1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <basegfx/raster/rasterconvert3d.hxx>
#include <basegfx/polygon/b3dpolygon.hxx>
#include <basegfx/polygon/b3dpolypolygon.hxx>
#include <basegfx/point/b3dpoint.hxx>
// implementations of the 3D raster converter
namespace basegfx
{
void RasterConverter3D::addArea(const B3DPolygon& rFill, const B3DHomMatrix* pViewToEye)
{
const sal_uInt32 nPointCount(rFill.count());
for(sal_uInt32 a(0); a < nPointCount; a++)
{
addEdge(rFill, a, (a + 1) % nPointCount, pViewToEye);
}
}
void RasterConverter3D::addArea(const B3DPolyPolygon& rFill, const B3DHomMatrix* pViewToEye)
{
const sal_uInt32 nPolyCount(rFill.count());
for(sal_uInt32 a(0); a < nPolyCount; a++)
{
addArea(rFill.getB3DPolygon(a), pViewToEye);
}
}
RasterConverter3D::RasterConverter3D()
: InterpolatorProvider3D(),
maLineEntries()
{}
RasterConverter3D::~RasterConverter3D()
{}
void RasterConverter3D::rasterconvertB3DArea(sal_Int32 nStartLine, sal_Int32 nStopLine)
{
if(!maLineEntries.empty())
{
OSL_ENSURE(nStopLine >= nStartLine, "nStopLine is bigger than nStartLine (!)");
// sort global entries by Y, X once. After this, the vector
// is seen as frozen. Pointers to its entries will be used in the following code.
std::sort(maLineEntries.begin(), maLineEntries.end());
// local parameters
std::vector< RasterConversionLineEntry3D >::iterator aCurrentEntry(maLineEntries.begin());
std::vector< RasterConversionLineEntry3D* > aCurrentLine;
std::vector< RasterConversionLineEntry3D* > aNextLine;
std::vector< RasterConversionLineEntry3D* >::iterator aRasterConversionLineEntry3D;
sal_uInt32 nPairCount(0);
// get scanlines first LineNumber as start
sal_Int32 nLineNumber(std::max(aCurrentEntry->getY(), nStartLine));
while((aCurrentLine.size() || aCurrentEntry != maLineEntries.end()) && (nLineNumber < nStopLine))
{
// add all entries which start at current line to current scanline
while(aCurrentEntry != maLineEntries.end())
{
const sal_Int32 nCurrentLineNumber(aCurrentEntry->getY());
if(nCurrentLineNumber > nLineNumber)
{
// line is below current one, done (since array is sorted)
break;
}
else
{
// less or equal. Line is above or at current one. Advance it exactly to
// current line
const sal_uInt32 nStep(nLineNumber - nCurrentLineNumber);
if(!nStep || aCurrentEntry->decrementRasterConversionLineEntry3D(nStep))
{
// add when exactly on current line or when increment to it did not
// completely consume it
if(nStep)
{
aCurrentEntry->incrementRasterConversionLineEntry3D(nStep, *this);
}
aCurrentLine.push_back(&(*aCurrentEntry));
}
}
++aCurrentEntry;
}
// sort current scanline using comparator. Only X is used there
// since all entries are already in one processed line. This needs to be done
// every time since not only new spans may have benn added or old removed,
// but incrementing may also have changed the order
std::sort(aCurrentLine.begin(), aCurrentLine.end(), lineComparator());
// process current scanline
aRasterConversionLineEntry3D = aCurrentLine.begin();
aNextLine.clear();
nPairCount = 0;
while(aRasterConversionLineEntry3D != aCurrentLine.end())
{
RasterConversionLineEntry3D& rPrevScanRasterConversionLineEntry3D(**aRasterConversionLineEntry3D++);
// look for 2nd span
if(aRasterConversionLineEntry3D != aCurrentLine.end())
{
// work on span from rPrevScanRasterConversionLineEntry3D to aRasterConversionLineEntry3D, fLineNumber is valid
processLineSpan(rPrevScanRasterConversionLineEntry3D, **aRasterConversionLineEntry3D, nLineNumber, nPairCount++);
}
// increment to next line
if(rPrevScanRasterConversionLineEntry3D.decrementRasterConversionLineEntry3D(1))
{
rPrevScanRasterConversionLineEntry3D.incrementRasterConversionLineEntry3D(1, *this);
aNextLine.push_back(&rPrevScanRasterConversionLineEntry3D);
}
}
// copy back next scanline if count has changed
if(aNextLine.size() != aCurrentLine.size())
{
aCurrentLine = aNextLine;
}
// increment fLineNumber
nLineNumber++;
}
}
}
void RasterConverter3D::addEdge(const B3DPolygon& rFill, sal_uInt32 a, sal_uInt32 b, const B3DHomMatrix* pViewToEye)
{
B3DPoint aStart(rFill.getB3DPoint(a));
B3DPoint aEnd(rFill.getB3DPoint(b));
sal_Int32 nYStart(fround(aStart.getY()));
sal_Int32 nYEnd(fround(aEnd.getY()));
if(nYStart != nYEnd)
{
if(nYStart > nYEnd)
{
std::swap(aStart, aEnd);
std::swap(nYStart, nYEnd);
std::swap(a, b);
}
const sal_uInt32 nYDelta(nYEnd - nYStart);
const double fInvYDelta(1.0 / nYDelta);
maLineEntries.push_back(RasterConversionLineEntry3D(
aStart.getX(), (aEnd.getX() - aStart.getX()) * fInvYDelta,
aStart.getZ(), (aEnd.getZ() - aStart.getZ()) * fInvYDelta,
nYStart, nYDelta));
// if extra interpolation data is used, add it to the last created entry
RasterConversionLineEntry3D& rEntry = maLineEntries[maLineEntries.size() - 1];
if(rFill.areBColorsUsed())
{
rEntry.setColorIndex(addColorInterpolator(rFill.getBColor(a), rFill.getBColor(b), fInvYDelta));
}
if(rFill.areNormalsUsed())
{
rEntry.setNormalIndex(addNormalInterpolator(rFill.getNormal(a), rFill.getNormal(b), fInvYDelta));
}
if(rFill.areTextureCoordinatesUsed())
{
if(pViewToEye)
{
const double fEyeA(((*pViewToEye) * aStart).getZ());
const double fEyeB(((*pViewToEye) * aEnd).getZ());
rEntry.setInverseTextureIndex(addInverseTextureInterpolator(
rFill.getTextureCoordinate(a),
rFill.getTextureCoordinate(b),
fEyeA, fEyeB, fInvYDelta));
}
else
{
rEntry.setTextureIndex(addTextureInterpolator(
rFill.getTextureCoordinate(a),
rFill.getTextureCoordinate(b),
fInvYDelta));
}
}
}
}
void RasterConverter3D::rasterconvertB3DEdge(const B3DPolygon& rLine, sal_uInt32 nA, sal_uInt32 nB, sal_Int32 nStartLine, sal_Int32 nStopLine, sal_uInt16 nLineWidth)
{
B3DPoint aStart(rLine.getB3DPoint(nA));
B3DPoint aEnd(rLine.getB3DPoint(nB));
const double fZBufferLineAdd(0x00ff);
static bool bForceToPolygon(false);
if(nLineWidth > 1 || bForceToPolygon)
{
// this is not a hairline anymore, in most cases since it's an oversampled
// hairline to get e.g. AA for Z-Buffering. Create fill geometry.
if(!aStart.equal(aEnd))
{
reset();
maLineEntries.clear();
B2DVector aVector(aEnd.getX() - aStart.getX(), aEnd.getY() - aStart.getY());
aVector.normalize();
const B2DVector aPerpend(getPerpendicular(aVector) * ((static_cast<double>(nLineWidth) + 0.5) * 0.5));
const double fZStartWithAdd(aStart.getZ() + fZBufferLineAdd);
const double fZEndWithAdd(aEnd.getZ() + fZBufferLineAdd);
B3DPolygon aPolygon;
aPolygon.append(B3DPoint(aStart.getX() + aPerpend.getX(), aStart.getY() + aPerpend.getY(), fZStartWithAdd));
aPolygon.append(B3DPoint(aEnd.getX() + aPerpend.getX(), aEnd.getY() + aPerpend.getY(), fZEndWithAdd));
aPolygon.append(B3DPoint(aEnd.getX() - aPerpend.getX(), aEnd.getY() - aPerpend.getY(), fZEndWithAdd));
aPolygon.append(B3DPoint(aStart.getX() - aPerpend.getX(), aStart.getY() - aPerpend.getY(), fZStartWithAdd));
aPolygon.setClosed(true);
addArea(aPolygon, nullptr);
}
}
else
{
// it's a hairline. Use direct RasterConversionLineEntry creation to
// rasterconvert lines as similar to areas as possible to avoid Z-Fighting
sal_Int32 nYStart(fround(aStart.getY()));
sal_Int32 nYEnd(fround(aEnd.getY()));
if(nYStart == nYEnd)
{
// horizontal line, check X
const sal_Int32 nXStart(static_cast<sal_Int32>(aStart.getX()));
const sal_Int32 nXEnd(static_cast<sal_Int32>(aEnd.getX()));
if(nXStart != nXEnd)
{
reset();
maLineEntries.clear();
// horizontal line, create vertical entries. These will be sorted by
// X anyways, so no need to distinguish the case here
maLineEntries.push_back(RasterConversionLineEntry3D(
aStart.getX(), 0.0,
aStart.getZ() + fZBufferLineAdd, 0.0,
nYStart, 1));
maLineEntries.push_back(RasterConversionLineEntry3D(
aEnd.getX(), 0.0,
aEnd.getZ() + fZBufferLineAdd, 0.0,
nYStart, 1));
}
}
else
{
reset();
maLineEntries.clear();
if(nYStart > nYEnd)
{
std::swap(aStart, aEnd);
std::swap(nYStart, nYEnd);
}
const sal_uInt32 nYDelta(static_cast<sal_uInt32>(nYEnd - nYStart));
const double fInvYDelta(1.0 / nYDelta);
// non-horizontal line, create two parallel entries. These will be sorted by
// X anyways, so no need to distinguish the case here
maLineEntries.push_back(RasterConversionLineEntry3D(
aStart.getX(), (aEnd.getX() - aStart.getX()) * fInvYDelta,
aStart.getZ() + fZBufferLineAdd, (aEnd.getZ() - aStart.getZ()) * fInvYDelta,
nYStart, nYDelta));
RasterConversionLineEntry3D& rEntry = maLineEntries[maLineEntries.size() - 1];
// need to choose a X-Distance for the 2nd edge which guarantees all pixels
// of the line to be set. This is exactly the X-Increment for one Y-Step.
// Same is true for Z, so in both cases, add one increment to them. To also
// guarantee one pixel per line, add a minimum of one for X.
const double fDistanceX(fabs(rEntry.getX().getInc()) >= 1.0 ? rEntry.getX().getInc() : 1.0);
maLineEntries.push_back(RasterConversionLineEntry3D(
rEntry.getX().getVal() + fDistanceX, rEntry.getX().getInc(),
rEntry.getZ().getVal() + rEntry.getZ().getInc(), rEntry.getZ().getInc(),
nYStart, nYDelta));
}
}
if(!maLineEntries.empty())
{
rasterconvertB3DArea(nStartLine, nStopLine);
}
}
void RasterConverter3D::rasterconvertB3DPolyPolygon(const B3DPolyPolygon& rFill, const B3DHomMatrix* pViewToEye, sal_Int32 nStartLine, sal_Int32 nStopLine)
{
reset();
maLineEntries.clear();
addArea(rFill, pViewToEye);
rasterconvertB3DArea(nStartLine, nStopLine);
}
void RasterConverter3D::rasterconvertB3DPolygon(const B3DPolygon& rLine, sal_Int32 nStartLine, sal_Int32 nStopLine, sal_uInt16 nLineWidth)
{
const sal_uInt32 nPointCount(rLine.count());
if(nPointCount)
{
const sal_uInt32 nEdgeCount(rLine.isClosed() ? nPointCount : nPointCount - 1);
for(sal_uInt32 a(0); a < nEdgeCount; a++)
{
rasterconvertB3DEdge(rLine, a, (a + 1) % nPointCount, nStartLine, nStopLine, nLineWidth);
}
}
}
} // end of namespace basegfx
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|