summaryrefslogtreecommitdiff
path: root/basegfx/source/tools/gradienttools.cxx
blob: a8d36b9f543d4e71ad8236e067bf31e45cd07c1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * This file incorporates work covered by the following license notice:
 *
 *   Licensed to the Apache Software Foundation (ASF) under one or more
 *   contributor license agreements. See the NOTICE file distributed
 *   with this work for additional information regarding copyright
 *   ownership. The ASF licenses this file to you under the Apache
 *   License, Version 2.0 (the "License"); you may not use this file
 *   except in compliance with the License. You may obtain a copy of
 *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
 */

#include <basegfx/utils/gradienttools.hxx>
#include <basegfx/point/b2dpoint.hxx>
#include <basegfx/range/b2drange.hxx>
#include <basegfx/matrix/b2dhommatrixtools.hxx>

#include <algorithm>
#include <cmath>

namespace basegfx
{
    bool ODFGradientInfo::operator==(const ODFGradientInfo& rODFGradientInfo) const
    {
        return getTextureTransform() == rODFGradientInfo.getTextureTransform()
            && getAspectRatio() == rODFGradientInfo.getAspectRatio()
            && getRequestedSteps() == rODFGradientInfo.getRequestedSteps();
    }

    const B2DHomMatrix& ODFGradientInfo::getBackTextureTransform() const
    {
        if(maBackTextureTransform.isIdentity())
        {
            const_cast< ODFGradientInfo* >(this)->maBackTextureTransform = getTextureTransform();
            const_cast< ODFGradientInfo* >(this)->maBackTextureTransform.invert();
        }

        return maBackTextureTransform;
    }

    /** Most of the setup for linear & axial gradient is the same, except
        for the border treatment. Factored out here.
    */
    static ODFGradientInfo init1DGradientInfo(
        const B2DRange& rTargetRange,
        sal_uInt32 nSteps,
        double fBorder,
        double fAngle,
        bool bAxial)
    {
        B2DHomMatrix aTextureTransform;

        fAngle = -fAngle;

        double fTargetSizeX(rTargetRange.getWidth());
        double fTargetSizeY(rTargetRange.getHeight());
        double fTargetOffsetX(rTargetRange.getMinX());
        double fTargetOffsetY(rTargetRange.getMinY());

        // add object expansion
        const bool bAngleUsed(!fTools::equalZero(fAngle));

        if(bAngleUsed)
        {
            const double fAbsCos(fabs(cos(fAngle)));
            const double fAbsSin(fabs(sin(fAngle)));
            const double fNewX(fTargetSizeX * fAbsCos + fTargetSizeY * fAbsSin);
            const double fNewY(fTargetSizeY * fAbsCos + fTargetSizeX * fAbsSin);

            fTargetOffsetX -= (fNewX - fTargetSizeX) / 2.0;
            fTargetOffsetY -= (fNewY - fTargetSizeY) / 2.0;
            fTargetSizeX = fNewX;
            fTargetSizeY = fNewY;
        }

        const double fSizeWithoutBorder(1.0 - fBorder);

        if(bAxial)
        {
            aTextureTransform.scale(1.0, fSizeWithoutBorder * 0.5);
            aTextureTransform.translate(0.0, 0.5);
        }
        else
        {
            if(!fTools::equal(fSizeWithoutBorder, 1.0))
            {
                aTextureTransform.scale(1.0, fSizeWithoutBorder);
                aTextureTransform.translate(0.0, fBorder);
            }
        }

        aTextureTransform.scale(fTargetSizeX, fTargetSizeY);

        // add texture rotate after scale to keep perpendicular angles
        if(bAngleUsed)
        {
            const B2DPoint aCenter(0.5 * fTargetSizeX, 0.5 * fTargetSizeY);

            aTextureTransform *= basegfx::utils::createRotateAroundPoint(aCenter, fAngle);
        }

        // add object translate
        aTextureTransform.translate(fTargetOffsetX, fTargetOffsetY);

        // prepare aspect for texture
        const double fAspectRatio(fTools::equalZero(fTargetSizeY) ?  1.0 : fTargetSizeX / fTargetSizeY);

        return ODFGradientInfo(aTextureTransform, fAspectRatio, nSteps);
    }

    /** Most of the setup for radial & ellipsoidal gradient is the same,
        except for the border treatment. Factored out here.
    */
    static ODFGradientInfo initEllipticalGradientInfo(
        const B2DRange& rTargetRange,
        const B2DVector& rOffset,
        sal_uInt32 nSteps,
        double fBorder,
        double fAngle,
        bool bCircular)
    {
        B2DHomMatrix aTextureTransform;

        fAngle = -fAngle;

        double fTargetSizeX(rTargetRange.getWidth());
        double fTargetSizeY(rTargetRange.getHeight());
        double fTargetOffsetX(rTargetRange.getMinX());
        double fTargetOffsetY(rTargetRange.getMinY());

        // add object expansion
        if(bCircular)
        {
            const double fOriginalDiag(std::hypot(fTargetSizeX, fTargetSizeY));

            fTargetOffsetX -= (fOriginalDiag - fTargetSizeX) / 2.0;
            fTargetOffsetY -= (fOriginalDiag - fTargetSizeY) / 2.0;
            fTargetSizeX = fOriginalDiag;
            fTargetSizeY = fOriginalDiag;
        }
        else
        {
            fTargetOffsetX -= ((M_SQRT2 - 1) / 2.0 ) * fTargetSizeX;
            fTargetOffsetY -= ((M_SQRT2 - 1) / 2.0 ) * fTargetSizeY;
            fTargetSizeX = M_SQRT2 * fTargetSizeX;
            fTargetSizeY = M_SQRT2 * fTargetSizeY;
        }

        const double fHalfBorder((1.0 - fBorder) * 0.5);

        aTextureTransform.scale(fHalfBorder, fHalfBorder);
        aTextureTransform.translate(0.5, 0.5);
        aTextureTransform.scale(fTargetSizeX, fTargetSizeY);

        // add texture rotate after scale to keep perpendicular angles
        if(!bCircular && !fTools::equalZero(fAngle))
        {
            const B2DPoint aCenter(0.5 * fTargetSizeX, 0.5 * fTargetSizeY);

            aTextureTransform *= basegfx::utils::createRotateAroundPoint(aCenter, fAngle);
        }

        // add defined offsets after rotation
        if(!fTools::equal(0.5, rOffset.getX()) || !fTools::equal(0.5, rOffset.getY()))
        {
            // use original target size
            fTargetOffsetX += (rOffset.getX() - 0.5) * rTargetRange.getWidth();
            fTargetOffsetY += (rOffset.getY() - 0.5) * rTargetRange.getHeight();
        }

        // add object translate
        aTextureTransform.translate(fTargetOffsetX, fTargetOffsetY);

        // prepare aspect for texture
        const double fAspectRatio(fTargetSizeY == 0.0 ? 1.0 : (fTargetSizeX / fTargetSizeY));

        return ODFGradientInfo(aTextureTransform, fAspectRatio, nSteps);
    }

    /** Setup for rect & square gradient is exactly the same. Factored out
        here.
    */
    static ODFGradientInfo initRectGradientInfo(
        const B2DRange& rTargetRange,
        const B2DVector& rOffset,
        sal_uInt32 nSteps,
        double fBorder,
        double fAngle,
        bool bSquare)
    {
        B2DHomMatrix aTextureTransform;

        fAngle = -fAngle;

        double fTargetSizeX(rTargetRange.getWidth());
        double fTargetSizeY(rTargetRange.getHeight());
        double fTargetOffsetX(rTargetRange.getMinX());
        double fTargetOffsetY(rTargetRange.getMinY());

        // add object expansion
        if(bSquare)
        {
            const double fSquareWidth(std::max(fTargetSizeX, fTargetSizeY));

            fTargetOffsetX -= (fSquareWidth - fTargetSizeX) / 2.0;
            fTargetOffsetY -= (fSquareWidth - fTargetSizeY) / 2.0;
            fTargetSizeX = fTargetSizeY = fSquareWidth;
        }

        // add object expansion
        const bool bAngleUsed(!fTools::equalZero(fAngle));

        if(bAngleUsed)
        {
            const double fAbsCos(fabs(cos(fAngle)));
            const double fAbsSin(fabs(sin(fAngle)));
            const double fNewX(fTargetSizeX * fAbsCos + fTargetSizeY * fAbsSin);
            const double fNewY(fTargetSizeY * fAbsCos + fTargetSizeX * fAbsSin);

            fTargetOffsetX -= (fNewX - fTargetSizeX) / 2.0;
            fTargetOffsetY -= (fNewY - fTargetSizeY) / 2.0;
            fTargetSizeX = fNewX;
            fTargetSizeY = fNewY;
        }

        const double fHalfBorder((1.0 - fBorder) * 0.5);

        aTextureTransform.scale(fHalfBorder, fHalfBorder);
        aTextureTransform.translate(0.5, 0.5);
        aTextureTransform.scale(fTargetSizeX, fTargetSizeY);

        // add texture rotate after scale to keep perpendicular angles
        if(bAngleUsed)
        {
            const B2DPoint aCenter(0.5 * fTargetSizeX, 0.5 * fTargetSizeY);

            aTextureTransform *= basegfx::utils::createRotateAroundPoint(aCenter, fAngle);
        }

        // add defined offsets after rotation
        if(!fTools::equal(0.5, rOffset.getX()) || !fTools::equal(0.5, rOffset.getY()))
        {
            // use original target size
            fTargetOffsetX += (rOffset.getX() - 0.5) * rTargetRange.getWidth();
            fTargetOffsetY += (rOffset.getY() - 0.5) * rTargetRange.getHeight();
        }

        // add object translate
        aTextureTransform.translate(fTargetOffsetX, fTargetOffsetY);

        // prepare aspect for texture
        const double fAspectRatio(fTargetSizeY == 0.0 ? 1.0 : (fTargetSizeX / fTargetSizeY));

        return ODFGradientInfo(aTextureTransform, fAspectRatio, nSteps);
    }

    namespace utils
    {
        BColor modifyBColor(
            const ColorSteps& rColorSteps,
            double fScaler,
            sal_uInt32 nRequestedSteps)
        {
            // no color at all, done
            if (rColorSteps.empty())
                return BColor();

            // outside range -> at start
            if (fScaler <= 0.0)
                return rColorSteps.front().getColor();

            // outside range -> at end
            if (fScaler >= 1.0)
                return rColorSteps.back().getColor();

            // special case for the 'classic' case with just two colors:
            // we can optimize that and keep the speed/ressources low
            // by avoiding some calculatins and an O(log(N)) array access
            if (2 == rColorSteps.size())
            {
                const basegfx::BColor aCStart(rColorSteps.front().getColor());
                const basegfx::BColor aCEnd(rColorSteps.back().getColor());
                const sal_uInt32 nSteps(
                    calculateNumberOfSteps(
                        nRequestedSteps,
                        aCStart,
                        aCEnd));

                return basegfx::interpolate(
                    aCStart,
                    aCEnd,
                    nSteps > 1 ? floor(fScaler * nSteps) / double(nSteps - 1) : fScaler);
            }

            // access needed spot in sorted array using binary search
            // NOTE: This *seems* slow(er) when developing compared to just
            //       looping/accessing, but that's just due to the extensive
            //       debug test code created by the stl. In a pro version,
            //       all is good/fast as expected
            const auto upperBound(
                std::lower_bound(
                    rColorSteps.begin(),
                    rColorSteps.end(),
                    ColorStep(fScaler),
                    [](const ColorStep& x, const ColorStep& y) { return x.getOffset() < y.getOffset(); }));

            // no upper bound, done
            if (rColorSteps.end() == upperBound)
                return rColorSteps.back().getColor();

            // lower bound is one entry back
            const auto lowerBound(upperBound - 1);

            // no lower bound, done
            if (rColorSteps.end() == lowerBound)
                return rColorSteps.back().getColor();

            // we have lower and upper bound, get colors
            const BColor aCStart(lowerBound->getColor());
            const BColor aCEnd(upperBound->getColor());

            // when there are just two color steps this cannot happen, but when using
            // a range of colors this *may* be used inside the range to represent
            // single-colored regions inside a ColorRange. Use that color & done
            if (aCStart == aCEnd)
                return aCStart;

            // calculate number of steps
            const sal_uInt32 nSteps(
                calculateNumberOfSteps(
                    nRequestedSteps,
                    aCStart,
                    aCEnd));

            // get offsets and scale to new [0.0 .. 1.0] relative range for
            // partial outer range
            const double fOffsetStart(lowerBound->getOffset());
            const double fOffsetEnd(upperBound->getOffset());
            const double fAdaptedScaler((fScaler - fOffsetStart) / (fOffsetEnd - fOffsetStart));

            // interpolate & evtl. apply steps
            return interpolate(
                aCStart,
                aCEnd,
                nSteps > 1 ? floor(fAdaptedScaler * nSteps) / double(nSteps - 1) : fAdaptedScaler);
        }

        sal_uInt32 calculateNumberOfSteps(
            sal_uInt32 nRequestedSteps,
            const BColor& rStart,
            const BColor& rEnd)
        {
            const sal_uInt32 nMaxSteps(sal_uInt32((rStart.getMaximumDistance(rEnd) * 127.5) + 0.5));

            if (0 == nRequestedSteps)
            {
                nRequestedSteps = nMaxSteps;
            }

            if(nRequestedSteps > nMaxSteps)
            {
                nRequestedSteps = nMaxSteps;
            }

            return std::max(sal_uInt32(1), nRequestedSteps);
        }

        ODFGradientInfo createLinearODFGradientInfo(
            const B2DRange& rTargetArea,
            sal_uInt32 nSteps,
            double fBorder,
            double fAngle)
        {
            return init1DGradientInfo(
                rTargetArea,
                nSteps,
                fBorder,
                fAngle,
                false);
        }

        ODFGradientInfo createAxialODFGradientInfo(
            const B2DRange& rTargetArea,
            sal_uInt32 nSteps,
            double fBorder,
            double fAngle)
        {
            return init1DGradientInfo(
                rTargetArea,
                nSteps,
                fBorder,
                fAngle,
                true);
        }

        ODFGradientInfo createRadialODFGradientInfo(
            const B2DRange& rTargetArea,
            const B2DVector& rOffset,
            sal_uInt32 nSteps,
            double fBorder)
        {
            return initEllipticalGradientInfo(
                rTargetArea,
                rOffset,
                nSteps,
                fBorder,
                0.0,
                true);
        }

        ODFGradientInfo createEllipticalODFGradientInfo(
            const B2DRange& rTargetArea,
            const B2DVector& rOffset,
            sal_uInt32 nSteps,
            double fBorder,
            double fAngle)
        {
            return initEllipticalGradientInfo(
                rTargetArea,
                rOffset,
                nSteps,
                fBorder,
                fAngle,
                false);
        }

        ODFGradientInfo createSquareODFGradientInfo(
            const B2DRange& rTargetArea,
            const B2DVector& rOffset,
            sal_uInt32 nSteps,
            double fBorder,
            double fAngle)
        {
            return initRectGradientInfo(
                rTargetArea,
                rOffset,
                nSteps,
                fBorder,
                fAngle,
                true);
        }

        ODFGradientInfo createRectangularODFGradientInfo(
            const B2DRange& rTargetArea,
            const B2DVector& rOffset,
            sal_uInt32 nSteps,
            double fBorder,
            double fAngle)
        {
            return initRectGradientInfo(
                rTargetArea,
                rOffset,
                nSteps,
                fBorder,
                fAngle,
                false);
        }

        double getLinearGradientAlpha(const B2DPoint& rUV, const ODFGradientInfo& rGradInfo)
        {
            const B2DPoint aCoor(rGradInfo.getBackTextureTransform() * rUV);

            // Ignore Y, this is not needed at all for Y-Oriented gradients
            // if(aCoor.getX() < 0.0 || aCoor.getX() > 1.0)
            // {
            //     return 0.0;
            // }

            if(aCoor.getY() <= 0.0)
            {
                return 0.0; // start value for inside
            }

            if(aCoor.getY() >= 1.0)
            {
                return 1.0; // end value for outside
            }

            // const sal_uInt32 nSteps(rGradInfo.getRequestedSteps());

            // if(nSteps)
            // {
            //     return floor(aCoor.getY() * nSteps) / double(nSteps - 1);
            // }

            return aCoor.getY();
        }

        double getAxialGradientAlpha(const B2DPoint& rUV, const ODFGradientInfo& rGradInfo)
        {
            const B2DPoint aCoor(rGradInfo.getBackTextureTransform() * rUV);

            // Ignore Y, this is not needed at all for Y-Oriented gradients
            //if(aCoor.getX() < 0.0 || aCoor.getX() > 1.0)
            //{
            //    return 0.0;
            //}

            const double fAbsY(fabs(aCoor.getY()));

            if(fAbsY >= 1.0)
            {
                return 1.0; // use end value when outside in Y
            }

            const sal_uInt32 nSteps(rGradInfo.getRequestedSteps());

            if(nSteps)
            {
                return floor(fAbsY * nSteps) / double(nSteps - 1);
            }

            return fAbsY;
        }

        double getRadialGradientAlpha(const B2DPoint& rUV, const ODFGradientInfo& rGradInfo)
        {
            const B2DPoint aCoor(rGradInfo.getBackTextureTransform() * rUV);

            if(aCoor.getX() < -1.0 || aCoor.getX() > 1.0 || aCoor.getY() < -1.0 || aCoor.getY() > 1.0)
            {
                return 0.0;
            }

            const double t(1.0 - std::hypot(aCoor.getX(), aCoor.getY()));
            const sal_uInt32 nSteps(rGradInfo.getRequestedSteps());

            if(nSteps && t < 1.0)
            {
                return floor(t * nSteps) / double(nSteps - 1);
            }

            return t;
        }

        double getEllipticalGradientAlpha(const B2DPoint& rUV, const ODFGradientInfo& rGradInfo)
        {
            const B2DPoint aCoor(rGradInfo.getBackTextureTransform() * rUV);

            if(aCoor.getX() < -1.0 || aCoor.getX() > 1.0 || aCoor.getY() < -1.0 || aCoor.getY() > 1.0)
            {
                return 0.0;
            }

            double fAspectRatio(rGradInfo.getAspectRatio());
            double t(1.0);

            // MCGR: Similar to getRectangularGradientAlpha (please
            // see there) we need to use aspect ratio here. Due to
            // initEllipticalGradientInfo using M_SQRT2 to make this
            // gradient look 'nicer' this correciton seems not 100%
            // correct, but is close enough for now
            if(fAspectRatio > 1.0)
            {
                t = 1.0 - std::hypot(aCoor.getX() / fAspectRatio, aCoor.getY());
            }
            else if(fAspectRatio > 0.0)
            {
                t = 1.0 - std::hypot(aCoor.getX(), aCoor.getY() * fAspectRatio);
            }

            const sal_uInt32 nSteps(rGradInfo.getRequestedSteps());

            if(nSteps && t < 1.0)
            {
                return floor(t * nSteps) / double(nSteps - 1);
            }

            return t;
        }

        double getSquareGradientAlpha(const B2DPoint& rUV, const ODFGradientInfo& rGradInfo)
        {
            const B2DPoint aCoor(rGradInfo.getBackTextureTransform() * rUV);
            const double fAbsX(fabs(aCoor.getX()));

            if(fAbsX >= 1.0)
            {
                return 0.0;
            }

            const double fAbsY(fabs(aCoor.getY()));

            if(fAbsY >= 1.0)
            {
                return 0.0;
            }

            const double t(1.0 - std::max(fAbsX, fAbsY));
            const sal_uInt32 nSteps(rGradInfo.getRequestedSteps());

            if(nSteps && t < 1.0)
            {
                return floor(t * nSteps) / double(nSteps - 1);
            }

            return t;
        }

        double getRectangularGradientAlpha(const B2DPoint& rUV, const ODFGradientInfo& rGradInfo)
        {
            const B2DPoint aCoor(rGradInfo.getBackTextureTransform() * rUV);
            double fAbsX(fabs(aCoor.getX()));

            if(fAbsX >= 1.0)
            {
                return 0.0;
            }

            double fAbsY(fabs(aCoor.getY()));

            if(fAbsY >= 1.0)
            {
                return 0.0;
            }

            // MCGR: Visualiations using the texturing method for
            // displaying gradients (getBackTextureTransform is
            // involved) show wrong results for GradientElliptical
            // and GradientRect, this can be best seen when using
            // less steps, e.g. just four. This thus has influence
            // on cppcanvas (slideshow) and 3D textures, so needs
            // to be corrected.
            // Missing is to use the aspect ratio of the object
            // in this [-1, -1, 1, 1] unified coordinate space
            // after getBackTextureTransform is applied. Optically
            // in the larger direction of the texturing the color
            // step distances are too big *because* we are in that
            // unit range now.
            // To correct that, a kind of 'limo stretching' needs to
            // be applied, adding space around the center
            // proportional to the aspect ratio, so the intuitive
            // idea would be to do
            //
            // fAbsX' = ((fAspectRatio - 1) + fAbsX) / fAspectRatio
            //
            // which scales from the center. This does not work, and
            // after some thoughts it's clear why: It's not the
            // position that needs to be moved (this cannot be
            // changed), but the position *before* that scale has
            // to be determined to get the correct, shifted color
            // for the already 'new' position. Thus, turn around
            // the expression as
            //
            // fAbsX' * fAspectRatio = fAspectRatio - 1 + fAbsX
            // fAbsX' * fAspectRatio - fAspectRatio + 1 = fAbsX
            // fAbsX = (fAbsX' - 1) * fAspectRatio + 1
            //
            // This works and can even be simply adapted for
            // fAspectRatio < 1.0 aka vertical is bigger.
            double fAspectRatio(rGradInfo.getAspectRatio());
            if(fAspectRatio > 1.0)
            {
                fAbsX = ((fAbsX - 1) * fAspectRatio) + 1;
            }
            else if(fAspectRatio > 0.0)
            {
                fAbsY = ((fAbsY - 1) / fAspectRatio) + 1;
            }

            const double t(1.0 - std::max(fAbsX, fAbsY));
            const sal_uInt32 nSteps(rGradInfo.getRequestedSteps());

            if(nSteps && t < 1.0)
            {
                return floor(t * nSteps) / double(nSteps - 1);
            }

            return t;
        }
    } // namespace utils
} // namespace basegfx

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */