summaryrefslogtreecommitdiff
path: root/basegfx/source/tools/gradienttools.cxx
blob: 61e3f9b459bcb12875de2269a085c557e2761056 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * This file incorporates work covered by the following license notice:
 *
 *   Licensed to the Apache Software Foundation (ASF) under one or more
 *   contributor license agreements. See the NOTICE file distributed
 *   with this work for additional information regarding copyright
 *   ownership. The ASF licenses this file to you under the Apache
 *   License, Version 2.0 (the "License"); you may not use this file
 *   except in compliance with the License. You may obtain a copy of
 *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
 */

#include <basegfx/utils/gradienttools.hxx>
#include <basegfx/point/b2dpoint.hxx>
#include <basegfx/range/b2drange.hxx>
#include <basegfx/matrix/b2dhommatrixtools.hxx>
#include <com/sun/star/awt/Gradient2.hpp>

#include <algorithm>
#include <cmath>

namespace basegfx
{
    bool ODFGradientInfo::operator==(const ODFGradientInfo& rODFGradientInfo) const
    {
        return getTextureTransform() == rODFGradientInfo.getTextureTransform()
            && getAspectRatio() == rODFGradientInfo.getAspectRatio()
            && getRequestedSteps() == rODFGradientInfo.getRequestedSteps();
    }

    const B2DHomMatrix& ODFGradientInfo::getBackTextureTransform() const
    {
        if(maBackTextureTransform.isIdentity())
        {
            const_cast< ODFGradientInfo* >(this)->maBackTextureTransform = getTextureTransform();
            const_cast< ODFGradientInfo* >(this)->maBackTextureTransform.invert();
        }

        return maBackTextureTransform;
    }

    /** Most of the setup for linear & axial gradient is the same, except
        for the border treatment. Factored out here.
    */
    static ODFGradientInfo init1DGradientInfo(
        const B2DRange& rTargetRange,
        sal_uInt32 nSteps,
        double fBorder,
        double fAngle,
        bool bAxial)
    {
        B2DHomMatrix aTextureTransform;

        fAngle = -fAngle;

        double fTargetSizeX(rTargetRange.getWidth());
        double fTargetSizeY(rTargetRange.getHeight());
        double fTargetOffsetX(rTargetRange.getMinX());
        double fTargetOffsetY(rTargetRange.getMinY());

        // add object expansion
        const bool bAngleUsed(!fTools::equalZero(fAngle));

        if(bAngleUsed)
        {
            const double fAbsCos(fabs(cos(fAngle)));
            const double fAbsSin(fabs(sin(fAngle)));
            const double fNewX(fTargetSizeX * fAbsCos + fTargetSizeY * fAbsSin);
            const double fNewY(fTargetSizeY * fAbsCos + fTargetSizeX * fAbsSin);

            fTargetOffsetX -= (fNewX - fTargetSizeX) / 2.0;
            fTargetOffsetY -= (fNewY - fTargetSizeY) / 2.0;
            fTargetSizeX = fNewX;
            fTargetSizeY = fNewY;
        }

        const double fSizeWithoutBorder(1.0 - fBorder);

        if(bAxial)
        {
            aTextureTransform.scale(1.0, fSizeWithoutBorder * 0.5);
            aTextureTransform.translate(0.0, 0.5);
        }
        else
        {
            if(!fTools::equal(fSizeWithoutBorder, 1.0))
            {
                aTextureTransform.scale(1.0, fSizeWithoutBorder);
                aTextureTransform.translate(0.0, fBorder);
            }
        }

        aTextureTransform.scale(fTargetSizeX, fTargetSizeY);

        // add texture rotate after scale to keep perpendicular angles
        if(bAngleUsed)
        {
            const B2DPoint aCenter(0.5 * fTargetSizeX, 0.5 * fTargetSizeY);

            aTextureTransform *= basegfx::utils::createRotateAroundPoint(aCenter, fAngle);
        }

        // add object translate
        aTextureTransform.translate(fTargetOffsetX, fTargetOffsetY);

