summaryrefslogtreecommitdiff
path: root/basegfx/test/B2DHomMatrixTest.cxx
blob: aace816d3e3a8c2ae913623960931f4eac5ec4b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * This file incorporates work covered by the following license notice:
 *
 *   Licensed to the Apache Software Foundation (ASF) under one or more
 *   contributor license agreements. See the NOTICE file distributed
 *   with this work for additional information regarding copyright
 *   ownership. The ASF licenses this file to you under the Apache
 *   License, Version 2.0 (the "License"); you may not use this file
 *   except in compliance with the License. You may obtain a copy of
 *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
 */

#include <cppunit/TestAssert.h>
#include <cppunit/TestFixture.h>
#include <cppunit/extensions/HelperMacros.h>

#include <basegfx/matrix/b2dhommatrix.hxx>
#include <basegfx/matrix/b2dhommatrixtools.hxx>
#include <basegfx/numeric/ftools.hxx>
#include <basegfx/tuple/b2dtuple.hxx>
#include <basegfx/range/b2drange.hxx>

namespace basegfx
{
class b2dhommatrix : public CppUnit::TestFixture
{
private:
    B2DHomMatrix maIdentity;
    B2DHomMatrix maScale;
    B2DHomMatrix maTranslate;
    B2DHomMatrix maShear;
    B2DHomMatrix maAffine;
    B2DHomMatrix maPerspective;

public:
    // initialise your test code values here.
    void setUp() override
    {
        // setup some test matrices
        maIdentity.identity(); // force compact layout
        maIdentity.set(0, 0, 1.0);
        maIdentity.set(0, 1, 0.0);
        maIdentity.set(0, 2, 0.0);
        maIdentity.set(1, 0, 0.0);
        maIdentity.set(1, 1, 1.0);
        maIdentity.set(1, 2, 0.0);

        maScale.identity(); // force compact layout
        maScale.set(0, 0, 2.0);
        maScale.set(1, 1, 20.0);

        maTranslate.identity(); // force compact layout
        maTranslate.set(0, 2, 20.0);
        maTranslate.set(1, 2, 2.0);

        maShear.identity(); // force compact layout
        maShear.set(0, 1, 3.0);
        maShear.set(1, 0, 7.0);
        maShear.set(1, 1, 22.0);

        maAffine.identity(); // force compact layout
        maAffine.set(0, 0, 1.0);
        maAffine.set(0, 1, 2.0);
        maAffine.set(0, 2, 3.0);
        maAffine.set(1, 0, 4.0);
        maAffine.set(1, 1, 5.0);
        maAffine.set(1, 2, 6.0);

        maPerspective.set(0, 0, 1.0);
        maPerspective.set(0, 1, 2.0);
        maPerspective.set(0, 2, 3.0);
        maPerspective.set(1, 0, 4.0);
        maPerspective.set(1, 1, 5.0);
        maPerspective.set(1, 2, 6.0);
    }

    void equal()
    {
        B2DHomMatrix aIdentity;
        B2DHomMatrix aScale;
        B2DHomMatrix aTranslate;
        B2DHomMatrix aShear;
        B2DHomMatrix aAffine;
        B2DHomMatrix aPerspective;

        // setup some test matrices
        aIdentity.identity(); // force compact layout
        aIdentity.set(0, 0, 1.0);
        aIdentity.set(0, 1, 0.0);
        aIdentity.set(0, 2, 0.0);
        aIdentity.set(1, 0, 0.0);
        aIdentity.set(1, 1, 1.0);
        aIdentity.set(1, 2, 0.0);

        aScale.identity(); // force compact layout
        aScale.set(0, 0, 2.0);
        aScale.set(1, 1, 20.0);

        aTranslate.identity(); // force compact layout
        aTranslate.set(0, 2, 20.0);
        aTranslate.set(1, 2, 2.0);

        aShear.identity(); // force compact layout
        aShear.set(0, 1, 3.0);
        aShear.set(1, 0, 7.0);
        aShear.set(1, 1, 22.0);

        aAffine.identity(); // force compact layout
        aAffine.set(0, 0, 1.0);
        aAffine.set(0, 1, 2.0);
        aAffine.set(0, 2, 3.0);
        aAffine.set(1, 0, 4.0);
        aAffine.set(1, 1, 5.0);
        aAffine.set(1, 2, 6.0);

        aPerspective.set(0, 0, 1.0);
        aPerspective.set(0, 1, 2.0);
        aPerspective.set(0, 2, 3.0);
        aPerspective.set(1, 0, 4.0);
        aPerspective.set(1, 1, 5.0);
        aPerspective.set(1, 2, 6.0);

        CPPUNIT_ASSERT_MESSAGE("operator==: identity matrix", aIdentity.operator==(maIdentity));
        CPPUNIT_ASSERT_MESSAGE("operator==: scale matrix", aScale.operator==(maScale));
        CPPUNIT_ASSERT_MESSAGE("operator==: translate matrix", aTranslate.operator==(maTranslate));
        CPPUNIT_ASSERT_MESSAGE("operator==: shear matrix", aShear.operator==(maShear));
        CPPUNIT_ASSERT_MESSAGE("operator==: affine matrix", aAffine.operator==(maAffine));
        CPPUNIT_ASSERT_MESSAGE("operator==: perspective matrix",
                               aPerspective.operator==(maPerspective));
    }

    void identity()
    {
        B2DHomMatrix ident;

        CPPUNIT_ASSERT_EQUAL_MESSAGE("identity", maIdentity, ident);
    }

    void scale()
    {
        B2DHomMatrix mat;
        mat.scale(2.0, 20.0);
        CPPUNIT_ASSERT_EQUAL_MESSAGE("scale", maScale, mat);
    }

    void rotate()
    {
        B2DHomMatrix mat;
        mat.rotate(M_PI_2);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate pi/2 yields exact matrix", 0.0, mat.get(0, 0),
                                             1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate pi/2 yields exact matrix", -1.0, mat.get(0, 1),
                                             1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate pi/2 yields exact matrix", 0.0, mat.get(0, 2),
                                             1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate pi/2 yields exact matrix", 1.0, mat.get(1, 0),
                                             1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate pi/2 yields exact matrix", 0.0, mat.get(1, 1),
                                             1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate pi/2 yields exact matrix", 0.0, mat.get(1, 2),
                                             1E-12);
        mat.rotate(M_PI_2);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate pi yields exact matrix", -1.0, mat.get(0, 0),
                                             1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate pi yields exact matrix", 0.0, mat.get(0, 1),
                                             1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate pi yields exact matrix", 0.0, mat.get(0, 2),
                                             1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate pi yields exact matrix", 0.0, mat.get(1, 0),
                                             1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate pi yields exact matrix", -1.0, mat.get(1, 1),
                                             1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate pi yields exact matrix", 0.0, mat.get(1, 2),
                                             1E-12);
        mat.rotate(M_PI_2);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate 3/2 pi yields exact matrix", 0.0,
                                             mat.get(0, 0), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate 3/2 pi yields exact matrix", 1.0,
                                             mat.get(0, 1), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate 3/2 pi yields exact matrix", 0.0,
                                             mat.get(0, 2), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate 3/2 pi yields exact matrix", -1.0,
                                             mat.get(1, 0), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate 3/2 pi yields exact matrix", 0.0,
                                             mat.get(1, 1), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate 3/2 pi yields exact matrix", 0.0,
                                             mat.get(1, 2), 1E-12);
        mat.rotate(M_PI_2);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate 2 pi yields exact matrix", 1.0, mat.get(0, 0),
                                             1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate 2 pi yields exact matrix", 0.0, mat.get(0, 1),
                                             1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate 2 pi yields exact matrix", 0.0, mat.get(0, 2),
                                             1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate 2 pi yields exact matrix", 0.0, mat.get(1, 0),
                                             1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate 2 pi yields exact matrix", 1.0, mat.get(1, 1),
                                             1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("rotate 2 pi yields exact matrix", 0.0, mat.get(1, 2),
                                             1E-12);
    }

    void translate()
    {
        B2DHomMatrix mat;
        mat.translate(20.0, 2.0);
        CPPUNIT_ASSERT_EQUAL_MESSAGE("translate", maTranslate, mat);
    }

    void shear()
    {
        B2DHomMatrix mat;
        mat.shearX(3.0);
        mat.shearY(7.0);
        CPPUNIT_ASSERT_EQUAL_MESSAGE("translate", maShear, mat);
    }

    void multiply()
    {
        B2DHomMatrix affineAffineProd;

        affineAffineProd.set(0, 0, 9);
        affineAffineProd.set(0, 1, 12);
        affineAffineProd.set(0, 2, 18);
        affineAffineProd.set(1, 0, 24);
        affineAffineProd.set(1, 1, 33);
        affineAffineProd.set(1, 2, 48);

        B2DHomMatrix temp;

        temp = maAffine;
        temp *= maAffine;
        CPPUNIT_ASSERT_EQUAL_MESSAGE("multiply: both compact", affineAffineProd, temp);
    }

    void impFillMatrix(B2DHomMatrix& rSource, double fScaleX, double fScaleY, double fShearX,
                       double fRotate) const
    {
        // fill rSource with a linear combination of scale, shear and rotate
        rSource.identity();
        rSource.scale(fScaleX, fScaleY);
        rSource.shearX(fShearX);
        rSource.rotate(fRotate);
    }

    bool impDecomposeComposeTest(double fScaleX, double fScaleY, double fShearX,
                                 double fRotate) const
    {
        // linear combine matrix with given values
        B2DHomMatrix aSource;
        impFillMatrix(aSource, fScaleX, fScaleY, fShearX, fRotate);

        // decompose that matrix
        B2DTuple aDScale;
        B2DTuple aDTrans;
        double fDRot;
        double fDShX;
        bool bWorked = aSource.decompose(aDScale, aDTrans, fDRot, fDShX);

        // linear combine another matrix with decomposition results
        B2DHomMatrix aRecombined;
        impFillMatrix(aRecombined, aDScale.getX(), aDScale.getY(), fDShX, fDRot);

        // if decomposition worked, matrices need to be the same
        return bWorked && aSource == aRecombined;
    }

    void decompose()
    {
        // test matrix decompositions. Each matrix decomposed and rebuilt
        // using the decompose result should be the same as before. Test
        // with all ranges of values. Translations are not tested since these
        // are just the two rightmost values and uncritical
        static const double fSX(10.0);
        static const double fSY(12.0);
        static const double fR(M_PI_4);
        static const double fS(deg2rad(15.0));

        // check all possible scaling combinations
        CPPUNIT_ASSERT_MESSAGE("decompose: error test A1",
                               impDecomposeComposeTest(fSX, fSY, 0.0, 0.0));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test A2",
                               impDecomposeComposeTest(-fSX, fSY, 0.0, 0.0));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test A3",
                               impDecomposeComposeTest(fSX, -fSY, 0.0, 0.0));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test A4",
                               impDecomposeComposeTest(-fSX, -fSY, 0.0, 0.0));

        // check all possible scaling combinations with positive rotation
        CPPUNIT_ASSERT_MESSAGE("decompose: error test B1",
                               impDecomposeComposeTest(fSX, fSY, 0.0, fR));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test B2",
                               impDecomposeComposeTest(-fSX, fSY, 0.0, fR));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test B3",
                               impDecomposeComposeTest(fSX, -fSY, 0.0, fR));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test B4",
                               impDecomposeComposeTest(-fSX, -fSY, 0.0, fR));

        // check all possible scaling combinations with negative rotation
        CPPUNIT_ASSERT_MESSAGE("decompose: error test C1",
                               impDecomposeComposeTest(fSX, fSY, 0.0, -fR));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test C2",
                               impDecomposeComposeTest(-fSX, fSY, 0.0, -fR));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test C3",
                               impDecomposeComposeTest(fSX, -fSY, 0.0, -fR));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test C4",
                               impDecomposeComposeTest(-fSX, -fSY, 0.0, -fR));

        // check all possible scaling combinations with positive shear
        CPPUNIT_ASSERT_MESSAGE("decompose: error test D1",
                               impDecomposeComposeTest(fSX, fSY, tan(fS), 0.0));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test D2",
                               impDecomposeComposeTest(-fSX, fSY, tan(fS), 0.0));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test D3",
                               impDecomposeComposeTest(fSX, -fSY, tan(fS), 0.0));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test D4",
                               impDecomposeComposeTest(-fSX, -fSY, tan(fS), 0.0));

        // check all possible scaling combinations with negative shear
        CPPUNIT_ASSERT_MESSAGE("decompose: error test E1",
                               impDecomposeComposeTest(fSX, fSY, tan(-fS), 0.0));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test E2",
                               impDecomposeComposeTest(-fSX, fSY, tan(-fS), 0.0));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test E3",
                               impDecomposeComposeTest(fSX, -fSY, tan(-fS), 0.0));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test E4",
                               impDecomposeComposeTest(-fSX, -fSY, tan(-fS), 0.0));

        // check all possible scaling combinations with positive rotate and positive shear
        CPPUNIT_ASSERT_MESSAGE("decompose: error test F1",
                               impDecomposeComposeTest(fSX, fSY, tan(fS), fR));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test F2",
                               impDecomposeComposeTest(-fSX, fSY, tan(fS), fR));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test F3",
                               impDecomposeComposeTest(fSX, -fSY, tan(fS), fR));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test F4",
                               impDecomposeComposeTest(-fSX, -fSY, tan(fS), fR));

        // check all possible scaling combinations with negative rotate and positive shear
        CPPUNIT_ASSERT_MESSAGE("decompose: error test G1",
                               impDecomposeComposeTest(fSX, fSY, tan(fS), -fR));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test G2",
                               impDecomposeComposeTest(-fSX, fSY, tan(fS), -fR));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test G3",
                               impDecomposeComposeTest(fSX, -fSY, tan(fS), -fR));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test G4",
                               impDecomposeComposeTest(-fSX, -fSY, tan(fS), -fR));

        // check all possible scaling combinations with positive rotate and negative shear
        CPPUNIT_ASSERT_MESSAGE("decompose: error test H1",
                               impDecomposeComposeTest(fSX, fSY, tan(-fS), fR));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test H2",
                               impDecomposeComposeTest(-fSX, fSY, tan(-fS), fR));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test H3",
                               impDecomposeComposeTest(fSX, -fSY, tan(-fS), fR));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test H4",
                               impDecomposeComposeTest(-fSX, -fSY, tan(-fS), fR));

        // check all possible scaling combinations with negative rotate and negative shear
        CPPUNIT_ASSERT_MESSAGE("decompose: error test I1",
                               impDecomposeComposeTest(fSX, fSY, tan(-fS), -fR));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test I2",
                               impDecomposeComposeTest(-fSX, fSY, tan(-fS), -fR));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test I3",
                               impDecomposeComposeTest(fSX, -fSY, tan(-fS), -fR));
        CPPUNIT_ASSERT_MESSAGE("decompose: error test I4",
                               impDecomposeComposeTest(-fSX, -fSY, tan(-fS), -fR));

        // cover special case of 180 degree rotation
        B2DHomMatrix aTest
            = utils::createScaleShearXRotateTranslateB2DHomMatrix(6425, 3938, 0, M_PI, 10482, 4921);
        // decompose that matrix
        B2DTuple aDScale;
        B2DTuple aDTrans;
        double fDRot;
        double fDShX;
        aTest.decompose(aDScale, aDTrans, fDRot, fDShX);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("decompose: error test J1", 6425.0, aDScale.getX(),
                                             1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("decompose: error test J1", 3938.0, aDScale.getY(),
                                             1E-12);
        CPPUNIT_ASSERT_EQUAL_MESSAGE("decompose: error test J1", 10482.0, aDTrans.getX());
        CPPUNIT_ASSERT_EQUAL_MESSAGE("decompose: error test J1", 4921.0, aDTrans.getY());
        CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE("decompose: error test J1", M_PI, fDRot, 1E-12);
    }

    void testCreate_abcdef()
    {
        B2DHomMatrix aB2DMatrix(00, 01, 02, 10, 11, 12);

        CPPUNIT_ASSERT_DOUBLES_EQUAL(00, aB2DMatrix.a(), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(10, aB2DMatrix.b(), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(01, aB2DMatrix.c(), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(11, aB2DMatrix.d(), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(02, aB2DMatrix.e(), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(12, aB2DMatrix.f(), 1E-12);

        CPPUNIT_ASSERT_DOUBLES_EQUAL(aB2DMatrix.get(0, 0), aB2DMatrix.a(), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(aB2DMatrix.get(1, 0), aB2DMatrix.b(), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(aB2DMatrix.get(0, 1), aB2DMatrix.c(), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(aB2DMatrix.get(1, 1), aB2DMatrix.d(), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(aB2DMatrix.get(0, 2), aB2DMatrix.e(), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(aB2DMatrix.get(1, 2), aB2DMatrix.f(), 1E-12);
    }

    void testMultiplyWithAnotherMatrix()
    {
        B2DHomMatrix aB2DMatrix(00, 01, 02, 10, 11, 12);
        B2DHomMatrix aNewB2DMatrix = B2DHomMatrix::abcdef(1, 2, 3, 4, 5, 6);

        aB2DMatrix *= aNewB2DMatrix;

        CPPUNIT_ASSERT_DOUBLES_EQUAL(30, aB2DMatrix.get(0, 0), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(40, aB2DMatrix.get(1, 0), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(34, aB2DMatrix.get(0, 1), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(46, aB2DMatrix.get(1, 1), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(43, aB2DMatrix.get(0, 2), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(58, aB2DMatrix.get(1, 2), 1E-12);
    }

    void testTransformPoint()
    {
        B2DHomMatrix aNewB2DMatrix = B2DHomMatrix::abcdef(1, 2, 3, 4, 5, 6);

        B2DPoint aPoint(1, 2);
        aPoint *= aNewB2DMatrix;

        CPPUNIT_ASSERT_DOUBLES_EQUAL(12, aPoint.getX(), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(16, aPoint.getY(), 1E-12);
    }

    void testTransformRange()
    {
        B2DHomMatrix aNewB2DMatrix = B2DHomMatrix::abcdef(1, 2, 3, 4, 5, 6);

        B2DRange aRange(2, 1, 4, 3);
        aRange *= aNewB2DMatrix;

        CPPUNIT_ASSERT_DOUBLES_EQUAL(10, aRange.getMinX(), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(18, aRange.getMaxX(), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(14, aRange.getMinY(), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(26, aRange.getMaxY(), 1E-12);
    }

    void testCoordinateSystemConversion()
    {
        // Use case when we convert

        B2DRange aWindow(50, 50, 150, 150);

        B2DRange aSubPage(0, 0, 2000, 2000);

        B2DHomMatrix aB2DMatrix;
        aB2DMatrix.scale(aWindow.getWidth() / aSubPage.getWidth(),
                         aWindow.getHeight() / aSubPage.getHeight());
        aB2DMatrix.translate(aWindow.getMinX(), aWindow.getMinY());

        B2DPoint aPoint1(0, 0);
        aPoint1 *= aB2DMatrix;

        CPPUNIT_ASSERT_DOUBLES_EQUAL(50, aPoint1.getX(), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(50, aPoint1.getY(), 1E-12);

        B2DPoint aPoint2(1000, 1000);
        aPoint2 *= aB2DMatrix;
        CPPUNIT_ASSERT_DOUBLES_EQUAL(100, aPoint2.getX(), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(100, aPoint2.getY(), 1E-12);

        B2DPoint aPoint3(2000, 2000);
        aPoint3 *= aB2DMatrix;
        CPPUNIT_ASSERT_DOUBLES_EQUAL(150, aPoint3.getX(), 1E-12);
        CPPUNIT_ASSERT_DOUBLES_EQUAL(150, aPoint3.getY(), 1E-12);
    }

    // Change the following lines only, if you add, remove or rename
    // member functions of the current class,
    // because these macros are need by auto register mechanism.

    CPPUNIT_TEST_SUITE(b2dhommatrix);
    CPPUNIT_TEST(equal);
    CPPUNIT_TEST(identity);
    CPPUNIT_TEST(scale);
    CPPUNIT_TEST(translate);
    CPPUNIT_TEST(rotate);
    CPPUNIT_TEST(shear);
    CPPUNIT_TEST(multiply);
    CPPUNIT_TEST(decompose);
    CPPUNIT_TEST(testCreate_abcdef);
    CPPUNIT_TEST(testMultiplyWithAnotherMatrix);
    CPPUNIT_TEST(testTransformPoint);
    CPPUNIT_TEST(testTransformRange);
    CPPUNIT_TEST(testCoordinateSystemConversion);

    CPPUNIT_TEST_SUITE_END();

}; // class b2dhommatrix
}

CPPUNIT_TEST_SUITE_REGISTRATION(basegfx::b2dhommatrix);

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */