. The real needed number of target points (and flags)
// could only be calculated by using two loops, so use dynamic memory
std::vector< css::awt::Point > aCollectPoints;
std::vector< css::drawing::PolygonFlags > aCollectFlags;
// reserve maximum creatable points
const sal_uInt32 nMaxTargetCount((nLoopCount * 3) + 1);
aCollectPoints.reserve(nMaxTargetCount);
aCollectFlags.reserve(nMaxTargetCount);
// prepare current bezier segment by setting start point
B2DCubicBezier aBezierSegment;
aBezierSegment.setStartPoint(rPolygon.getB2DPoint(0));
for(sal_uInt32 a(0); a < nLoopCount; a++)
{
// add current point (always) and remember StartPointIndex for evtl. later corrections
const sal_uInt32 nStartPointIndex(aCollectPoints.size());
aCollectPoints.emplace_back(
fround(aBezierSegment.getStartPoint().getX()),
fround(aBezierSegment.getStartPoint().getY()));
aCollectFlags.push_back(css::drawing::PolygonFlags_NORMAL);
// prepare next segment
const sal_uInt32 nNextIndex((a + 1) % nPointCount);
aBezierSegment.setEndPoint(rPolygon.getB2DPoint(nNextIndex));
aBezierSegment.setControlPointA(rPolygon.getNextControlPoint(a));
aBezierSegment.setControlPointB(rPolygon.getPrevControlPoint(nNextIndex));
if(aBezierSegment.isBezier())
{
// if bezier is used, add always two control points due to the old schema
aCollectPoints.emplace_back(
fround(aBezierSegment.getControlPointA().getX()),
fround(aBezierSegment.getControlPointA().getY()));
aCollectFlags.push_back(css::drawing::PolygonFlags_CONTROL);
aCollectPoints.emplace_back(
fround(aBezierSegment.getControlPointB().getX()),
fround(aBezierSegment.getControlPointB().getY()));
aCollectFlags.push_back(css::drawing::PolygonFlags_CONTROL);
}
// test continuity with previous control point to set flag value
if(aBezierSegment.getControlPointA() != aBezierSegment.getStartPoint() && (bClosed || a))
{
const B2VectorContinuity eCont(rPolygon.getContinuityInPoint(a));
if(eCont == B2VectorContinuity::C1)
{
aCollectFlags[nStartPointIndex] = css::drawing::PolygonFlags_SMOOTH;
}
else if(eCont == B2VectorContinuity::C2)
{
aCollectFlags[nStartPointIndex] = css::drawing::PolygonFlags_SYMMETRIC;
}
}
// prepare next loop
aBezierSegment.setStartPoint(aBezierSegment.getEndPoint());
}
if(bClosed)
{
// add first point again as closing point due to old definition
aCollectPoints.push_back(aCollectPoints[0]);
aCollectFlags.push_back(css::drawing::PolygonFlags_NORMAL);
}
else
{
// add last point as closing point
const B2DPoint aClosingPoint(rPolygon.getB2DPoint(nPointCount - 1));
aCollectPoints.emplace_back(
fround(aClosingPoint.getX()),
fround(aClosingPoint.getY()));
aCollectFlags.push_back(css::drawing::PolygonFlags_NORMAL);
}
// copy collected data to target arrays
const sal_uInt32 nTargetCount(aCollectPoints.size());
OSL_ENSURE(nTargetCount == aCollectFlags.size(), "Unequal Point and Flag count (!)");
rPointSequenceRetval.realloc((sal_Int32)nTargetCount);
rFlagSequenceRetval.realloc((sal_Int32)nTargetCount);
css::awt::Point* pPointSequence = rPointSequenceRetval.getArray();
css::drawing::PolygonFlags* pFlagSequence = rFlagSequenceRetval.getArray();
for(sal_uInt32 a(0); a < nTargetCount; a++)
{
*pPointSequence = aCollectPoints[a];
*pFlagSequence = aCollectFlags[a];
pPointSequence++;
pFlagSequence++;
}
}
}
else
{
// straightforward point list creation
const sal_uInt32 nTargetCount(nPointCount + (bClosed ? 1 : 0));
rPointSequenceRetval.realloc((sal_Int32)nTargetCount);
rFlagSequenceRetval.realloc((sal_Int32)nTargetCount);
css::awt::Point* pPointSequence = rPointSequenceRetval.getArray();
css::drawing::PolygonFlags* pFlagSequence = rFlagSequenceRetval.getArray();
for(sal_uInt32 a(0); a < nPointCount; a++)
{
const B2DPoint aB2DPoint(rPolygon.getB2DPoint(a));
const css::awt::Point aAPIPoint(
fround(aB2DPoint.getX()),
fround(aB2DPoint.getY()));
*pPointSequence = aAPIPoint;
*pFlagSequence = css::drawing::PolygonFlags_NORMAL;
pPointSequence++;
pFlagSequence++;
}
if(bClosed)
{
// add first point as closing point
*pPointSequence = *rPointSequenceRetval.getConstArray();
*pFlagSequence = css::drawing::PolygonFlags_NORMAL;
}
}
}
else
{
rPointSequenceRetval.realloc(0);
rFlagSequenceRetval.realloc(0);
}
}
} // end of namespace tools
} // end of namespace basegfx
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|