        // prepare aspect for texture
        const double fAspectRatio(fTools::equalZero(fTargetSizeY) ?  1.0 : fTargetSizeX / fTargetSizeY);

        return ODFGradientInfo(aTextureTransform, fAspectRatio, nSteps);
    }

    /** Most of the setup for radial & ellipsoidal gradient is the same,
        except for the border treatment. Factored out here.
    */
    static ODFGradientInfo initEllipticalGradientInfo(
        const B2DRange& rTargetRange,
        const B2DVector& rOffset,
        sal_uInt32 nSteps,
        double fBorder,
        double fAngle,
        bool bCircular)
    {
        B2DHomMatrix aTextureTransform;

        fAngle = -fAngle;

        double fTargetSizeX(rTargetRange.getWidth());
        double fTargetSizeY(rTargetRange.getHeight());
        double fTargetOffsetX(rTargetRange.getMinX());
        double fTargetOffsetY(rTargetRange.getMinY());

        // add object expansion
        if(bCircular)
        {
            const double fOriginalDiag(std::hypot(fTargetSizeX, fTargetSizeY));

            fTargetOffsetX -= (fOriginalDiag - fTargetSizeX) / 2.0;
            fTargetOffsetY -= (fOriginalDiag - fTargetSizeY) / 2.0;
            fTargetSizeX = fOriginalDiag;
            fTargetSizeY = fOriginalDiag;
        }
        else
        {
            fTargetOffsetX -= ((M_SQRT2 - 1) / 2.0 ) * fTargetSizeX;
            fTargetOffsetY -= ((M_SQRT2 - 1) / 2.0 ) * fTargetSizeY;
            fTargetSizeX = M_SQRT2 * fTargetSizeX;
            fTargetSizeY = M_SQRT2 * fTargetSizeY;
        }

        const double fHalfBorder((1.0 - fBorder) * 0.5);

        aTextureTransform.scale(fHalfBorder, fHalfBorder);
        aTextureTransform.translate(0.5, 0.5);
        aTextureTransform.scale(fTargetSizeX, fTargetSizeY);

        // add texture rotate after scale to keep perpendicular angles
        if(!bCircular && !fTools::equalZero(fAngle))
        {
            const B2DPoint aCenter(0.5 * fTargetSizeX, 0.5 * fTargetSizeY);

            aTextureTransform *= basegfx::utils::createRotateAroundPoint(aCenter, fAngle);
        }

        // add defined offsets after rotation
        if(!fTools::equal(0.5, rOffset.getX()) || !fTools::equal(0.5, rOffset.getY()))
        {
            // use original target size
            fTargetOffsetX += (rOffset.getX() - 0.5) * rTargetRange.getWidth();
            fTargetOffsetY += (rOffset.getY() - 0.5) * rTargetRange.getHeight();
        }

        // add object translate
        aTextureTransform.translate(fTargetOffsetX, fTargetOffsetY);

        // prepare aspect for texture
        const double fAspectRatio(fTargetSizeY == 0.0 ? 1.0 : (fTargetSizeX / fTargetSizeY));

        return ODFGradientInfo(aTextureTransform, fAspectRatio, nSteps);
    }

    /** Setup for rect & square gradient is exactly the same. Factored out
        here.
    */
    static ODFGradientInfo initRectGradientInfo(
        const B2DRange& rTargetRange,
        const B2DVector& rOffset,
        sal_uInt32 nSteps,
        double fBorder,
        double fAngle,
        bool bSquare)
    {
        B2DHomMatrix aTextureTransform;

        fAngle = -fAngle;

        double fTargetSizeX(rTargetRange.getWidth());
        double fTargetSizeY(rTargetRange.getHeight());
        double fTargetOffsetX(rTargetRange.getMinX());
        double fTargetOffsetY(rTargetRange.getMinY());

        // add object expansion
        if(bSquare)
        {
            const double fSquareWidth(std::max(fTargetSizeX, fTargetSizeY));

            fTargetOffsetX -= (fSquareWidth - fTargetSizeX) / 2.0;
            fTargetOffsetY -= (fSquareWidth - fTargetSizeY) / 2.0;
            fTargetSizeX = fTargetSizeY = fSquareWidth;
        }

        // add object expansion
        const bool bAngleUsed(!fTools::equalZero(fAngle));

        if(bAngleUsed)
        {
            const double fAbsCos(fabs(cos(fAngle)));
            const double fAbsSin(fabs(sin(fAngle)));
            const double fNewX(fTargetSizeX * fAbsCos + fTargetSizeY * fAbsSin);
            const double fNewY(fTargetSizeY * fAbsCos + fTargetSizeX * fAbsSin);

            fTargetOffsetX -= (fNewX - fTargetSizeX) / 2.0;
            fTargetOffsetY -= (fNewY - fTargetSizeY) / 2.0;
            fTargetSizeX = fNewX;
            fTargetSizeY = fNewY;
        }

        const double fHalfBorder((1.0 - fBorder) * 0.5);

        aTextureTransform.scale(fHalfBorder, fHalfBorder);
        aTextureTransform.translate(0.5, 0.5);
        aTextureTransform.scale(fTargetSizeX, fTargetSizeY);

        // add texture rotate after scale to keep perpendicular angles
        if(bAngleUsed)
        {
            const B2DPoint aCenter(0.5 * fTargetSizeX, 0.5 * fTargetSizeY);

            aTextureTransform *= basegfx::utils::createRotateAroundPoint(aCenter, fAngle);
        }

        // add defined offsets after rotation
        if(!fTools::equal(0.5, rOffset.getX()) || !fTools::equal(0.5, rOffset.getY()))
        {
            // use original target size
            fTargetOffsetX += (rOffset.getX() - 0.5) * rTargetRange.getWidth();
            fTargetOffsetY += (rOffset.getY() - 0.5) * rTargetRange.getHeight();
        }

        // add object translate
        aTextureTransform.translate(fTargetOffsetX, fTargetOffsetY);

        // prepare aspect for texture
        const double fAspectRatio(fTargetSizeY == 0.0 ? 1.0 : (fTargetSizeX / fTargetSizeY));

        return ODFGradientInfo(aTextureTransform, fAspectRatio, nSteps);
    }

    namespace utils
    {
        /* Tooling method to linearly blend the Colors contained in
           a given ColorStop vector against a given Color using the
           given intensity values.
           The intensity values fStartIntensity, fEndIntensity are
           in the range of [0.0 .. 1.0] and describe how much the
           blend is supposed to be done at the start color position
           and the end color position respectively, where 0.0 means
           to fully use the given BlendColor, 1.0 means to not change
           the existing color in the ColorStop.
           Every color entry in the given ColorStop is blended
           relative to it's StopPosition, interpolating the
           given intensities with the range [0.0 .. 1.0] to do so.
        */
        void blendColorStopsToIntensity(ColorStops& rColorStops, double fStartIntensity, double fEndIntensity, const basegfx::BColor& rBlendColor)
        {
            // no entries, done
            if (rColorStops.empty())
                return;

            // correct intensities (maybe assert when input was wrong)
            fStartIntensity = std::max(std::min(1.0, fStartIntensity), 0.0);
            fEndIntensity = std::max(std::min(1.0, fEndIntensity), 0.0);

            // all 100%, no real blend, done
            if (basegfx::fTools::equal(fStartIntensity, 1.0) && basegfx::fTools::equal(fEndIntensity, 1.0))
                return;

            // blend relative to StopOffset position
            for (auto& candidate : rColorStops)
            {
                const double fOffset(candidate.getStopOffset());
                const double fIntensity((fStartIntensity * (1.0 - fOffset)) + (fEndIntensity * fOffset));
                candidate = basegfx::ColorStop(
                    fOffset,
                    basegfx::interpolate(rBlendColor, candidate.getStopColor(), fIntensity));
            }
        }

        /* Tooling method to check if a ColorStop vector is defined
           by a single color. It returns true if this is the case.
           If true is returned, rSingleColor contains that single
           color for convenience.
           NOTE: If no ColorStop is defined, a fallback to BColor-default
                 (which is black) and true will be returned
        */
        bool isSingleColor(const ColorStops& rColorStops, BColor& rSingleColor)
        {
            if (rColorStops.empty())
            {
                rSingleColor = BColor();
                return true;
            }

            if (1 == rColorStops.size())
            {
                rSingleColor = rColorStops.front().getStopColor();
                return true;
            }

            rSingleColor = rColorStops.front().getStopColor();

            for (auto const& rCandidate : rColorStops)
            {
                if (rCandidate.getStopColor() != rSingleColor)
                    return false;
            }

            return true;
        }

        /* Tooling method to reverse ColorStops, including offsets.
           When also mirroring offsets a valid sort keeps valid.
        */
        void reverseColorStops(ColorStops& rColorStops)
        {
            // can use std::reverse, but also need to adapt offset(s)
            std::reverse(rColorStops.begin(), rColorStops.end());
            for (auto& candidate : rColorStops)
                candidate = ColorStop(1.0 - candidate.getStopOffset(), candidate.getStopColor());
        }

        /* Tooling method to convert UNO API data to ColorStops
           This will try to extract ColorStop data from the given
           Any, so if it's of type awt::Gradient2 that data will be
           extracted, converted and copied into the given ColorStops.
        */
        void fillColorStopsFromAny(ColorStops& rColorStops, const css::uno::Any& rVal)
        {
            css::awt::Gradient2 aGradient2;
            if (!(rVal >>= aGradient2))
                return;

            const sal_Int32 nLen(aGradient2.ColorStops.getLength());

            if (0 == nLen)
                return;

            // we have ColorStops
            rColorStops.clear();
            rColorStops.reserve(nLen);
            const css::awt::ColorStop* pSourceColorStop(aGradient2.ColorStops.getConstArray());

            for (sal_Int32 a(0); a < nLen; a++, pSourceColorStop++)
            {
                rColorStops.emplace_back(
                    pSourceColorStop->StopOffset,
                    BColor(pSourceColorStop->StopColor.Red, pSourceColorStop->StopColor.Green, pSourceColorStop->StopColor.Blue));
            }
        }

        /* Tooling method to fill a awt::ColorStopSequence with
           the data from the given ColorStops. This is used in
           UNO API implementations.
        */
        void fillColorStopSequenceFromColorStops(css::awt::ColorStopSequence& rColorStopSequence, const ColorStops& rColorStops)
        {
            // fill ColorStops to extended Gradient2
            rColorStopSequence.realloc(rColorStops.size());
            css::awt::ColorStop* pTargetColorStop(rColorStopSequence.getArray());

            for (const auto& candidate : rColorStops)
            {
                pTargetColorStop->StopOffset = candidate.getStopOffset();
                pTargetColorStop->StopColor = css::rendering::RGBColor(
                    candidate.getStopColor().getRed(),
                    candidate.getStopColor().getGreen(),
                    candidate.getStopColor().getBlue());
                pTargetColorStop++;
            }
        }

        /* Tooling method that allows to replace the StartColor in a
           vector of ColorStops. A vector in 'ordered state' is expected,
           so you may use/have used sortAndCorrectColorStops, see below.
           This method is for convenience & backwards compatibility, please
           think about handling multi-colored gradients directly.
        */
        void replaceStartColor(ColorStops& rColorStops, const BColor& rStart)
        {
            ColorStops::iterator a1stNonStartColor(rColorStops.begin());

            // search for highest existing non-StartColor
            while (a1stNonStartColor != rColorStops.end() && basegfx::fTools::lessOrEqual(a1stNonStartColor->getStopOffset(), 0.0))
                a1stNonStartColor++;

            // create new ColorStops by 1st adding new one and then all
            // non-StartColor entries
            ColorStops aNewColorStops;

            aNewColorStops.reserve(rColorStops.size() + 1);
            aNewColorStops.emplace_back(0.0, rStart);
            aNewColorStops.insert(aNewColorStops.end(), a1stNonStartColor, rColorStops.end());

            // assign & done
            rColorStops = aNewColorStops;
        }

        /* Tooling method that allows to replace the EndColor in a
           vector of ColorStops. A vector in 'ordered state' is expected,
           so you may use/have used sortAndCorrectColorStops, see below.
           This method is for convenience & backwards compatibility, please
           think about handling multi-colored gradients directly.
        */
        void replaceEndColor(ColorStops& rColorStops, const BColor& rEnd)
        {
            // erase all evtl. existing EndColor(s)
            while (!rColorStops.empty() && basegfx::fTools::moreOrEqual(rColorStops.back().getStopOffset(), 1.0))
                rColorStops.pop_back();

            // add at the end of existing ColorStops
            rColorStops.emplace_back(1.0, rEnd);
        }

        // Tooling method to quickly create a ColorStop vector for a given set of Start/EndColor
        ColorStops createColorStopsFromStartEndColor(const BColor& rStart, const BColor& rEnd)
        {
            return ColorStops {
                ColorStop(0.0, rStart),
                ColorStop(1.0, rEnd) };
        }

        /* Tooling method to guarantee sort and correctness for
           the given ColorStops vector.
           A vector fulfilling these conditions is called to be
           in 'ordered state'.

           At return, the following conditions are guaranteed:
           - contains no ColorStops with offset < 0.0 (will
             be removed)
           - contains no ColorStops with offset > 1.0 (will
             be removed)
           - ColorStops with identical offsets are now allowed
           - will be sorted from lowest offset to highest

           Some more notes:
           - It can happen that the result is empty
           - It is allowed to have consecutive entries with
             the same color, this represents single-color
             regions inside the gradient
           - A entry with 0.0 is not required or forced, so
             no 'StartColor' is technically required
           - A entry with 1.0 is not required or forced, so
             no 'EndColor' is technically required

           All this is done in one run (sort + O(N)) without
           creating a copy of the data in any form
        */
        void sortAndCorrectColorStops(ColorStops& rColorStops)
        {
            // no content, we are done
            if (rColorStops.empty())
                return;

            if (1 == rColorStops.size())
            {
                // no gradient at all, but preserve given color
                // evtl. correct offset to be in valid range [0.0 .. 1.0]
                // NOTE: This does not move it to 0.0 or 1.0, it *can* still
                //       be somewhere in-between what is allowed
                rColorStops[0] = ColorStop(
                    std::max(0.0, std::min(1.0, rColorStops[0].getStopOffset())),
                    rColorStops[0].getStopColor());

                // done
                return;
            }

            // start with sorting the input data. Remember that
            // this preserves the order of equal entries, where
            // equal is defined here by offset (see use operator==)
            std::sort(rColorStops.begin(), rColorStops.end());

            // prepare status values
            size_t write(0);

            // use the paradigm of a band machine with two heads, read
            // and write with write <= read all the time. Step over the
            // data using read and check for valid entry. If valid, decide
            // how to keep it
            for (size_t read(0); read < rColorStops.size(); read++)
            {
                // get offset of entry at read position
                double fOff(rColorStops[read].getStopOffset());

                if (basegfx::fTools::less(fOff, 0.0) && read + 1 < rColorStops.size())
                {
                    // value < 0.0 and we have a next entry. check for gradient snippet
                    // containing 0.0 resp. StartColor
                    const double fOff2(rColorStops[read + 1].getStopOffset());

                    if (basegfx::fTools::more(fOff2, 0.0))
                    {
                        // read is the start of a gradient snippet containing 0.0. Correct
                        // entry to StartColor, interpolate to correct StartColor
                        rColorStops[read] = ColorStop(0.0, basegfx::interpolate(
                            rColorStops[read].getStopColor(),
                            rColorStops[read + 1].getStopColor(),
                            (0.0 - fOff) / (fOff2 - fOff)));

                        // adapt fOff
                        fOff = 0.0;
                    }
                }

                // step over < 0 values, these are outside and will be removed
                if (basegfx::fTools::less(fOff, 0.0))
                {
                    continue;
                }

                if (basegfx::fTools::less(fOff, 1.0) && read + 1 < rColorStops.size())
                {
                    // value < 1.0 and we have a next entry. check for gradient snippet
                    // containing 1.0 resp. EndColor
                    const double fOff2(rColorStops[read + 1].getStopOffset());

                    if (basegfx::fTools::more(fOff2, 1.0))
                    {
                        // read is the start of a gradient snippet containing 1.0. Correct
                        // next entry to EndColor, interpolate to correct EndColor
                        rColorStops[read + 1] = ColorStop(1.0, basegfx::interpolate(
                            rColorStops[read].getStopColor(),
                            rColorStops[read + 1].getStopColor(),
                            (1.0 - fOff) / (fOff2 - fOff)));

                        // adapt fOff
                        fOff = 1.0;
                    }
                }

                // step over > 1 values; even break, since all following
                // entries will also be bigger due to being sorted, so done
                if (basegfx::fTools::more(fOff, 1.0))
                {
                    break;
                }

                // entry is valid value at read position
                // copy if write target is empty (write at start) or when
                // write target is different to read in color or offset
                if (0 == write || !(rColorStops[read] == rColorStops[write-1]))
                {
                    if (write != read)
                    {
                        // copy read to write backwards to close gaps
                        rColorStops[write] = rColorStops[read];
                    }

                    // always forward write position
                    write++;
                }
            }

            // correct size when length is reduced. write is always at
            // last used position + 1
            if (rColorStops.size() > write)
            {
                if (0 == write)
                {
                    // no valid entries at all, but not empty. This can only happen
                    // when all entries are below 0.0 or above 1.0 (else a gradient
                    // snippet spawning over both would have been detected)
                    if (basegfx::fTools::less(rColorStops.back().getStopOffset(), 0.0))
                    {
                        // all outside too low, rescue last due to being closest to content
                        rColorStops = ColorStops { ColorStop(0.0, rColorStops.back().getStopColor()) };
                    }
                    else // if (basegfx::fTools::more(rColorStops.front().getStopOffset(), 1.0))
                    {
                        // all outside too high, rescue first due to being closest to content
                        rColorStops = ColorStops { ColorStop(1.0, rColorStops.front().getStopColor()) };
                    }
                }
                else
                {
                    rColorStops.resize(write);
                }
            }
        }

        BColor modifyBColor(
            const ColorStops& rColorStops,
            double fScaler,
            sal_uInt32 nRequestedSteps,
            ColorStopRange& rLastColorStopRange)
        {
            // no color at all, done
            if (rColorStops.empty())
                return BColor();

            // outside range -> at start
            const double fMin(rColorStops.front().getStopOffset());
            if (fScaler < fMin)
                return rColorStops.front().getStopColor();

            // outside range -> at end
            const double fMax(rColorStops.back().getStopOffset());
            if (fScaler > fMax)
                return rColorStops.back().getStopColor();

            // special case for the 'classic' case with just two colors:
            // we can optimize that and keep the speed/resources low
            // by avoiding some calculations and an O(log(N)) array access
            if (2 == rColorStops.size())
            {
                if (fTools::equal(fMin, fMax))
                    return rColorStops.front().getStopColor();

                const basegfx::BColor aCStart(rColorStops.front().getStopColor());
                const basegfx::BColor aCEnd(rColorStops.back().getStopColor());
                const sal_uInt32 nSteps(
                    calculateNumberOfSteps(
                        nRequestedSteps,
                        aCStart,
                        aCEnd));

                // we need to extend the interpolation to the local
                // range of ColorStops. Despite having two ColorStops
                // these are not necessarily at 0.0 and 1.0, so may be
                // not the classical Start/EndColor (what is allowed)
                fScaler = (fScaler - fMin) / (fMax - fMin);
                return basegfx::interpolate(
                    aCStart,
                    aCEnd,
                    nSteps > 1 ? floor(fScaler * nSteps) / double(nSteps - 1) : fScaler);
            }

            // check if we need to newly populate the needed interpolation data
            // or if we can re-use from last time.
            // If this scope is not entered, we do not need the binary search. It's
            // only a single buffered entry, and only used when more than three
            // ColorStops exist, but makes a huge difference compared with accessing
            // the sorted ColorStop vector each time.
            // NOTE: with this simple change I get very high hit rates, e.g. rotating
            //       a donut with gradient test '1' hit rate is at 0.99909440357755486
            if (rLastColorStopRange.mfOffsetStart == rLastColorStopRange.mfOffsetEnd
                || fScaler < rLastColorStopRange.mfOffsetStart
                || fScaler > rLastColorStopRange.mfOffsetEnd)
            {
                // access needed spot in sorted array using binary search
                // NOTE: This *seems* slow(er) when developing compared to just
                //       looping/accessing, but that's just due to the extensive
                //       debug test code created by the stl. In a pro version,
                //       all is good/fast as expected
                const auto upperBound(
                    std::upper_bound(
                        rColorStops.begin(),
                        rColorStops.end(),
                        ColorStop(fScaler),
                        [](const ColorStop& x, const ColorStop& y) { return x.getStopOffset() < y.getStopOffset(); }));

                // no upper bound, done
                if (rColorStops.end() == upperBound)
                    return rColorStops.back().getStopColor();

                // lower bound is one entry back, access that
                const auto lowerBound(upperBound - 1);

                // no lower bound, done
                if (rColorStops.end() == lowerBound)
                    return rColorStops.back().getStopColor();

                // when there are just two color steps this cannot happen, but when using
                // a range of colors this *may* be used inside the range to represent
                // single-colored regions inside a ColorRange. Use that color & done
                if (lowerBound->getStopColor() == upperBound->getStopColor())
                    return rLastColorStopRange.maColorStart;

                // we have lower and upper bound, get colors and offsets
                rLastColorStopRange.maColorStart = lowerBound->getStopColor();
                rLastColorStopRange.maColorEnd = upperBound->getStopColor();
                rLastColorStopRange.mfOffsetStart = lowerBound->getStopOffset();
                rLastColorStopRange.mfOffsetEnd = upperBound->getStopOffset();
            }


            // calculate number of steps and adapted proportional
            // range for scaler in [0.0 .. 1.0]
            const double fAdaptedScaler((fScaler - rLastColorStopRange.mfOffsetStart) /
                (rLastColorStopRange.mfOffsetEnd - rLastColorStopRange.mfOffsetStart));
            const sal_uInt32 nSteps(
                calculateNumberOfSteps(
                    nRequestedSteps,
                    rLastColorStopRange.maColorStart,
                    rLastColorStopRange.maColorEnd));

            // interpolate & evtl. apply steps
            return interpolate(
                rLastColorStopRange.maColorStart,
                rLastColorStopRange.maColorEnd,
                nSteps > 1 ? floor(fAdaptedScaler * nSteps) / double(nSteps - 1) : fAdaptedScaler);
        }

        sal_uInt32 calculateNumberOfSteps(
            sal_uInt32 nRequestedSteps,
            const BColor& rStart,
            const BColor& rEnd)
        {
            const sal_uInt32 nMaxSteps(sal_uInt32((rStart.getMaximumDistance(rEnd) * 127.5) + 0.5));

            if (0 == nRequestedSteps)
            {
                nRequestedSteps = nMaxSteps;
            }

            if(nRequestedSteps > nMaxSteps)
            {
                nRequestedSteps = nMaxSteps;
            }

            return std::max(sal_uInt32(1), nRequestedSteps);
        }

        ODFGradientInfo createLinearODFGradientInfo(
            const B2DRange& rTargetArea,
            sal_uInt32 nSteps,
            double fBorder,
            double fAngle)
        {
            return init1DGradientInfo(
                rTargetArea,
                nSteps,
                fBorder,
                fAngle,
                false);
        }

        ODFGradientInfo createAxialODFGradientInfo(
            const B2DRange& rTargetArea,
            sal_uInt32 nSteps,
            double fBorder,
            double fAngle)
        {
            return init1DGradientInfo(
                rTargetArea,
                nSteps,
                fBorder,
                fAngle,
                true);
        }

        ODFGradientInfo createRadialODFGradientInfo(
            const B2DRange& rTargetArea,
            const B2DVector& rOffset,
            sal_uInt32 nSteps,
            double fBorder)
        {
            return initEllipticalGradientInfo(
                rTargetArea,
                rOffset,
                nSteps,
                fBorder,
                0.0,
                true);
        }

        ODFGradientInfo createEllipticalODFGradientInfo(
            const B2DRange& rTargetArea,
            const B2DVector& rOffset,
            sal_uInt32 nSteps,
            double fBorder,
            double fAngle)
        {
            return initEllipticalGradientInfo(
                rTargetArea,
                rOffset,
                nSteps,
                fBorder,
                fAngle,
                false);
        }

        ODFGradientInfo createSquareODFGradientInfo(
            const B2DRange& rTargetArea,
            const B2DVector& rOffset,
            sal_uInt32 nSteps,
            double fBorder,
            double fAngle)
        {
            return initRectGradientInfo(
                rTargetArea,
                rOffset,
                nSteps,
                fBorder,
                fAngle,
                true);
        }

        ODFGradientInfo createRectangularODFGradientInfo(
            const B2DRange& rTargetArea,
            const B2DVector& rOffset,
            sal_uInt32 nSteps,
            double fBorder,
            double fAngle)
        {
            return initRectGradientInfo(
                rTargetArea,
                rOffset,
                nSteps,
                fBorder,
                fAngle,
                false);
        }

        double getLinearGradientAlpha(const B2DPoint& rUV, const ODFGradientInfo& rGradInfo)
        {
            const B2DPoint aCoor(rGradInfo.getBackTextureTransform() * rUV);

            // Ignore X, this is not needed at all for Y-Oriented gradients
            // if(aCoor.getX() < 0.0 || aCoor.getX() > 1.0)
            // {
            //     return 0.0;
            // }

            if(aCoor.getY() <= 0.0)
            {
                return 0.0; // start value for inside
            }

            if(aCoor.getY() >= 1.0)
            {
                return 1.0; // end value for outside
            }

            return aCoor.getY();
        }

        double getAxialGradientAlpha(const B2DPoint& rUV, const ODFGradientInfo& rGradInfo)
        {
            const B2DPoint aCoor(rGradInfo.getBackTextureTransform() * rUV);

            // Ignore X, this is not needed at all for Y-Oriented gradients
            //if(aCoor.getX() < 0.0 || aCoor.getX() > 1.0)
            //{
            //    return 0.0;
            //}

            const double fAbsY(fabs(aCoor.getY()));

            if(fAbsY >= 1.0)
            {
                return 1.0; // use end value when outside in Y
            }

            return fAbsY;
        }

        double getRadialGradientAlpha(const B2DPoint& rUV, const ODFGradientInfo& rGradInfo)
        {
            const B2DPoint aCoor(rGradInfo.getBackTextureTransform() * rUV);

            if(aCoor.getX() < -1.0 || aCoor.getX() > 1.0 || aCoor.getY() < -1.0 || aCoor.getY() > 1.0)
            {
                return 0.0;
            }

            return 1.0 - std::hypot(aCoor.getX(), aCoor.getY());
        }

        double getEllipticalGradientAlpha(const B2DPoint& rUV, const ODFGradientInfo& rGradInfo)
        {
            const B2DPoint aCoor(rGradInfo.getBackTextureTransform() * rUV);

            if(aCoor.getX() < -1.0 || aCoor.getX() > 1.0 || aCoor.getY() < -1.0 || aCoor.getY() > 1.0)
            {
                return 0.0;
            }

            double fAspectRatio(rGradInfo.getAspectRatio());
            double t(1.0);

            // MCGR: Similar to getRectangularGradientAlpha (please
            // see there) we need to use aspect ratio here. Due to
            // initEllipticalGradientInfo using M_SQRT2 to make this
            // gradient look 'nicer' this correction seems not 100%
            // correct, but is close enough for now
            if(fAspectRatio > 1.0)
            {
                t = 1.0 - std::hypot(aCoor.getX() / fAspectRatio, aCoor.getY());
            }
            else if(fAspectRatio > 0.0)
            {
                t = 1.0 - std::hypot(aCoor.getX(), aCoor.getY() * fAspectRatio);
            }

            return t;
        }

        double getSquareGradientAlpha(const B2DPoint& rUV, const ODFGradientInfo& rGradInfo)
        {
            const B2DPoint aCoor(rGradInfo.getBackTextureTransform() * rUV);
            const double fAbsX(fabs(aCoor.getX()));

            if(fAbsX >= 1.0)
            {
                return 0.0;
            }

            const double fAbsY(fabs(aCoor.getY()));

            if(fAbsY >= 1.0)
            {
                return 0.0;
            }

            return 1.0 - std::max(fAbsX, fAbsY);
        }

        double getRectangularGradientAlpha(const B2DPoint& rUV, const ODFGradientInfo& rGradInfo)
        {
            const B2DPoint aCoor(rGradInfo.getBackTextureTransform() * rUV);
            double fAbsX(fabs(aCoor.getX()));

            if(fAbsX >= 1.0)
            {
                return 0.0;
            }

            double fAbsY(fabs(aCoor.getY()));

            if(fAbsY >= 1.0)
            {
                return 0.0;
            }

            // MCGR: Visualizations using the texturing method for
            // displaying gradients (getBackTextureTransform is
            // involved) show wrong results for GradientElliptical
            // and GradientRect, this can be best seen when using
            // less steps, e.g. just four. This thus has influence
            // on cppcanvas (slideshow) and 3D textures, so needs
            // to be corrected.
            // Missing is to use the aspect ratio of the object
            // in this [-1, -1, 1, 1] unified coordinate space
            // after getBackTextureTransform is applied. Optically
            // in the larger direction of the texturing the color
            // step distances are too big *because* we are in that
            // unit range now.
            // To correct that, a kind of 'limo stretching' needs to
            // be applied, adding space around the center
            // proportional to the aspect ratio, so the intuitive
            // idea would be to do
            //
            // fAbsX' = ((fAspectRatio - 1) + fAbsX) / fAspectRatio
            //
            // which scales from the center. This does not work, and
            // after some thoughts it's clear why: It's not the
            // position that needs to be moved (this cannot be
            // changed), but the position *before* that scale has
            // to be determined to get the correct, shifted color
            // for the already 'new' position. Thus, turn around
            // the expression as
            //
            // fAbsX' * fAspectRatio = fAspectRatio - 1 + fAbsX
            // fAbsX' * fAspectRatio - fAspectRatio + 1 = fAbsX
            // fAbsX = (fAbsX' - 1) * fAspectRatio + 1
            //
            // This works and can even be simply adapted for
            // fAspectRatio < 1.0 aka vertical is bigger.
            double fAspectRatio(rGradInfo.getAspectRatio());
            if(fAspectRatio > 1.0)
            {
                fAbsX = ((fAbsX - 1) * fAspectRatio) + 1;
            }
            else if(fAspectRatio > 0.0)
            {
                fAbsY = ((fAbsY - 1) / fAspectRatio) + 1;
            }

            return 1.0 - std::max(fAbsX, fAbsY);
        }
    } // namespace utils
} // namespace basegfx

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */