summaryrefslogtreecommitdiff
path: root/basegfx/source/range/b2drangeclipper.cxx
blob: 524479b4fde06085ecb07d2863d9b55cb64809fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
/*************************************************************************
 *
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * Copyright 2008 by Sun Microsystems, Inc.
 *
 * OpenOffice.org - a multi-platform office productivity suite
 *
 * $RCSfile: b2dmultirange.cxx,v $
 * $Revision: 1.8 $
 *
 * This file is part of OpenOffice.org.
 *
 * OpenOffice.org is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License version 3
 * only, as published by the Free Software Foundation.
 *
 * OpenOffice.org is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License version 3 for more details
 * (a copy is included in the LICENSE file that accompanied this code).
 *
 * You should have received a copy of the GNU Lesser General Public License
 * version 3 along with OpenOffice.org.  If not, see
 * <http://www.openoffice.org/license.html>
 * for a copy of the LGPLv3 License.
 *
 ************************************************************************/

// MARKER(update_precomp.py): autogen include statement, do not remove
#include "precompiled_basegfx.hxx"

#include <rtl/math.hxx>

#include <basegfx/tuple/b2dtuple.hxx>
#include <basegfx/range/b2drange.hxx>
#include <basegfx/range/b2dpolyrange.hxx>
#include <basegfx/polygon/b2dpolypolygon.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <basegfx/polygon/b2dpolypolygontools.hxx>

#include <o3tl/vector_pool.hxx>
#include <boost/bind.hpp>
#include <boost/utility.hpp>

#include <algorithm>
#include <deque>
#include <list>


namespace basegfx
{
    namespace
    {
        // Generating a poly-polygon from a bunch of rectangles
        //
        // Helper functionality for sweep-line algorithm
        // ====================================================

        typedef std::vector<B2DRange> VectorOfRanges;

        class ImplPolygon;
        typedef o3tl::vector_pool<ImplPolygon> VectorOfPolygons;


        /** This class represents an active edge

            As the sweep line traverses across the overall area,
            rectangle edges parallel to it generate events, and
            rectangle edges orthogonal to it generate active
            edges. This class represents the latter.
         */
        class ActiveEdge
        {
        public:
            /** The two possible active rectangle edges differ by one
                coordinate value - the upper edge has the lower, the
                lower edge the higher value.
             */
            enum EdgeType {
                /// edge with lower coordinate value
                UPPER=0,
                /// edge with higher coordinate value
                LOWER=1
            };

            enum EdgeDirection {
                /// edge proceeds to the left
                PROCEED_LEFT=0,
                /// edge proceeds to the right
                PROCEED_RIGHT=1
            };

            /** Create active edge

                @param rRect
                Rectangle this edge is part of

                @param fInvariantCoord
                The invariant ccordinate value of this edge

                @param eEdgeType
                Is fInvariantCoord the lower or the higher value, for
                this rect?
             */
            ActiveEdge( const B2DRectangle& rRect,
                        const double&       fInvariantCoord,
                        std::ptrdiff_t      nPolyIdx,
                        EdgeType            eEdgeType,
                        EdgeDirection       eEdgeDirection ) :
                mfInvariantCoord(fInvariantCoord),
                mpAssociatedRect( &rRect ),
                mnPolygonIdx( nPolyIdx ),
                meEdgeType( eEdgeType ),
                meEdgeDirection( eEdgeDirection )
            {}

            double              getInvariantCoord() const { return mfInvariantCoord; }
            const B2DRectangle& getRect() const { return *mpAssociatedRect; }
            std::ptrdiff_t      getTargetPolygonIndex() const { return mnPolygonIdx; }
            void                setTargetPolygonIndex( std::ptrdiff_t nIdx ) { mnPolygonIdx = nIdx; }
            EdgeType            getEdgeType() const { return meEdgeType; }
            EdgeDirection       getEdgeDirection() const { return meEdgeDirection; }

            /// For STL sort
            bool operator<( const ActiveEdge& rRHS ) const { return mfInvariantCoord < rRHS.mfInvariantCoord; }

        private:
            /** The invariant coordinate value of this edge (e.g. the
                common y value, for a horizontal edge)
             */
            double              mfInvariantCoord;

            /** Associated rectangle

                This on the one hand saves some storage space (the
                vector of rectangles is persistent, anyway), and on
                the other hand provides an identifier to match active
                edges and x events (see below)

                Ptr because class needs to be assignable
             */
            const B2DRectangle* mpAssociatedRect;

            /** Index of the polygon this edge is currently involved
                with.

                Note that this can change for some kinds of edge
                intersection, as the algorithm tends to swap
                associated polygons there.

                -1 denotes no assigned polygon
             */
            std::ptrdiff_t      mnPolygonIdx;

            /// 'upper' or 'lower' edge of original rectangle.
            EdgeType            meEdgeType;

            /// 'left' or 'right'
            EdgeDirection       meEdgeDirection;
        };

        // Needs to be list - various places hold ptrs to elements
        typedef std::list< ActiveEdge > ListOfEdges;


        /** Element of the sweep line event list

            As the sweep line traverses across the overall area,
            rectangle edges parallel to it generate events, and
            rectangle edges orthogonal to it generate active
            edges. This class represents the former.

            The class defines an element of the sweep line list. The
            sweep line's position jumps in steps defined by the
            coordinates of the sorted SweepLineEvent entries.
         */
        class SweepLineEvent
        {
        public:
            /** The two possible sweep line rectangle edges differ by
                one coordinate value - the starting edge has the
                lower, the finishing edge the higher value.
             */
            enum EdgeType {
                /// edge with lower coordinate value
                STARTING_EDGE=0,
                /// edge with higher coordinate value
                FINISHING_EDGE=1
            };

            /** The two possible sweep line directions
             */
            enum EdgeDirection {
                PROCEED_UP=0,
                PROCEED_DOWN=1
            };

            /** Create sweep line event

                @param fPos
                Coordinate position of the event

                @param rRect
                Rectangle this event is generated for.

                @param eEdgeType
                Is fPos the lower or the higher value, for the
                rectangle this event is generated for?
             */
            SweepLineEvent( double              fPos,
                            const B2DRectangle& rRect,
                            EdgeType            eEdgeType,
                            EdgeDirection       eDirection) :
                mfPos( fPos ),
                mpAssociatedRect( &rRect ),
                meEdgeType( eEdgeType ),
                meEdgeDirection( eDirection )
            {}

            double              getPos() const { return mfPos; }
            const B2DRectangle& getRect() const { return *mpAssociatedRect; }
            EdgeType            getEdgeType() const { return meEdgeType; }
            EdgeDirection       getEdgeDirection() const { return meEdgeDirection; }

            /// For STL sort
            bool operator<( const SweepLineEvent& rRHS ) const { return mfPos < rRHS.mfPos; }

        private:
            /// position of the event, in the direction of the line sweep
            double                mfPos;

            /** Rectangle this event is generated for

                This on the one hand saves some storage space (the
                vector of rectangles is persistent, anyway), and on
                the other hand provides an identifier to match active
                edges and events (see below)

                Ptr because class needs to be assignable
             */
            const B2DRectangle*   mpAssociatedRect;

            /// 'upper' or 'lower' edge of original rectangle.
            EdgeType              meEdgeType;

            /// 'up' or 'down'
            EdgeDirection         meEdgeDirection;
        };

        typedef std::vector< SweepLineEvent > VectorOfEvents;


        /** Smart point container for B2DMultiRange::getPolyPolygon()

            This class provides methods needed only here, and is used
            as a place to store some additional information per
            polygon. Also, most of the intersection logic is
            implemented here.
         */
        class ImplPolygon
        {
        public:
            /** Create polygon
             */
            ImplPolygon() :
                mpLeadingRightEdge(NULL),
                mnIdx(-1),
                maPoints(),
                mbIsFinished(false)
            {
                // completely ad-hoc. but what the hell.
                maPoints.reserve(11);
            }

            void setPolygonPoolIndex( std::ptrdiff_t nIdx ) { mnIdx = nIdx; }
            bool isFinished() const { return mbIsFinished; }

            /// Add point to the end of the existing points
            void append( const B2DPoint& rPoint )
            {
                OSL_PRECOND( maPoints.empty() ||
                             maPoints.back().getX() == rPoint.getX() ||
                             maPoints.back().getY() == rPoint.getY(),
                             "ImplPolygon::append(): added point violates 90 degree line angle constraint!" );

                if( maPoints.empty() ||
                    maPoints.back() != rPoint )
                {
                    // avoid duplicate points
                    maPoints.push_back( rPoint );
                }
            }

            /** Perform the intersection of this polygon with an
                active edge.

                @param rEvent
                The vertical line event that generated the
                intersection

                @param rActiveEdge
                The active edge that generated the intersection

                @param rPolygonPool
                Polygon pool, we sometimes need to allocate a new one

                @param bIsFinishingEdge
                True, when this is hitting the last edge of the
                vertical sweep - every vertical sweep starts and ends
                with upper and lower edge of the _same_ rectangle.

                @return the new current polygon (that's the one
                processing must proceed with, when going through the
                list of upcoming active edges).
             */
            std::ptrdiff_t intersect( SweepLineEvent&   rEvent,
                                      ActiveEdge&       rActiveEdge,
                                      VectorOfPolygons& rPolygonPool,
                                      B2DPolyPolygon&   rRes,
                                      bool              isFinishingEdge )
            {
                OSL_PRECOND( !isFinished(),
                             "ImplPolygon::intersect(): called on already finished polygon!" );
                OSL_PRECOND( !isFinishingEdge
                             || (isFinishingEdge && &rEvent.getRect() == &rActiveEdge.getRect()),
                             "ImplPolygon::intersect(): inconsistent ending!" );

                const B2DPoint aIntersectionPoint( rEvent.getPos(),
                                                   rActiveEdge.getInvariantCoord() );

                // intersection point, goes to our polygon
                // unconditionally
                append(aIntersectionPoint);

                const bool isSweepLineEnteringRect(
                    rEvent.getEdgeType() == SweepLineEvent::STARTING_EDGE);
                if( isFinishingEdge )
                {
                    if( isSweepLineEnteringRect )
                        handleFinalOwnRightEdge(rActiveEdge);
                    else
                        handleFinalOwnLeftEdge(rActiveEdge,
                                               rPolygonPool,
                                               rRes);

                    // we're done with this rect & sweep line
                    return -1;
                }
                else if( metOwnEdge(rEvent,rActiveEdge) )
                {
                    handleInitialOwnEdge(rEvent, rActiveEdge);

                    // point already added, all init done, continue
                    // with same poly
                    return mnIdx;
                }
                else
                {
                    OSL_ENSURE( rActiveEdge.getTargetPolygonIndex() != -1,
                                "ImplPolygon::intersect(): non-trivial intersection hit empty polygon!" );

                    const bool isHittingLeftEdge(
                        rActiveEdge.getEdgeDirection() == ActiveEdge::PROCEED_LEFT);

                    if( isHittingLeftEdge )
                        return handleComplexLeftEdge(rActiveEdge,
                                                     aIntersectionPoint,
                                                     rPolygonPool,
                                                     rRes);
                    else
                        return handleComplexRightEdge(rActiveEdge,
                                                      aIntersectionPoint,
                                                      rPolygonPool);
                }
            }

        private:
            std::ptrdiff_t getPolygonPoolIndex() const { return mnIdx; }

            void handleInitialOwnEdge(SweepLineEvent& rEvent,
                                      ActiveEdge&     rActiveEdge)
            {
                const bool isActiveEdgeProceedLeft(
                    rActiveEdge.getEdgeDirection() == ActiveEdge::PROCEED_LEFT);
                const bool isSweepLineEnteringRect(
                    rEvent.getEdgeType() == SweepLineEvent::STARTING_EDGE);
                (void)isActiveEdgeProceedLeft;
                (void)isSweepLineEnteringRect;

                OSL_ENSURE( isSweepLineEnteringRect == isActiveEdgeProceedLeft,
                            "ImplPolygon::intersect(): sweep initial own edge hit: wrong polygon order" );

                OSL_ENSURE( isSweepLineEnteringRect ||
                            mpLeadingRightEdge == &rActiveEdge,
                            "ImplPolygon::intersect(): sweep initial own edge hit: wrong leading edge" );
            }

            void handleFinalOwnRightEdge(ActiveEdge& rActiveEdge)
            {
                OSL_ENSURE( rActiveEdge.getEdgeDirection() == ActiveEdge::PROCEED_RIGHT,
                            "ImplPolygon::handleInitialOwnRightEdge(): start edge wrong polygon order" );

                rActiveEdge.setTargetPolygonIndex(mnIdx);
                mpLeadingRightEdge = &rActiveEdge;
            }

            void handleFinalOwnLeftEdge(ActiveEdge&       rActiveEdge,
                                        VectorOfPolygons& rPolygonPool,
                                        B2DPolyPolygon&   rRes)
            {
                OSL_ENSURE( rActiveEdge.getEdgeDirection() == ActiveEdge::PROCEED_LEFT,
                            "ImplPolygon::handleFinalOwnLeftEdge(): end edge wrong polygon order" );

                const bool isHittingOurTail(
                    rActiveEdge.getTargetPolygonIndex() == mnIdx);

                if( isHittingOurTail )
                    finish(rRes); // just finish. no fuss.
                else
                {
                    // temp poly hits final left edge
                    const std::ptrdiff_t nTmpIdx=rActiveEdge.getTargetPolygonIndex();
                    ImplPolygon& rTmp=rPolygonPool.get(nTmpIdx);

                    // active edge's polygon has points
                    // already. ours need to go in front of them.
                    maPoints.insert(maPoints.end(),
                                    rTmp.maPoints.begin(),
                                    rTmp.maPoints.end());

                    // adjust leading edges, we're switching the polygon
                    ActiveEdge* const pFarEdge=rTmp.mpLeadingRightEdge;

                    mpLeadingRightEdge = pFarEdge;
                    pFarEdge->setTargetPolygonIndex(mnIdx);

                    // nTmpIdx is an empty shell, get rid of it
                    rPolygonPool.free(nTmpIdx);
                }
            }

            std::ptrdiff_t handleComplexLeftEdge(ActiveEdge&       rActiveEdge,
                                                 const B2DPoint&   rIntersectionPoint,
                                                 VectorOfPolygons& rPolygonPool,
                                                 B2DPolyPolygon&   rRes)
            {
                const bool isHittingOurTail(
                    rActiveEdge.getTargetPolygonIndex() == mnIdx);
                if( isHittingOurTail )
                {
                    finish(rRes);

                    // so "this" is done - need new polygon to collect
                    // further points
                    const std::ptrdiff_t nIdxNewPolygon=rPolygonPool.alloc();
                    rPolygonPool.get(nIdxNewPolygon).setPolygonPoolIndex(nIdxNewPolygon);
                    rPolygonPool.get(nIdxNewPolygon).append(rIntersectionPoint);

                    rActiveEdge.setTargetPolygonIndex(nIdxNewPolygon);

                    return nIdxNewPolygon;
                }
                else
                {
                    const std::ptrdiff_t nTmpIdx=rActiveEdge.getTargetPolygonIndex();
                    ImplPolygon& rTmp=rPolygonPool.get(nTmpIdx);

                    // active edge's polygon has points
                    // already. ours need to go in front of them.
                    maPoints.insert(maPoints.end(),
                                    rTmp.maPoints.begin(),
                                    rTmp.maPoints.end());

                    rTmp.maPoints.clear();
                    rTmp.append(rIntersectionPoint);

                    // adjust leading edges, we're switching the polygon
                    ActiveEdge* const pFarEdge=rTmp.mpLeadingRightEdge;
                    ActiveEdge* const pNearEdge=&rActiveEdge;

                    rTmp.mpLeadingRightEdge = NULL;
                    pNearEdge->setTargetPolygonIndex(nTmpIdx);

                    mpLeadingRightEdge = pFarEdge;
                    pFarEdge->setTargetPolygonIndex(mnIdx);

                    return nTmpIdx;
                }
            }

            std::ptrdiff_t handleComplexRightEdge(ActiveEdge&       rActiveEdge,
                                                  const B2DPoint&   rIntersectionPoint,
                                                  VectorOfPolygons& rPolygonPool)
            {
                const std::ptrdiff_t nTmpIdx=rActiveEdge.getTargetPolygonIndex();
                ImplPolygon& rTmp=rPolygonPool.get(nTmpIdx);

                rTmp.append(rIntersectionPoint);

                rActiveEdge.setTargetPolygonIndex(mnIdx);
                mpLeadingRightEdge = &rActiveEdge;

                rTmp.mpLeadingRightEdge = NULL;

                return nTmpIdx;
            }

            /// True when sweep line hits our own active edge
            bool metOwnEdge(const SweepLineEvent& rEvent,
                            ActiveEdge&           rActiveEdge)
            {
                const bool bHitOwnEdge=&rEvent.getRect() == &rActiveEdge.getRect();
                return bHitOwnEdge;
            }

            /// Retrieve B2DPolygon from this object
            B2DPolygon getPolygon() const
            {
                B2DPolygon aRes;
                std::for_each( maPoints.begin(),
                               maPoints.end(),
                               boost::bind(
                     &B2DPolygon::append,
                                   boost::ref(aRes),
                                   _1,
                                   1 ) );
                aRes.setClosed( true );
                return aRes;
            }

            /** Finish this polygon, push to result set.
             */
            void finish(B2DPolyPolygon& rRes)
            {
                OSL_PRECOND( maPoints.empty() ||
                             maPoints.front().getX() == maPoints.back().getX() ||
                             maPoints.front().getY() == maPoints.back().getY(),
                             "ImplPolygon::finish(): first and last point violate 90 degree line angle constraint!" );

                mbIsFinished = true;
                mpLeadingRightEdge = NULL;

                rRes.append(getPolygon());
            }

            /** Refers to the current leading edge element of this
                polygon, or NULL. The leading edge denotes the 'front'
                of the polygon vertex sequence, i.e. the coordinates
                at the polygon's leading edge are returned from
                maPoints.front()
             */
            ActiveEdge*           mpLeadingRightEdge;

            /// current index into vector pool
            std::ptrdiff_t        mnIdx;

            /// Container for the actual polygon points
            std::vector<B2DPoint> maPoints;

            /// When true, this polygon is 'done', i.e. nothing must be added anymore.
            bool                  mbIsFinished;
        };

        /** Init sweep line event list

            This method fills the event list with the sweep line
            events generated from the input rectangles, and sorts them
            with increasing x.
         */
        void setupSweepLineEventListFromRanges( VectorOfEvents& o_rEventVector,
                                                const std::vector<B2DRange>& rRanges,
                                                const std::vector<B2VectorOrientation>& rOrientations )
        {
            // we need exactly 2*rectVec.size() events: one for the
            // left, and one for the right edge of each rectangle
            o_rEventVector.clear();
            o_rEventVector.reserve( 2*rRanges.size() );

            // generate events
            // ===============

            // first pass: add all left edges in increasing order
            std::vector<B2DRange>::const_iterator aCurrRect=rRanges.begin();
            std::vector<B2VectorOrientation>::const_iterator aCurrOrientation=rOrientations.begin();
            const std::vector<B2DRange>::const_iterator aEnd=rRanges.end();
            const std::vector<B2VectorOrientation>::const_iterator aEndOrientation=rOrientations.end();
            while( aCurrRect != aEnd && aCurrOrientation != aEndOrientation )
            {
                const B2DRectangle& rCurrRect( *aCurrRect++ );

                o_rEventVector.push_back(
                    SweepLineEvent( rCurrRect.getMinX(),
                                    rCurrRect,
                                    SweepLineEvent::STARTING_EDGE,
                                    (*aCurrOrientation++) == ORIENTATION_POSITIVE ?
                                    SweepLineEvent::PROCEED_UP : SweepLineEvent::PROCEED_DOWN) );
            }

            // second pass: add all right edges in reversed order
            std::vector<B2DRange>::const_reverse_iterator aCurrRectR=rRanges.rbegin();
            std::vector<B2VectorOrientation>::const_reverse_iterator aCurrOrientationR=rOrientations.rbegin();
            const std::vector<B2DRange>::const_reverse_iterator aEndR=rRanges.rend();
            const std::vector<B2VectorOrientation>::const_reverse_iterator aEndOrientationR=rOrientations.rend();
            while( aCurrRectR != aEndR )
            {
                const B2DRectangle& rCurrRect( *aCurrRectR++ );

                o_rEventVector.push_back(
                    SweepLineEvent( rCurrRect.getMaxX(),
                                    rCurrRect,
                                    SweepLineEvent::FINISHING_EDGE,
                                    (*aCurrOrientationR++) == ORIENTATION_POSITIVE ?
                                    SweepLineEvent::PROCEED_DOWN : SweepLineEvent::PROCEED_UP ) );
            }

            // sort events
            // ===========

            // since we use stable_sort, the order of events with the
            // same x value will not change. The elaborate two-pass
            // add above thus ensures, that for each two rectangles
            // with similar left and right x coordinates, the
            // rectangle whose left event comes first will have its
            // right event come last. This is advantageous for the
            // clip algorithm below, see handleRightEdgeCrossing().

            // TODO(P3): Use radix sort (from
            // b2dpolypolygonrasterconverter, or have your own
            // templatized version).
            std::stable_sort( o_rEventVector.begin(),
                              o_rEventVector.end() );
        }

        /** Insert two active edge segments for the given rectangle.

            This method creates two active edge segments from the
            given rect, and inserts them into the active edge list,
            such that this stays sorted (if it was before).

            @param io_rEdgeList
            Active edge list to insert into

            @param io_rPolygons
            Vector of polygons. Each rectangle added creates one
            tentative result polygon in this vector, and the edge list
            entries holds a reference to that polygon (this _requires_
            that the polygon vector does not reallocate, i.e. it must
            have at least the maximal number of rectangles reserved)

            @param o_CurrentPolygon
            The then-current polygon when processing this sweep line
            event

            @param rCurrEvent
            The actual event that caused this call
         */
        void createActiveEdgesFromStartEvent( ListOfEdges&      io_rEdgeList,
                                              VectorOfPolygons& io_rPolygonPool,
                                              SweepLineEvent&   rCurrEvent )
        {
            ListOfEdges         aNewEdges;
            const B2DRectangle& rRect=rCurrEvent.getRect();
            const bool          bGoesDown=rCurrEvent.getEdgeDirection() == SweepLineEvent::PROCEED_DOWN;

            // start event - new rect starts here, needs polygon to
            // collect points into
            const std::ptrdiff_t nIdxPolygon=io_rPolygonPool.alloc();
            io_rPolygonPool.get(nIdxPolygon).setPolygonPoolIndex(nIdxPolygon);

            // upper edge
            aNewEdges.push_back(
                ActiveEdge(
                    rRect,
                    rRect.getMinY(),
                    bGoesDown ? nIdxPolygon : -1,
                    ActiveEdge::UPPER,
                    bGoesDown ? ActiveEdge::PROCEED_LEFT : ActiveEdge::PROCEED_RIGHT) );
            // lower edge
            aNewEdges.push_back(
                ActiveEdge(
                    rRect,
                    rRect.getMaxY(),
                    bGoesDown ? -1 : nIdxPolygon,
                    ActiveEdge::LOWER,
                    bGoesDown ? ActiveEdge::PROCEED_RIGHT : ActiveEdge::PROCEED_LEFT ) );

            // furthermore, have to respect a special tie-breaking
            // rule here, for edges which share the same y value:
            // newly added upper edges must be inserted _before_ any
            // other edge with the same y value, and newly added lower
            // edges must be _after_ all other edges with the same
            // y. This ensures that the left vertical edge processing
            // below encounters the upper edge of the current rect
            // first, and the lower edge last, which automatically
            // starts and finishes this rect correctly (as only then,
            // the polygon will have their associated active edges
            // set).
            const double                nMinY( rRect.getMinY() );
            const double                nMaxY( rRect.getMaxY() );
            ListOfEdges::iterator       aCurr( io_rEdgeList.begin() );
            const ListOfEdges::iterator aEnd ( io_rEdgeList.end() );
            while( aCurr != aEnd )
            {
                const double nCurrY( aCurr->getInvariantCoord() );

                if( nCurrY >= nMinY &&
                    aNewEdges.size() == 2 ) // only add, if not yet done.
                {
                    // insert upper edge _before_ aCurr. Thus, it will
                    // be the first entry for a range of equal y
                    // values. Using splice here, since we hold
                    // references to the moved list element!
                    io_rEdgeList.splice( aCurr,
                                         aNewEdges,
                                         aNewEdges.begin() );
                }

                if( nCurrY > nMaxY )
                {
                    // insert lower edge _before_ aCurr. Thus, it will
                    // be the last entry for a range of equal y values
                    // (aCurr is the first entry strictly larger than
                    // nMaxY). Using splice here, since we hold
                    // references to the moved list element!
                    io_rEdgeList.splice( aCurr,
                                         aNewEdges,
                                         aNewEdges.begin() );
                    // done with insertion, can early-exit here.
                    return;
                }

                ++aCurr;
            }

            // append remainder of aNewList (might still contain 2 or
            // 1 elements, depending of the contents of io_rEdgeList).
            io_rEdgeList.splice( aCurr,
                                 aNewEdges );
        }

        inline bool isSameRect(ActiveEdge&              rEdge,
                               const basegfx::B2DRange& rRect)
        {
            return &rEdge.getRect() == &rRect;
        }

        // wow what a hack. necessary because stl's list::erase does
        // not eat reverse_iterator
        template<typename Cont, typename Iter> Iter eraseFromList(Cont&, Iter);
        template<> inline ListOfEdges::iterator eraseFromList(
            ListOfEdges& rList, ListOfEdges::iterator aIter)
        {
            return rList.erase(aIter);
        }
        template<> inline ListOfEdges::reverse_iterator eraseFromList(
            ListOfEdges& rList, ListOfEdges::reverse_iterator aIter)
        {
            return ListOfEdges::reverse_iterator(
                    rList.erase(boost::prior(aIter.base())));
        }

        template<int bPerformErase,
                 typename Iterator> inline void processActiveEdges(
            Iterator          first,
            Iterator          last,
            ListOfEdges&      rActiveEdgeList,
            SweepLineEvent&   rCurrEvent,
            VectorOfPolygons& rPolygonPool,
            B2DPolyPolygon&   rRes )
        {
            const basegfx::B2DRange& rCurrRect=rCurrEvent.getRect();

            // fast-forward to rCurrEvent's first active edge (holds
            // for both starting and finishing sweep line events, a
            // rect is regarded _outside_ any rects whose events have
            // started earlier
            first = std::find_if(first, last,
                                 boost::bind(
                         &isSameRect,
                                     _1,
                                     boost::cref(rCurrRect)));

            if(first == last)
                return;

            int nCount=0;
            std::ptrdiff_t nCurrPolyIdx=-1;
            while(first != last)
            {
                if( nCurrPolyIdx == -1 )
                    nCurrPolyIdx=first->getTargetPolygonIndex();

                OSL_ASSERT(nCurrPolyIdx != -1);

                // second encounter of my rect -> second edge
                // encountered, done
                const bool bExit=
                    nCount &&
                    isSameRect(*first,
                               rCurrRect);

                // deal with current active edge
                nCurrPolyIdx =
                    rPolygonPool.get(nCurrPolyIdx).intersect(
                        rCurrEvent,
                        *first,
                        rPolygonPool,
                        rRes,
                        bExit);

                // prune upper & lower active edges, if requested
                if( bPerformErase && (bExit || !nCount) )
                    first = eraseFromList(rActiveEdgeList,first);
                else
                    ++first;

                // delayed exit, had to prune first
                if( bExit )
                    return;

                ++nCount;
            }
        }

        template<int bPerformErase> inline void processActiveEdgesTopDown(
            SweepLineEvent&   rCurrEvent,
            ListOfEdges&      rActiveEdgeList,
            VectorOfPolygons& rPolygonPool,
            B2DPolyPolygon&   rRes )
        {
            processActiveEdges<bPerformErase>(
                rActiveEdgeList. begin(),
                rActiveEdgeList. end(),
                rActiveEdgeList,
                rCurrEvent,
                rPolygonPool,
                rRes);
        }

        template<int bPerformErase> inline void processActiveEdgesBottomUp(
            SweepLineEvent&   rCurrEvent,
            ListOfEdges&      rActiveEdgeList,
            VectorOfPolygons& rPolygonPool,
            B2DPolyPolygon&   rRes )
        {
            processActiveEdges<bPerformErase>(
                rActiveEdgeList. rbegin(),
                rActiveEdgeList. rend(),
                rActiveEdgeList,
                rCurrEvent,
                rPolygonPool,
                rRes);
        }

        enum{ NoErase=0, PerformErase=1 };

        void handleStartingEdge( SweepLineEvent&   rCurrEvent,
                                 ListOfEdges&      rActiveEdgeList,
                                 VectorOfPolygons& rPolygonPool,
                                 B2DPolyPolygon&   rRes)
        {
            // inject two new active edges for rect
            createActiveEdgesFromStartEvent( rActiveEdgeList,
                                             rPolygonPool,
                                             rCurrEvent );

            if( SweepLineEvent::PROCEED_DOWN == rCurrEvent.getEdgeDirection() )
                processActiveEdgesTopDown<NoErase>(
                    rCurrEvent, rActiveEdgeList, rPolygonPool, rRes);
            else
                processActiveEdgesBottomUp<NoErase>(
                    rCurrEvent, rActiveEdgeList, rPolygonPool, rRes);
        }

        void handleFinishingEdge( SweepLineEvent&   rCurrEvent,
                                  ListOfEdges&      rActiveEdgeList,
                                  VectorOfPolygons& rPolygonPool,
                                  B2DPolyPolygon&   rRes)
        {
            if( SweepLineEvent::PROCEED_DOWN == rCurrEvent.getEdgeDirection() )
                processActiveEdgesTopDown<PerformErase>(
                    rCurrEvent, rActiveEdgeList, rPolygonPool, rRes);
            else
                processActiveEdgesBottomUp<PerformErase>(
                    rCurrEvent, rActiveEdgeList, rPolygonPool, rRes);
        }

        inline void handleSweepLineEvent( SweepLineEvent&   rCurrEvent,
                                          ListOfEdges&      rActiveEdgeList,
                                          VectorOfPolygons& rPolygonPool,
                                          B2DPolyPolygon&   rRes)
        {
            if( SweepLineEvent::STARTING_EDGE == rCurrEvent.getEdgeType() )
                handleStartingEdge(rCurrEvent,rActiveEdgeList,rPolygonPool,rRes);
            else
                handleFinishingEdge(rCurrEvent,rActiveEdgeList,rPolygonPool,rRes);
        }
    }

    namespace tools
    {
        B2DPolyPolygon solveCrossovers(const std::vector<B2DRange>& rRanges,
                                       const std::vector<B2VectorOrientation>& rOrientations)
        {
            // sweep-line algorithm to generate a poly-polygon
            // from a bunch of rectangles
            // ===============================================
            //
            // This algorithm uses the well-known sweep line
            // concept, explained in every good text book about
            // computational geometry.
            //
            // We start with creating two structures for every
            // rectangle, one representing the left x coordinate,
            // one representing the right x coordinate (and both
            // referencing the original rect). These structs are
            // sorted with increasing x coordinates.
            //
            // Then, we start processing the resulting list from
            // the beginning. Every entry in the list defines a
            // point in time of the line sweeping from left to
            // right across all rectangles.
            VectorOfEvents aSweepLineEvents;
            setupSweepLineEventListFromRanges( aSweepLineEvents,
                                               rRanges,
                                               rOrientations );

            B2DPolyPolygon   aRes;
            VectorOfPolygons aPolygonPool;
            ListOfEdges      aActiveEdgeList;

            // sometimes not enough, but a usable compromise
            aPolygonPool.reserve( rRanges.size() );

            std::for_each( aSweepLineEvents.begin(),
                           aSweepLineEvents.end(),
                           boost::bind(
                               &handleSweepLineEvent,
                               _1,
                               boost::ref(aActiveEdgeList),
                               boost::ref(aPolygonPool),
                               boost::ref(aRes)) );

            return aRes;
        }
    }
}