summaryrefslogtreecommitdiff
path: root/chart2/source/view/charttypes/PieChart.cxx
blob: febee25a080676012c6d0e7506362d1cf77318ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
Diffstat (limited to 'editeng/source/accessibility/AccessibleSelectionBase.cxx')
0 files changed, 0 insertions, 0 deletions
href='#n111'>111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * This file incorporates work covered by the following license notice:
 *
 *   Licensed to the Apache Software Foundation (ASF) under one or more
 *   contributor license agreements. See the NOTICE file distributed
 *   with this work for additional information regarding copyright
 *   ownership. The ASF licenses this file to you under the Apache
 *   License, Version 2.0 (the "License"); you may not use this file
 *   except in compliance with the License. You may obtain a copy of
 *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
 */

#include <BaseGFXHelper.hxx>
#include <VLineProperties.hxx>
#include "PieChart.hxx"
#include <PlottingPositionHelper.hxx>
#include <ShapeFactory.hxx>
#include <PolarLabelPositionHelper.hxx>
#include <CommonConverters.hxx>
#include <ViewDefines.hxx>
#include <ObjectIdentifier.hxx>

#include <com/sun/star/chart/DataLabelPlacement.hpp>
#include <com/sun/star/chart2/XColorScheme.hpp>

#include <com/sun/star/container/XChild.hpp>
#include <com/sun/star/drawing/XShape.hpp>
#include <com/sun/star/beans/XPropertySet.hpp>
#include <rtl/math.hxx>
#include <sal/log.hxx>
#include <osl/diagnose.h>
#include <tools/helpers.hxx>

#include <memory>

using namespace ::com::sun::star;
using namespace ::com::sun::star::chart2;

namespace chart {

struct PieChart::ShapeParam
{
    /** the start angle of the slice
     */
    double mfUnitCircleStartAngleDegree;

    /** the angle width of the slice
     */
    double mfUnitCircleWidthAngleDegree;

    /** the normalized outer radius of the ring the slice belongs to.
     */
    double mfUnitCircleOuterRadius;

    /** the normalized inner radius of the ring the slice belongs to
     */
    double mfUnitCircleInnerRadius;

    /** relative distance offset of a slice from the pie center;
     *  this parameter is used for instance when the user performs manual
     *  dragging of a slice (the drag operation is possible only for slices that
     *  belong to the outer ring and only along the ray bisecting the slice);
     *  the value for the given entry in the data series is obtained by the
     *  `Offset` property attached to each entry; note that the value
     *  provided by the `Offset` property is used both as a logical value in
     *  `PiePositionHelper::getInnerAndOuterRadius` and as a percentage value in
     *  the `PieChart::createDataPoint` and `PieChart::createTextLabelShape`
     *  methods; since the logical height of a ring is always 1, this duality
     *  does not cause any incorrect behavior;
     */
    double mfExplodePercentage;

    /** sum of all Y values in a single series
     */
    double mfLogicYSum;

    /** for 3D pie chart: label z coordinate
     */
    double mfLogicZ;

    /** for 3D pie chart: height
     */
    double mfDepth;

    ShapeParam() :
        mfUnitCircleStartAngleDegree(0.0),
        mfUnitCircleWidthAngleDegree(0.0),
        mfUnitCircleOuterRadius(0.0),
        mfUnitCircleInnerRadius(0.0),
        mfExplodePercentage(0.0),
        mfLogicYSum(0.0),
        mfLogicZ(0.0),
        mfDepth(0.0) {}
};

class PiePositionHelper : public PolarPlottingPositionHelper
{
public:
    PiePositionHelper( double fAngleDegreeOffset );

    bool    getInnerAndOuterRadius( double fCategoryX, double& fLogicInnerRadius, double& fLogicOuterRadius, bool bUseRings, double fMaxOffset ) const;

public:
    //Distance between different category rings, seen relative to width of a ring:
    double  m_fRingDistance; //>=0 m_fRingDistance=1 --> distance == width
};

PiePositionHelper::PiePositionHelper( double fAngleDegreeOffset )
        : m_fRingDistance(0.0)
{
    m_fRadiusOffset = 0.0;
    m_fAngleDegreeOffset = fAngleDegreeOffset;
}

/** Compute the outer and the inner radius for the current ring (not for the
 *  whole donut!), in general it is:
 *      inner_radius = (ring_index + 1) - 0.5 + max_offset,
 *      outer_radius = (ring_index + 1) + 0.5 + max_offset.
 *  When orientation for the radius axis is reversed these values are swapped.
 *  (Indeed the orientation for the radius axis is always reversed!
 *  See `PieChartTypeTemplate::adaptScales`.)
 *  The maximum relative offset (see notes for `PieChart::getMaxOffset`) is
 *  added to both the inner and the outer radius.
 *  It returns true if the ring is visible (that is not out of the radius
 *  axis scale range).
 */
bool PiePositionHelper::getInnerAndOuterRadius( double fCategoryX
                                               , double& fLogicInnerRadius, double& fLogicOuterRadius
                                               , bool bUseRings, double fMaxOffset ) const
{
    if( !bUseRings )
        fCategoryX = 1.0;

    double fLogicInner = fCategoryX -0.5+m_fRingDistance/2.0;
    double fLogicOuter = fCategoryX +0.5-m_fRingDistance/2.0;

    if( !isMathematicalOrientationRadius() )
    {
        //in this case the given getMaximumX() was not correct instead the minimum should have been smaller by fMaxOffset
        //but during getMaximumX and getMimumX we do not know the axis orientation
        fLogicInner += fMaxOffset;
        fLogicOuter += fMaxOffset;
    }

    if( fLogicInner >= getLogicMaxX() )
        return false;
    if( fLogicOuter <= getLogicMinX() )
        return false;

    if( fLogicInner < getLogicMinX() )
        fLogicInner = getLogicMinX();
    if( fLogicOuter > getLogicMaxX() )
        fLogicOuter = getLogicMaxX();

    fLogicInnerRadius = fLogicInner;
    fLogicOuterRadius = fLogicOuter;
    if( !isMathematicalOrientationRadius() )
        std::swap(fLogicInnerRadius,fLogicOuterRadius);
    return true;
}

PieChart::PieChart( const uno::Reference<XChartType>& xChartTypeModel
                   , sal_Int32 nDimensionCount
                   , bool bExcludingPositioning )
        : VSeriesPlotter( xChartTypeModel, nDimensionCount )
        , m_pPosHelper( new PiePositionHelper( (m_nDimension==3) ? 0.0 : 90.0 ) )
        , m_bUseRings(false)
        , m_bSizeExcludesLabelsAndExplodedSegments(bExcludingPositioning)
{
    ::rtl::math::setNan(&m_fMaxOffset);

    PlotterBase::m_pPosHelper = m_pPosHelper.get();
    VSeriesPlotter::m_pMainPosHelper = m_pPosHelper.get();
    m_pPosHelper->m_fRadiusOffset = 0.0;
    m_pPosHelper->m_fRingDistance = 0.0;

    uno::Reference< beans::XPropertySet > xChartTypeProps( xChartTypeModel, uno::UNO_QUERY );
    if( xChartTypeProps.is() ) try
    {
        xChartTypeProps->getPropertyValue( "UseRings") >>= m_bUseRings;
        if( m_bUseRings )
        {
            m_pPosHelper->m_fRadiusOffset = 1.0;
            if( nDimensionCount==3 )
                m_pPosHelper->m_fRingDistance = 0.1;
        }
    }
    catch( const uno::Exception& e )
    {
        SAL_WARN("chart2", "Exception caught. " << e );
    }
}

PieChart::~PieChart()
{
}

void PieChart::setScales( const std::vector< ExplicitScaleData >& rScales, bool /* bSwapXAndYAxis */ )
{
    OSL_ENSURE(m_nDimension<=static_cast<sal_Int32>(rScales.size()),"Dimension of Plotter does not fit two dimension of given scale sequence");
    m_pPosHelper->setScales( rScales, true );
}

drawing::Direction3D PieChart::getPreferredDiagramAspectRatio() const
{
    if( m_nDimension == 3 )
        return drawing::Direction3D(1,1,0.10);
    return drawing::Direction3D(1,1,1);
}

bool PieChart::shouldSnapRectToUsedArea()
{
    return true;
}

uno::Reference< drawing::XShape > PieChart::createDataPoint(
    const uno::Reference<drawing::XShapes>& xTarget,
    const uno::Reference<beans::XPropertySet>& xObjectProperties,
    tPropertyNameValueMap const * pOverwritePropertiesMap,
    const ShapeParam& rParam )
{
    //transform position:
    drawing::Direction3D aOffset;
    if (rParam.mfExplodePercentage != 0.0)
    {
        double fAngle  = rParam.mfUnitCircleStartAngleDegree + rParam.mfUnitCircleWidthAngleDegree/2.0;
        double fRadius = (rParam.mfUnitCircleOuterRadius-rParam.mfUnitCircleInnerRadius)*rParam.mfExplodePercentage;
        drawing::Position3D aOrigin = m_pPosHelper->transformUnitCircleToScene(0, 0, rParam.mfLogicZ);
        drawing::Position3D aNewOrigin = m_pPosHelper->transformUnitCircleToScene(fAngle, fRadius, rParam.mfLogicZ);
        aOffset = aNewOrigin - aOrigin;
    }

    //create point
    uno::Reference< drawing::XShape > xShape(nullptr);
    if(m_nDimension==3)
    {
        xShape = m_pShapeFactory->createPieSegment( xTarget
            , rParam.mfUnitCircleStartAngleDegree, rParam.mfUnitCircleWidthAngleDegree
            , rParam.mfUnitCircleInnerRadius, rParam.mfUnitCircleOuterRadius
            , aOffset, B3DHomMatrixToHomogenMatrix( m_pPosHelper->getUnitCartesianToScene() )
            , rParam.mfDepth );
    }
    else
    {
        xShape = m_pShapeFactory->createPieSegment2D( xTarget
            , rParam.mfUnitCircleStartAngleDegree, rParam.mfUnitCircleWidthAngleDegree
            , rParam.mfUnitCircleInnerRadius, rParam.mfUnitCircleOuterRadius
            , aOffset, B3DHomMatrixToHomogenMatrix( m_pPosHelper->getUnitCartesianToScene() ) );
    }
    setMappedProperties( xShape, xObjectProperties, PropertyMapper::getPropertyNameMapForFilledSeriesProperties(), pOverwritePropertiesMap );
    return xShape;
}

void PieChart::createTextLabelShape(
    const uno::Reference<drawing::XShapes>& xTextTarget,
    VDataSeries& rSeries, sal_Int32 nPointIndex, ShapeParam& rParam )
{
    if (!rSeries.getDataPointLabelIfLabel(nPointIndex))
        // There is no text label for this data point.  Nothing to do.
        return;

    ///by using the `mfExplodePercentage` parameter a normalized offset is added
    ///to both normalized radii. (See notes for
    ///`PolarPlottingPositionHelper::transformToRadius`, especially example 3,
    ///and related comments).
    if (rParam.mfExplodePercentage != 0.0)
    {
        double fExplodeOffset = (rParam.mfUnitCircleOuterRadius-rParam.mfUnitCircleInnerRadius)*rParam.mfExplodePercentage;
        rParam.mfUnitCircleInnerRadius += fExplodeOffset;
        rParam.mfUnitCircleOuterRadius += fExplodeOffset;
    }

    ///get the required label placement type. Available placements are
    ///`AVOID_OVERLAP`, `CENTER`, `OUTSIDE` and `INSIDE`;
    sal_Int32 nLabelPlacement = rSeries.getLabelPlacement(
        nPointIndex, m_xChartTypeModel, m_pPosHelper->isSwapXAndY());

    ///when the placement is of `AVOID_OVERLAP` type a later rearrangement of
    ///the label position is allowed; the `createTextLabelShape` treats the
    ///`AVOID_OVERLAP` as if it was of `CENTER` type;

    double nVal = rSeries.getYValue(nPointIndex);
    //AVOID_OVERLAP is in fact "Best fit" in the UI.
    bool bMovementAllowed = ( nLabelPlacement == css::chart::DataLabelPlacement::AVOID_OVERLAP );
    if( bMovementAllowed )
    {
        // Use center for "Best fit" for now. In the future we
        // may want to implement a real best fit algorithm.
        // But center is good enough, and close to what Excel
        // does.

        // Place the label outside if the sector is too small
        // The threshold is set to 2%, but can be improved by making it a function of
        // label width and radius too ?
        double fFrac = fabs( nVal / rParam.mfLogicYSum );
        nLabelPlacement = ( fFrac <= 0.02 ) ? css::chart::DataLabelPlacement::OUTSIDE :
            css::chart::DataLabelPlacement::CENTER;
    }

    ///for `OUTSIDE` (`INSIDE`) label placements an offset of 150 (-150), in the
    ///radius direction, is added to the final screen position of the label
    ///anchor point. This is required in order to ensure that the label is
    ///completely outside (inside) the related slice. Indeed this value should
    ///depend on the font height;
    ///pay attention: 150 is not a big offset, in fact the screen position
    ///coordinates for label anchor points are in the 10000-20000 range, hence
    ///these are coordinates of a virtual screen and 150 is a small value;
    LabelAlignment eAlignment(LABEL_ALIGN_CENTER);
    sal_Int32 nScreenValueOffsetInRadiusDirection = 0 ;
    if( nLabelPlacement == css::chart::DataLabelPlacement::OUTSIDE )
        nScreenValueOffsetInRadiusDirection = (m_nDimension!=3) ? 150 : 0;//todo maybe calculate this font height dependent
    else if( nLabelPlacement == css::chart::DataLabelPlacement::INSIDE )
        nScreenValueOffsetInRadiusDirection = (m_nDimension!=3) ? -150 : 0;//todo maybe calculate this font height dependent

    ///the scene position of the label anchor point is calculated (see notes for
    ///`PolarLabelPositionHelper::getLabelScreenPositionAndAlignmentForUnitCircleValues`),
    ///and immediately transformed into the screen position.
    PolarLabelPositionHelper aPolarPosHelper(m_pPosHelper.get(),m_nDimension,m_xLogicTarget,m_pShapeFactory);
    awt::Point aScreenPosition2D(
        aPolarPosHelper.getLabelScreenPositionAndAlignmentForUnitCircleValues(eAlignment, nLabelPlacement
        , rParam.mfUnitCircleStartAngleDegree, rParam.mfUnitCircleWidthAngleDegree
        , rParam.mfUnitCircleInnerRadius, rParam.mfUnitCircleOuterRadius, rParam.mfLogicZ+0.5, 0 ));

    ///the screen position of the pie/donut center is calculated.
    PieLabelInfo aPieLabelInfo;
    aPieLabelInfo.aFirstPosition = basegfx::B2IVector( aScreenPosition2D.X, aScreenPosition2D.Y );
    awt::Point aOrigin( aPolarPosHelper.transformSceneToScreenPosition( m_pPosHelper->transformUnitCircleToScene( 0.0, 0.0, rParam.mfLogicZ+1.0 ) ) );
    aPieLabelInfo.aOrigin = basegfx::B2IVector( aOrigin.X, aOrigin.Y );

    ///add a scaling independent Offset if requested
    if( nScreenValueOffsetInRadiusDirection != 0)
    {
        basegfx::B2IVector aDirection( aScreenPosition2D.X- aOrigin.X, aScreenPosition2D.Y- aOrigin.Y );
        aDirection.setLength(nScreenValueOffsetInRadiusDirection);
        aScreenPosition2D.X += aDirection.getX();
        aScreenPosition2D.Y += aDirection.getY();
    }

   // compute outer pie radius
    awt::Point aOuterCirclePoint = PlottingPositionHelper::transformSceneToScreenPosition(
            m_pPosHelper->transformUnitCircleToScene(
                    0,
                    rParam.mfUnitCircleOuterRadius,
                    0 ),
            m_xLogicTarget, m_pShapeFactory, m_nDimension );
    basegfx::B2IVector aRadiusVector(
            aOuterCirclePoint.X - aPieLabelInfo.aOrigin.getX(),
            aOuterCirclePoint.Y - aPieLabelInfo.aOrigin.getY() );
    double fSquaredPieRadius = aRadiusVector.scalar(aRadiusVector);
    double fPieRadius = sqrt( fSquaredPieRadius );

    // set the maximum text width to be used when text wrapping is enabled
    double fTextMaximumFrameWidth = 0.8 * fPieRadius;
    sal_Int32 nTextMaximumFrameWidth = ceil(fTextMaximumFrameWidth);

    ///the text shape for the label is created
    aPieLabelInfo.xTextShape = createDataLabel(
        xTextTarget, rSeries, nPointIndex, nVal, rParam.mfLogicYSum,
        aScreenPosition2D, eAlignment, 0, nTextMaximumFrameWidth);

    ///a new `PieLabelInfo` instance is initialized with all the info related to
    ///the current label in order to simplify later label position rearrangement;
    uno::Reference< container::XChild > xChild( aPieLabelInfo.xTextShape, uno::UNO_QUERY );

    ///text shape could be empty; in that case there is no need to add label info
    if( !xChild.is() )
        return;

    aPieLabelInfo.xLabelGroupShape.set( xChild->getParent(), uno::UNO_QUERY );

    aPieLabelInfo.fValue = nVal;
    aPieLabelInfo.bMovementAllowed = bMovementAllowed;
    aPieLabelInfo.bMoved= false;
    aPieLabelInfo.xTextTarget = xTextTarget;

    if (bMovementAllowed)
    {
        performLabelBestFit(rParam, aPieLabelInfo);
    }

    m_aLabelInfoList.push_back(aPieLabelInfo);
}

void PieChart::addSeries( std::unique_ptr<VDataSeries> pSeries, sal_Int32 /* zSlot */, sal_Int32 /* xSlot */, sal_Int32 /* ySlot */ )
{
    VSeriesPlotter::addSeries( std::move(pSeries), 0, -1, 0 );
}

double PieChart::getMinimumX()
{
    return 0.5;
}
double PieChart::getMaxOffset()
{
    if (!::rtl::math::isNan(m_fMaxOffset))
        // Value already cached.  Use it.
        return m_fMaxOffset;

    m_fMaxOffset = 0.0;
    if( m_aZSlots.empty() )
        return m_fMaxOffset;
    if( m_aZSlots.front().empty() )
        return m_fMaxOffset;

    const std::vector< std::unique_ptr<VDataSeries> >& rSeriesList( m_aZSlots.front().front().m_aSeriesVector );
    if(rSeriesList.empty())
        return m_fMaxOffset;

    VDataSeries* pSeries = rSeriesList.front().get();
    uno::Reference< beans::XPropertySet > xSeriesProp( pSeries->getPropertiesOfSeries() );
    if( !xSeriesProp.is() )
        return m_fMaxOffset;

    double fExplodePercentage=0.0;
    xSeriesProp->getPropertyValue( "Offset") >>= fExplodePercentage;
    if(fExplodePercentage>m_fMaxOffset)
        m_fMaxOffset=fExplodePercentage;

    if(!m_bSizeExcludesLabelsAndExplodedSegments)
    {
        uno::Sequence< sal_Int32 > aAttributedDataPointIndexList;
        if( xSeriesProp->getPropertyValue( "AttributedDataPoints" ) >>= aAttributedDataPointIndexList )
        {
            for(sal_Int32 nN=aAttributedDataPointIndexList.getLength();nN--;)
            {
                uno::Reference< beans::XPropertySet > xPointProp( pSeries->getPropertiesOfPoint(aAttributedDataPointIndexList[nN]) );
                if(xPointProp.is())
                {
                    fExplodePercentage=0.0;
                    xPointProp->getPropertyValue( "Offset") >>= fExplodePercentage;
                    if(fExplodePercentage>m_fMaxOffset)
                        m_fMaxOffset=fExplodePercentage;
                }
            }
        }
    }
    return m_fMaxOffset;
}
double PieChart::getMaximumX()
{
    double fMaxOffset = getMaxOffset();
    if( !m_aZSlots.empty() && m_bUseRings)
        return m_aZSlots.front().size()+0.5+fMaxOffset;
    return 1.5+fMaxOffset;
}
double PieChart::getMinimumYInRange( double /* fMinimumX */, double /* fMaximumX */, sal_Int32 /* nAxisIndex */ )
{
    return 0.0;
}

double PieChart::getMaximumYInRange( double /* fMinimumX */, double /* fMaximumX */, sal_Int32 /* nAxisIndex */ )
{
    return 1.0;
}

bool PieChart::isExpandBorderToIncrementRhythm( sal_Int32 /* nDimensionIndex */ )
{
    return false;
}

bool PieChart::isExpandIfValuesCloseToBorder( sal_Int32 /* nDimensionIndex */ )
{
    return false;
}

bool PieChart::isExpandWideValuesToZero( sal_Int32 /* nDimensionIndex */ )
{
    return false;
}

bool PieChart::isExpandNarrowValuesTowardZero( sal_Int32 /* nDimensionIndex */ )
{
    return false;
}

bool PieChart::isSeparateStackingForDifferentSigns( sal_Int32 /* nDimensionIndex */ )
{
    return false;
}

void PieChart::createShapes()
{
    ///a ZSlot is a vector< vector< VDataSeriesGroup > >. There is only one
    ///ZSlot: m_aZSlots[0] which has a number of elements equal to the total
    ///number of data series (in fact, even if m_aZSlots[0][i] is an object of
    ///type `VDataSeriesGroup`, in the current implementation, there is only one
    ///data series in each data series group).
    if (m_aZSlots.empty())
        // No series to plot.
        return;

    ///m_xLogicTarget is where the group of all data series shapes (e.g. a pie
    ///slice) is added (xSeriesTarget);

    ///m_xFinalTarget is where the group of all text shapes (labels) is added
    ///(xTextTarget).

    ///both have been already created and added to the same root shape
    ///( a member of a VDiagram object); this initialization occurs in
    ///`ChartView::impl_createDiagramAndContent`.

    OSL_ENSURE(m_pShapeFactory && m_xLogicTarget.is() && m_xFinalTarget.is(), "PieChart is not properly initialized.");
    if (!m_pShapeFactory || !m_xLogicTarget.is() || !m_xFinalTarget.is())
        return;

    ///the text labels should be always on top of the other series shapes
    ///therefore create an own group for the texts to move them to front
    ///(because the text group is created after the series group the texts are
    ///displayed on top)
    uno::Reference< drawing::XShapes > xSeriesTarget(
        createGroupShape( m_xLogicTarget ));
    uno::Reference< drawing::XShapes > xTextTarget(
        m_pShapeFactory->createGroup2D( m_xFinalTarget ));
    //check necessary here that different Y axis can not be stacked in the same group? ... hm?

    ///pay attention that the `m_bSwapXAndY` parameter used by the polar
    ///plotting position helper is always set to true for pie/donut charts
    ///(see PieChart::setScales). This fact causes that `createShapes` expects
    ///that the radius axis scale is the one with index 0 and the angle axis
    ///scale is the one with index 1.

    std::vector< VDataSeriesGroup >::iterator             aXSlotIter = m_aZSlots.front().begin();
    const std::vector< VDataSeriesGroup >::const_iterator aXSlotEnd = m_aZSlots.front().end();

    ///m_bUseRings == true if chart type is `donut`, == false if chart type is
    ///`pie`; if the chart is of `donut` type we have as many rings as many data
    ///series, else we have a single ring (a pie) representing the first data
    ///series;
    ///for what I can see the radius axis orientation is always reversed and
    ///the angle axis orientation is always non-reversed;
    ///the radius axis scale range is [0.5, number of rings + 0.5 + max_offset],
    ///the angle axis scale range is [0, 1]. The max_offset parameter is used
    ///for exploded pie chart and its value is 0.5.

    ///the `explodeable` ring is the first one except when the radius axis
    ///orientation is reversed (always!?) and we are dealing with a donut: in
    ///such a case the `explodeable` ring is the last one.
    std::vector< VDataSeriesGroup >::size_type nExplodeableSlot = 0;
    if( m_pPosHelper->isMathematicalOrientationRadius() && m_bUseRings )
        nExplodeableSlot = m_aZSlots.front().size()-1;

    m_aLabelInfoList.clear();
    ::rtl::math::setNan(&m_fMaxOffset);
    sal_Int32 n3DRelativeHeight = 100;
    uno::Reference< beans::XPropertySet > xPropertySet( m_xChartTypeModel, uno::UNO_QUERY );
    if ( (m_nDimension==3) && xPropertySet.is())
    {
        try
        {
            uno::Any aAny = xPropertySet->getPropertyValue( "3DRelativeHeight" );
            aAny >>= n3DRelativeHeight;
        }
        catch (const uno::Exception&) { }
    }
    ///iterate over each xslot, that is on each data series (there is
    ///only one data series in each data series group!); note that if the chart
    ///type is a pie the loop iterates only over the first data series
    ///(m_bUseRings||fSlotX<0.5)
    for( double fSlotX=0; aXSlotIter != aXSlotEnd && (m_bUseRings||fSlotX<0.5 ); ++aXSlotIter, fSlotX+=1.0 )
    {
        ShapeParam aParam;

        std::vector< std::unique_ptr<VDataSeries> >* pSeriesList = &(aXSlotIter->m_aSeriesVector);
        if(pSeriesList->empty())//there should be only one series in each x slot
            continue;
        VDataSeries* pSeries = pSeriesList->front().get();
        if(!pSeries)
            continue;

        bool bHasFillColorMapping = pSeries->hasPropertyMapping("FillColor");

        /// The angle degree offset is set by the same property of the
        /// data series.
        /// Counter-clockwise offset from the 3 o'clock position.
        m_pPosHelper->m_fAngleDegreeOffset = pSeries->getStartingAngle();

        ///iterate through all points to get the sum of all entries of
        ///the current data series
        sal_Int32 nPointIndex=0;
        sal_Int32 nPointCount=pSeries->getTotalPointCount();
        for( nPointIndex = 0; nPointIndex < nPointCount; nPointIndex++ )
        {
            double fY = pSeries->getYValue( nPointIndex );
            if(fY<0.0)
            {
                //@todo warn somehow that negative values are treated as positive
            }
            if( ::rtl::math::isNan(fY) )
                continue;
            aParam.mfLogicYSum += fabs(fY);
        }

        if (aParam.mfLogicYSum == 0.0)
            // Total sum of all Y values in this series is zero. Skip the whole series.
            continue;

        double fLogicYForNextPoint = 0.0;
        ///iterate through all points to create shapes
        for( nPointIndex = 0; nPointIndex < nPointCount; nPointIndex++ )
        {
            double fLogicInnerRadius, fLogicOuterRadius;

            ///compute the maximum relative distance offset of the current slice
            ///from the pie center
            ///it is worth noting that after the first invocation the maximum
            ///offset value is cached, so it is evaluated only once per each
            ///call to `createShapes`
            double fOffset = getMaxOffset();

            ///compute the outer and the inner radius for the current ring slice
            bool bIsVisible = m_pPosHelper->getInnerAndOuterRadius( fSlotX+1.0, fLogicInnerRadius, fLogicOuterRadius, m_bUseRings, fOffset );
            if( !bIsVisible )
                continue;

            aParam.mfDepth  = getTransformedDepth() * (n3DRelativeHeight / 100.0);

            uno::Reference< drawing::XShapes > xSeriesGroupShape_Shapes = getSeriesGroupShape(pSeries, xSeriesTarget);
            ///collect data point information (logic coordinates, style ):
            double fLogicYValue = fabs(pSeries->getYValue( nPointIndex ));
            if( ::rtl::math::isNan(fLogicYValue) )
                continue;
            if(fLogicYValue==0.0)//@todo: continue also if the resolution to small
                continue;
            double fLogicYPos = fLogicYForNextPoint;
            fLogicYForNextPoint += fLogicYValue;

            uno::Reference< beans::XPropertySet > xPointProperties = pSeries->getPropertiesOfPoint( nPointIndex );

            //iterate through all subsystems to create partial points
            {
                //logic values on angle axis:
                double fLogicStartAngleValue = fLogicYPos / aParam.mfLogicYSum;
                double fLogicEndAngleValue = (fLogicYPos+fLogicYValue) / aParam.mfLogicYSum;

                ///note that the explode percentage is set to the `Offset`
                ///property of the current data series entry only for slices
                ///belonging to the outer ring
                aParam.mfExplodePercentage = 0.0;
                bool bDoExplode = ( nExplodeableSlot == static_cast< std::vector< VDataSeriesGroup >::size_type >(fSlotX) );
                if(bDoExplode) try
                {
                    xPointProperties->getPropertyValue( "Offset") >>= aParam.mfExplodePercentage;
                }
                catch( const uno::Exception& e )
                {
                    SAL_WARN("chart2", "Exception caught. " << e );
                }

                ///see notes for `PolarPlottingPositionHelper` methods
                ///transform to unit circle:
                aParam.mfUnitCircleWidthAngleDegree = m_pPosHelper->getWidthAngleDegree( fLogicStartAngleValue, fLogicEndAngleValue );
                aParam.mfUnitCircleStartAngleDegree = m_pPosHelper->transformToAngleDegree( fLogicStartAngleValue );
                aParam.mfUnitCircleInnerRadius = m_pPosHelper->transformToRadius( fLogicInnerRadius );
                aParam.mfUnitCircleOuterRadius = m_pPosHelper->transformToRadius( fLogicOuterRadius );

                ///point color:
                std::unique_ptr< tPropertyNameValueMap > apOverwritePropertiesMap(nullptr);
                if (!pSeries->hasPointOwnColor(nPointIndex) && m_xColorScheme.is())
                {
                    apOverwritePropertiesMap.reset( new tPropertyNameValueMap );
                    (*apOverwritePropertiesMap)["FillColor"] <<=
                        m_xColorScheme->getColorByIndex( nPointIndex );
                }

                ///create data point
                aParam.mfLogicZ = -1.0; // For 3D pie chart label position
                uno::Reference<drawing::XShape> xPointShape =
                    createDataPoint(
                        xSeriesGroupShape_Shapes, xPointProperties, apOverwritePropertiesMap.get(), aParam);

                if(bHasFillColorMapping)
                {
                    double nPropVal = pSeries->getValueByProperty(nPointIndex, "FillColor");
                    if(!rtl::math::isNan(nPropVal))
                    {
                        uno::Reference< beans::XPropertySet > xProps( xPointShape, uno::UNO_QUERY_THROW );
                        xProps->setPropertyValue("FillColor", uno::Any(static_cast<sal_Int32>( nPropVal)));
                    }
                }

                ///create label
                createTextLabelShape(xTextTarget, *pSeries, nPointIndex, aParam);

                if(!bDoExplode)
                {
                    ShapeFactory::setShapeName( xPointShape
                                , ObjectIdentifier::createPointCID( pSeries->getPointCID_Stub(), nPointIndex ) );
                }
                else try
                {
                    ///enable dragging of outer segments

                    double fAngle  = aParam.mfUnitCircleStartAngleDegree + aParam.mfUnitCircleWidthAngleDegree/2.0;
                    double fMaxDeltaRadius = aParam.mfUnitCircleOuterRadius-aParam.mfUnitCircleInnerRadius;
                    drawing::Position3D aOrigin = m_pPosHelper->transformUnitCircleToScene( fAngle, aParam.mfUnitCircleOuterRadius, aParam.mfLogicZ );
                    drawing::Position3D aNewOrigin = m_pPosHelper->transformUnitCircleToScene( fAngle, aParam.mfUnitCircleOuterRadius + fMaxDeltaRadius, aParam.mfLogicZ );

                    sal_Int32 nOffsetPercent( static_cast<sal_Int32>(aParam.mfExplodePercentage * 100.0) );

                    awt::Point aMinimumPosition( PlottingPositionHelper::transformSceneToScreenPosition(
                        aOrigin, m_xLogicTarget, m_pShapeFactory, m_nDimension ) );
                    awt::Point aMaximumPosition( PlottingPositionHelper::transformSceneToScreenPosition(
                        aNewOrigin, m_xLogicTarget, m_pShapeFactory, m_nDimension ) );

                    //enable dragging of piesegments
                    OUString aPointCIDStub( ObjectIdentifier::createSeriesSubObjectStub( OBJECTTYPE_DATA_POINT
                        , pSeries->getSeriesParticle()
                        , ObjectIdentifier::getPieSegmentDragMethodServiceName()
                        , ObjectIdentifier::createPieSegmentDragParameterString(
                            nOffsetPercent, aMinimumPosition, aMaximumPosition )
                        ) );

                    ShapeFactory::setShapeName( xPointShape
                                , ObjectIdentifier::createPointCID( aPointCIDStub, nPointIndex ) );
                }
                catch( const uno::Exception& e )
                {
                    SAL_WARN("chart2", "Exception caught. " << e );
                }
            }//next series in x slot (next y slot)
        }//next category
    }//next x slot
}

namespace
{

::basegfx::B2IRectangle lcl_getRect( const uno::Reference< drawing::XShape >& xShape )
{
    ::basegfx::B2IRectangle aRect;
    if( xShape.is() )
        aRect = BaseGFXHelper::makeRectangle(xShape->getPosition(),xShape->getSize() );
    return aRect;
}

bool lcl_isInsidePage( const awt::Point& rPos, const awt::Size& rSize, const awt::Size& rPageSize )
{
    if( rPos.X < 0  || rPos.Y < 0 )
        return false;
    if( (rPos.X + rSize.Width) > rPageSize.Width  )
        return false;
    if( (rPos.Y + rSize.Height) > rPageSize.Height )
        return false;
    return true;
}

}//end anonymous namespace

PieChart::PieLabelInfo::PieLabelInfo()
    : xTextShape(nullptr), xLabelGroupShape(nullptr), aFirstPosition(), aOrigin(), fValue(0.0)
    , bMovementAllowed(false), bMoved(false), xTextTarget(nullptr), pPrevious(nullptr),pNext(nullptr)
{
}

/** In case this label and the passed label overlap the routine moves this
 *  label in order to fix the issue. After the label position has been
 *  rearranged it is checked that the moved label is still inside the page
 *  document, if the test is positive the routine returns true else returns
 *  false.
 */
bool PieChart::PieLabelInfo::moveAwayFrom( const PieChart::PieLabelInfo* pFix, const awt::Size& rPageSize, bool bMoveHalfWay, bool bMoveClockwise )
{
    //return true if the move was successful
    if(!bMovementAllowed)
        return false;

    const sal_Int32 nLabelDistanceX = rPageSize.Width/50;
    const sal_Int32 nLabelDistanceY = rPageSize.Height/50;

    ///compute the rectangle representing the intersection of the label bounding
    ///boxes (`aOverlap`).
    ::basegfx::B2IRectangle aOverlap( lcl_getRect( xLabelGroupShape ) );
    aOverlap.intersect( lcl_getRect( pFix->xLabelGroupShape ) );
    if( !aOverlap.isEmpty() )
    {
        //TODO: alternative move direction

        ///the label is shifted along the direction orthogonal to the vector
        ///starting at the pie/donut center and ending at this label anchor
        ///point;

        ///named `aTangentialDirection` the unit vector related to such a
        ///direction, the magnitude of the shift along such a direction is
        ///calculated in this way: if the horizontal component of
        ///`aTangentialDirection` is greater than the vertical component,
        ///the magnitude of the shift is equal to `aOverlap.Width` else to
        ///`aOverlap.Height`;
        basegfx::B2IVector aRadiusDirection = aFirstPosition - aOrigin;
        aRadiusDirection.setLength(1.0);
        basegfx::B2IVector aTangentialDirection( -aRadiusDirection.getY(), aRadiusDirection.getX() );
        bool bShiftHorizontal = abs(aTangentialDirection.getX()) > abs(aTangentialDirection.getY());
        sal_Int32 nShift = bShiftHorizontal ? static_cast<sal_Int32>(aOverlap.getWidth()) : static_cast<sal_Int32>(aOverlap.getHeight());
        ///the magnitude of the shift is also increased by 1/50-th of the width
        ///or the height of the document page;
        nShift += (bShiftHorizontal ? nLabelDistanceX : nLabelDistanceY);
        ///in case the `bMoveHalfWay` parameter is true the magnitude of
        ///the shift is halved.
        if( bMoveHalfWay )
            nShift/=2;
        ///in case the `bMoveClockwise` parameter is false the direction of
        ///`aTangentialDirection` is reversed;
        if(!bMoveClockwise)
            nShift*=-1;
        awt::Point aOldPos( xLabelGroupShape->getPosition() );
        basegfx::B2IVector aNewPos = basegfx::B2IVector( aOldPos.X, aOldPos.Y ) + nShift*aTangentialDirection;

        ///a final check is performed in order to be sure that the moved label
        ///is still inside the page document;
        awt::Point aNewAWTPos( aNewPos.getX(), aNewPos.getY() );
        if( !lcl_isInsidePage( aNewAWTPos, xLabelGroupShape->getSize(), rPageSize ) )
            return false;

        xLabelGroupShape->setPosition( aNewAWTPos );
        bMoved = true;
    }
    return true;

    ///note that no further test is performed in order to check that the
    ///overlap is really fixed: this result is surely achieved if the shift
    ///would occur in the horizontal or vertical direction (since, in such a
    ///direction, the magnitude of the shift would be greater than the length
    ///of the overlap), but in general this is not true;
    ///adding a constant term equal to 1/50-th of the width or the height of
    ///the document page increases the probability of success, anyway it is
    ///worth noting that the method can return true even if the overlap issue
    ///is not (completely) fixed;
}

void PieChart::resetLabelPositionsToPreviousState()
{
    for (auto const& labelInfo : m_aLabelInfoList)
        labelInfo.xLabelGroupShape->setPosition(labelInfo.aPreviousPosition);
}

bool PieChart::detectLabelOverlapsAndMove( const awt::Size& rPageSize )
{
    ///the routine tries to individuate a chain of overlapping labels and
    ///assigns the first and the last of them to `pFirstBorder` and
    ///`pSecondBorder`;
    ///this result is achieved by performing two consecutive while loop.

    ///find borders of a group of overlapping labels

    ///a first while loop is started on the collection of `PieLabelInfo` objects;
    ///the bounding box of each label is checked for overlap against the bounding
    ///box of the previous and of the next label;
    ///when an overlap is found `bOverlapFound` is set to true, however the
    ///iteration is break only if the overlap occurs against only the next label
    ///and not against the previous label: so we exit from the loop whenever an
    ///overlap occurs except when the loop initial label overlaps with the
    ///previous one;
    bool bOverlapFound = false;
    PieLabelInfo* pStart = &(*(m_aLabelInfoList.rbegin()));
    PieLabelInfo* pFirstBorder = nullptr;
    PieLabelInfo* pSecondBorder = nullptr;
    PieLabelInfo* pCurrent = pStart;
    do
    {
        ::basegfx::B2IRectangle aPreviousOverlap( lcl_getRect( pCurrent->xLabelGroupShape ) );
        ::basegfx::B2IRectangle aNextOverlap( aPreviousOverlap );
        aPreviousOverlap.intersect( lcl_getRect( pCurrent->pPrevious->xLabelGroupShape ) );
        aNextOverlap.intersect( lcl_getRect( pCurrent->pNext->xLabelGroupShape ) );

        bool bPreviousOverlap = !aPreviousOverlap.isEmpty();
        bool bNextOverlap = !aNextOverlap.isEmpty();
        if( bPreviousOverlap || bNextOverlap )
            bOverlapFound = true;
        if( !bPreviousOverlap && bNextOverlap )
        {
            pFirstBorder = pCurrent;
            break;
        }
        pCurrent = pCurrent->pNext;
    }
    while( pCurrent != pStart );

    if( !bOverlapFound )
        return false;

    ///in case we found a label (`pFirstBorder`) which overlaps with the next
    ///label and not with the previous label a second while loop is started with
    ///`pFirstBorder` as initial label; one more time the bounding box of each
    ///label is checked for overlap against the bounding box of the previous and
    ///of the next label, however this time we exit from the loop only if the
    ///current label overlaps with the previous one but does not with the next
    ///one (the opposite of what is required in the former loop);
    ///in case such a label is found it is assigned to `pSecondBorder` and the
    ///iteration is stopped; so in case there is a chain of overlapping labels
    ///we end up having the first label of the chain pointed by `pFirstBorder`
    ///and the last label of the chain pointed by `pSecondBorder`;
    if( pFirstBorder )
    {
        pCurrent = pFirstBorder;
        do
        {
            ::basegfx::B2IRectangle aPreviousOverlap( lcl_getRect( pCurrent->xLabelGroupShape ) );
            ::basegfx::B2IRectangle aNextOverlap( aPreviousOverlap );
            aPreviousOverlap.intersect( lcl_getRect( pCurrent->pPrevious->xLabelGroupShape ) );
            aNextOverlap.intersect( lcl_getRect( pCurrent->pNext->xLabelGroupShape ) );

            if( !aPreviousOverlap.isEmpty() && aNextOverlap.isEmpty() )
            {
                pSecondBorder = pCurrent;
                break;
            }
            pCurrent = pCurrent->pNext;
        }
        while( pCurrent != pFirstBorder );
    }

    ///when two labels satisfying the required conditions are not found
    ///(`pFirstBorder == 0 || pSecondBorder == 0`) but still an overlap occurs
    ///(`bOverlapFound == true`) we are in the situation where each label
    ///overlaps with both the previous and the next one; so `pFirstBorder` is
    ///set to point to the last `PieLabelInfo` object in the collection and
    ///`pSecondBorder` is set to point to the first one;
    if( !pFirstBorder || !pSecondBorder )
    {
        pFirstBorder = &(*(m_aLabelInfoList.rbegin()));
        pSecondBorder = &(*(m_aLabelInfoList.begin()));
    }

    ///the total number of labels that made up the chain is calculated and used
    ///for getting a pointer to the central label (`pCenter`);
    PieLabelInfo* pCenter = pFirstBorder;
    sal_Int32 nOverlapGroupCount = 1;
    for( pCurrent = pFirstBorder ;pCurrent != pSecondBorder; pCurrent = pCurrent->pNext )
        nOverlapGroupCount++;
    sal_Int32 nCenterPos = nOverlapGroupCount/2;
    bool bSingleCenter = nOverlapGroupCount%2 != 0;
    if( bSingleCenter )
        nCenterPos++;
    if(nCenterPos>1)
    {
        pCurrent = pFirstBorder;
        while( --nCenterPos )
            pCurrent = pCurrent->pNext;
        pCenter = pCurrent;
    }

    ///the current position of each label in the collection is saved in
    ///`PieLabelInfo.aPreviousPosition`, so that it is possible to undo the label
    ///move action if it is needed; the undo action is provided by the
    ///`PieChart::resetLabelPositionsToPreviousState` method.
    pCurrent = pStart;
    do
    {
        pCurrent->aPreviousPosition = pCurrent->xLabelGroupShape->getPosition();
        pCurrent = pCurrent->pNext;
    }
    while( pCurrent != pStart );

    ///the `PieChart::tryMoveLabels` method is invoked with
    ///`rbAlternativeMoveDirection` boolean parameter set to false, such a method
    ///tries to remove all overlaps that occur in the list of labels going from
    ///`pFirstBorder` to `pSecondBorder`;
    ///if the `PieChart::tryMoveLabels` returns true no further action is
    ///performed, however it is worth noting that it does not mean that all
    ///overlap issues have been surely fixed, but only that all moved labels are
    ///at least completely inside the page document;
    ///when `PieChart::tryMoveLabels` returns false, it means that the attempt
    ///to fix one of the overlap issues caused that a label has been moved
    ///(partially) outside the page document (anyway the `PieChart::tryMoveLabels`
    ///method takes care to restore the position of all labels to their initial
    ///position, and to set the `rbAlternativeMoveDirection` in/out parameter to
    ///true); in such a case a second invocation of `PieChart::tryMoveLabels` is
    ///performed (and this time the `rbAlternativeMoveDirection` boolean
    ///parameter is true) and independently by what the `PieChart::tryMoveLabels`
    ///method returns no further action is performed;
    ///(see notes for `PieChart::tryMoveLabels`);
    bool bAlternativeMoveDirection = false;
    if( !tryMoveLabels( pFirstBorder, pSecondBorder, pCenter, bSingleCenter, bAlternativeMoveDirection, rPageSize ) )
        tryMoveLabels( pFirstBorder, pSecondBorder, pCenter, bSingleCenter, bAlternativeMoveDirection, rPageSize );

    ///in both cases (one or two invocations of `PieChart::tryMoveLabels`) the
    ///`detectLabelOverlapsAndMove` method ends returning true.
    return true;
}


/** Try to remove all overlaps that occur in the list of labels going from
 *  `pFirstBorder` to `pSecondBorder`
 */
bool PieChart::tryMoveLabels( PieLabelInfo const * pFirstBorder, PieLabelInfo const * pSecondBorder
                             , PieLabelInfo* pCenter
                             , bool bSingleCenter, bool& rbAlternativeMoveDirection, const awt::Size& rPageSize )
{

    PieLabelInfo* p1 = bSingleCenter ? pCenter->pPrevious : pCenter;
    PieLabelInfo* p2 = pCenter->pNext;
    //return true when successful

    bool bLabelOrderIsAntiClockWise = m_pPosHelper->isMathematicalOrientationAngle();

    ///two loops are performed simultaneously: the outer loop iterates on
    ///`PieLabelInfo` objects in the list starting from the central element
    ///(`pCenter`) and moving forward until the last element (`pSecondBorder`);
    ///the inner loop starts from the previous element of `pCenter` and moves
    ///forward until the current `PieLabelInfo` object of the outer loop is
    ///reached
    PieLabelInfo* pCurrent = nullptr;
    for( pCurrent = p2 ;pCurrent->pPrevious != pSecondBorder; pCurrent = pCurrent->pNext )
    {
        PieLabelInfo* pFix = nullptr;
        for( pFix = p2->pPrevious ;pFix != pCurrent; pFix = pFix->pNext )
        {
            ///on the current `PieLabelInfo` object of the outer loop the
            ///`moveAwayFrom` method is invoked by passing the current
            ///`PieLabelInfo` object of the inner loop as argument.

            ///so each label going from the central one to the last one is
            ///checked for overlapping against all previous labels (that comes
            ///after the central label) and in case the overlap occurs the
            ///`moveAwayFrom` method tries to fix the issue;
            ///if `moveAwayFrom` returns true (pay attention: that does not
            ///mean that the overlap issue has been surely fixed but only that
            ///the moved label is at least completely inside the page document:
            ///see notes on `PieChart::PieLabelInfo::moveAwayFrom`), the inner
            ///loop starts a new iteration else the `rbAlternativeMoveDirection`
            ///boolean parameter is tested: if it is false the parameter is set
            ///to true, the position of all labels is restored to the initial
            ///one (through the `PieChart::resetLabelPositionsToPreviousState`
            ///method) and the method ends by returning false, else the inner
            ///loop starts a new iteration step;
            ///so when `rbAlternativeMoveDirection` is true the method goes on
            ///trying to fix left overlap issues even if the last `moveAwayFrom`
            ///invocation has moved a label in a position that it is not
            ///completely inside the page document

            if( !pCurrent->moveAwayFrom( pFix, rPageSize, !bSingleCenter && pCurrent == p2, !bLabelOrderIsAntiClockWise ) )
            {
                if( !rbAlternativeMoveDirection )
                {
                    rbAlternativeMoveDirection = true;
                    resetLabelPositionsToPreviousState();
                    return false;
                }
            }
        }
    }

    ///if the method does not return before ending the first pair of loops,
    ///a second pair of simultaneous loops is performed in the opposite
    ///direction (respect with the previous case): the outer loop iterates on
    ///`PieLabelInfo` objects in the list starting from the central element
    ///(`pCenter`) and moving backward until the first element (`pFirstBorder`);
    ///the inner loop starts from the next element of `pCenter` and moves
    ///backward until the current `PieLabelInfo` object of the outer loop is
    ///reached

    ///like in the previous case on the current `PieLabelInfo` object of
    ///the outer loop the `moveAwayFrom` method is invoked by passing
    ///the current `PieLabelInfo` object of the inner loop as argument

    ///so each label going from the central one to the first one is checked for
    ///overlapping on all subsequent labels (that come before the central label)
    ///and in case the overlap occurs the `moveAwayFrom` method tries to fix
    ///the issue. The subsequent actions performed after the invocation
    ///`moveAwayFrom` are the same detailed above for the first pair of loops

    for( pCurrent = p1 ;pCurrent->pNext != pFirstBorder; pCurrent = pCurrent->pPrevious )
    {
        PieLabelInfo* pFix = nullptr;
        for( pFix = p2->pNext ;pFix != pCurrent; pFix = pFix->pPrevious )
        {
            if( !pCurrent->moveAwayFrom( pFix, rPageSize, false, bLabelOrderIsAntiClockWise ) )
            {
                if( !rbAlternativeMoveDirection )
                {
                    rbAlternativeMoveDirection = true;
                    resetLabelPositionsToPreviousState();
                    return false;
                }
            }
        }
    }
    return true;
}

void PieChart::rearrangeLabelToAvoidOverlapIfRequested( const awt::Size& rPageSize )
{
    ///this method is invoked by `ChartView::impl_createDiagramAndContent` for
    ///pie and donut charts after text label creation;
    ///it tries to rearrange labels only when the label placement type is
    ///`AVOID_OVERLAP`.
    // no need to do anything when we only have one label
    if (m_aLabelInfoList.size() < 2)
        return;

    ///check whether there are any labels that should be moved
    bool bMoveableFound = false;
    for (auto const& labelInfo : m_aLabelInfoList)
    {
        if(labelInfo.bMovementAllowed)
        {
            bMoveableFound = true;
            break;
        }
    }
    if(!bMoveableFound)
        return;

    double fPageDiagonaleLength = sqrt( double( rPageSize.Width*rPageSize.Width + rPageSize.Height*rPageSize.Height) );
    if( fPageDiagonaleLength == 0.0 )
        return;

    ///initialize next and previous member of `PieLabelInfo` objects
    auto aIt1 = m_aLabelInfoList.begin();
    auto aEnd = m_aLabelInfoList.end();
    std::vector< PieLabelInfo >::iterator aIt2 = aIt1;
    aIt1->pPrevious = &(*(m_aLabelInfoList.rbegin()));
    ++aIt2;
    for( ;aIt2!=aEnd; ++aIt1, ++aIt2 )
    {
        PieLabelInfo& rInfo1( *aIt1 );
        PieLabelInfo& rInfo2( *aIt2 );
        rInfo1.pNext = &rInfo2;
        rInfo2.pPrevious = &rInfo1;
    }
    aIt1->pNext = &(*(m_aLabelInfoList.begin()));

    ///detect overlaps and move
    sal_Int32 nMaxIterations = 50;
    while( detectLabelOverlapsAndMove( rPageSize ) && nMaxIterations > 0 )
        nMaxIterations--;

    ///create connection lines for the moved labels
    VLineProperties aVLineProperties;
    for (auto const& labelInfo : m_aLabelInfoList)
    {
        if( labelInfo.bMoved )
        {
            sal_Int32 nX1 = labelInfo.aFirstPosition.getX();
            sal_Int32 nY1 = labelInfo.aFirstPosition.getY();
            sal_Int32 nX2 = nX1;
            sal_Int32 nY2 = nY1;
            ::basegfx::B2IRectangle aRect( lcl_getRect( labelInfo.xLabelGroupShape ) );
            if( nX1 < aRect.getMinX() )
                nX2 = aRect.getMinX();
            else if( nX1 > aRect.getMaxX() )
                nX2 = aRect.getMaxX();

            if( nY1 < aRect.getMinY() )
                nY2 = aRect.getMinY();
            else if( nY1 > aRect.getMaxY() )
                nY2 = aRect.getMaxY();

            //when the line is very short compared to the page size don't create one
            ::basegfx::B2DVector aLength(nX1-nX2, nY1-nY2);
            if( (aLength.getLength()/fPageDiagonaleLength) < 0.01 )
                continue;

            drawing::PointSequenceSequence aPoints(1);
            aPoints[0].realloc(2);
            aPoints[0][0].X = nX1;
            aPoints[0][0].Y = nY1;
            aPoints[0][1].X = nX2;
            aPoints[0][1].Y = nY2;

            uno::Reference< beans::XPropertySet > xProp( labelInfo.xTextShape, uno::UNO_QUERY);
            if( xProp.is() )
            {
                sal_Int32 nColor = 0;
                xProp->getPropertyValue("CharColor") >>= nColor;
                if( nColor != -1 )//automatic font color does not work for lines -> fallback to black
                    aVLineProperties.Color <<= nColor;
            }
            m_pShapeFactory->createLine2D( labelInfo.xTextTarget, aPoints, &aVLineProperties );
        }
    }
}


/** Handle the placement of the label in the best fit case:
 *  the routine try to place the label inside the related pie slice,
 *  in case of success it returns true else returns false.
 *
 *  Notation:
 *  C: the pie center
 *  s: the bisector ray of the current pie slice
 *  alpha: the angle between the horizontal axis and the bisector ray s
 *  N: the vertex of the label b.b. which is nearest to C
 *  F: the vertex of the label b.b. not adjacent to N; F lies on the pie border
 *  P, Q: the intersection points between the label b.b. and the bisector ray s;
 *        P is the one at minimum distance respect with C
 *  e: the edge of the label b.b. where P lies (the nearest edge to C)
 *  M: the vertex of e that is not N
 *  G: the vertex of the label b.b. which is adjacent to N and that is not M
 *  beta: the angle MPF
 *  theta: the angle CPF
 *
 *
 *     |
 *     |                                /s
 *     |                               /
 *     |                              /
 *     |  G _________________________/____________________________ F
 *     |   |                        /Q                          ..|
 *     |   |                       /                         . .  |
 *     |   |                      /                       .  .    |
 *     |   |                     /                     .   .      |
 *     |   |                    /                   .    .        |
 *     |   |                   /                 .     .          |
 *     |   |                  /              d.      .            |
 *     |   |                 /             .       .              |
 *     |   |                /           .        .                |
 *     |   |               /         .         .                  |
 *     |   |              /       .          .                    |
 *     |   |             /     .           .                      |
 *     |   |            /   .            .                        |
 *     |   |           / .  \ beta     .                          |
 *     |   |__________/._\___|_______.____________________________|
 *     |  N          /P  /         .                               M
 *     |            /___/theta   .
 *     |           /           .
 *     |          /          . r
 *     |         /         .
 *     |        /        .
 *     |       /       .
 *     |      /      .
 *     |     /     .
 *     |    /    .
 *     |   /   .
 *     |  /  .
 *     | /\. alpha
 *   __|/__|_____________________________________________________________
 *     |C
 *     |
 *
 *
 *  When alpha = 45k (k integer) s crosses the label b.b. at N exactly.
 *  In such a case the nearest edge e is defined as the edge having N as the
 *  start vertex and that is covered in the counterclockwise direction when
 *  we move from N to the adjacent vertex.
 *
 *  The nearest vertex N is:
 *   1. the bottom left vertex when 0 < alpha < 90
 *   2. the bottom right vertex when 90 < alpha < 180
 *   3. the top right vertex when 180 < alpha < 270
 *   4. the top left vertex when 270 < alpha < 360.
 *
 *  The nearest edge e is:
 *   1. the left edge when −45 < alpha < 45
 *   2. the bottom edge when 45 < alpha <135
 *   3. the right edge when 135 < alpha < 225
 *   4. the top edge when 225 < alpha < 315.
 *
 **/
bool PieChart::performLabelBestFitInnerPlacement(ShapeParam& rShapeParam, PieLabelInfo const & rPieLabelInfo)
{
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "** PieChart::performLabelBestFitInnerPlacement invoked **" );

    // get pie slice properties
    double fStartAngleDeg = NormAngle360(rShapeParam.mfUnitCircleStartAngleDegree);
    double fWidthAngleDeg = rShapeParam.mfUnitCircleWidthAngleDegree;
    double fHalfWidthAngleDeg = fWidthAngleDeg / 2.0;
    double fBisectingRayAngleDeg = NormAngle360(fStartAngleDeg + fHalfWidthAngleDeg);

    // get the middle point of the arc representing the pie slice border
    double fLogicZ = rShapeParam.mfLogicZ + 1.0;
    awt::Point aMiddleArcPoint = PlottingPositionHelper::transformSceneToScreenPosition(
            m_pPosHelper->transformUnitCircleToScene(
                    fBisectingRayAngleDeg,
                    rShapeParam.mfUnitCircleOuterRadius,
                    fLogicZ ),
            m_xLogicTarget, m_pShapeFactory, m_nDimension );

    // compute the pie radius
    basegfx::B2IVector aPieCenter = rPieLabelInfo.aOrigin;
    basegfx::B2IVector aRadiusVector(
            aMiddleArcPoint.X - aPieCenter.getX(),
            aMiddleArcPoint.Y - aPieCenter.getY() );
    double fSquaredPieRadius = aRadiusVector.scalar(aRadiusVector);
    double fPieRadius = sqrt( fSquaredPieRadius );

    // the bb is moved as much as possible near to the border of the pie,
    // anyway a small offset from the border is present (0.025 * pie radius)
    const double fPieBorderOffset = 0.025;
    fPieRadius = fPieRadius - fPieRadius * fPieBorderOffset;

    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "    pie sector:" );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      start angle = " << fStartAngleDeg );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      angle width = " << fWidthAngleDeg );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      bisecting ray angle = " << fBisectingRayAngleDeg );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      pie radius = " << fPieRadius );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      pie center = " << rPieLabelInfo.aOrigin );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      middle arc point = (" << aMiddleArcPoint.X << ","
                                           << aMiddleArcPoint.Y << ")" );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "    label bounding box:" );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      old anchor point = " << rPieLabelInfo.aFirstPosition );


    if( fPieRadius == 0.0 )
        return false;

    // get label b.b. width and height
    ::basegfx::B2IRectangle aBb( lcl_getRect( rPieLabelInfo.xLabelGroupShape ) );
    double fLabelWidth = aBb.getWidth();
    double fLabelHeight = aBb.getHeight();

    // -45 <= fAlphaDeg < 315
    double fAlphaDeg = NormAngle360(fBisectingRayAngleDeg + 45) - 45;
    double fAlphaRad = basegfx::deg2rad(fAlphaDeg);

    // compute nearest edge index
    // 0 left
    // 1 bottom
    // 2 right
    // 3 top
    int nSectorIndex = floor( (fAlphaDeg + 45) / 45.0 );
    int nNearestEdgeIndex = nSectorIndex / 2;

    // compute lengths of the nearest edge and of the orthogonal edges
    double fNearestEdgeLength = fLabelWidth;
    double fOrthogonalEdgeLength = fLabelHeight;
    int nAxisIndex = 0;
    int nOrthogonalAxisIndex = 1;
    if( nNearestEdgeIndex % 2 == 0 ) // nearest edge is vertical
    {
        fNearestEdgeLength = fLabelHeight;
        fOrthogonalEdgeLength = fLabelWidth;
        nAxisIndex = 1;
        nOrthogonalAxisIndex = 0;
    }

    // compute the distance between N and P
    // such a distance is piece wise linear respect with alpha:
    // given 45k <= alpha < 45(k+1) we have
    // when k is even: d(N,P) = (length(e) / 2) * (1 - (alpha - 45k)/45)
    // when k is odd: d(N,P) = (length(e) / 2) * (1 - (45(k+1) - alpha)/45)
    int nIndex = nSectorIndex -1;  // nIndex = -1...6
    double fIndexMod2 = (nIndex + 8) % 2; // fIndexMod2 must be non negative
    double fSgn = 2.0 * (fIndexMod2 - 0.5); // 0 -> -1, 1 -> 1
    double fDistanceNP = (fNearestEdgeLength / 2.0) * (1 + fSgn * ((fAlphaDeg - 45 * (nIndex + fIndexMod2)) / 45.0));
    double fDistancePM = fNearestEdgeLength - fDistanceNP;

    // compute the length of the diagonal vector d,
    // that is the distance between P and F
    double fSquaredDistancePF = fDistancePM * fDistancePM + fOrthogonalEdgeLength * fOrthogonalEdgeLength;
    double fDistancePF = sqrt( fSquaredDistancePF );

    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      width = " << fLabelWidth );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      height = " <<  fLabelHeight );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      nearest edge index = " << nNearestEdgeIndex );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      alpha = " << fAlphaDeg );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      distance(N,P) = " << fDistanceNP );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "        nIndex = " << nIndex );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "        fIndexMod2 = " << fIndexMod2 );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "        fSgn = " << fSgn );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      distance(P,F) = " << fDistancePF );


    // we check that the condition length(d) <= pie radius holds
    if (fDistancePF > fPieRadius)
    {
        return false;
    }

    // compute beta: the angle of the diagonal vector d,
    // that is, the angle in P respect with the triangle PMF;
    // since both arguments are non negative the returned value is in [0, PI/2]
    double fBetaRad = atan2( fOrthogonalEdgeLength, fDistancePM );

    // compute the theta angle, that is the angle in P
    // respect with the triangle CFP;
    // when the second intersection edge is opposite to the nearest edge,
    // theta depends on alpha and beta according to the following relation:
    // theta = f(alpha, beta) = s * alpha + 90 * (1 - s * i) + beta
    // where i is the nearest edge index and s is the sign of (alpha' - 45),
    // with alpha' = (alpha + 45) mod 90;
    // when the second intersection edge is adjacent to the nearest edge,
    // we have theta = 360 - f(alpha, beta);
    // note that in the former case 0 <= f(alpha, beta) <= 180,
    // whilst in the latter case 180 <= f(alpha, beta) <= 360;
    double fAlphaMod90 = fmod( fAlphaDeg + 45, 90.0 ) - 45;
    double fSign = fAlphaMod90 == 0.0
                       ? 0.0
                       : ( fAlphaMod90 < 0 ) ? -1.0 : 1.0;
    double fThetaRad = fSign * fAlphaRad + M_PI_2 * (1 - fSign * nNearestEdgeIndex) + fBetaRad;
    if( fThetaRad > M_PI )
    {
        fThetaRad = 2 * M_PI - fThetaRad;
    }

    // compute the length of the positional vector,
    // that is the distance between C and P
    double fDistanceCP;
    // when the bisector ray intersects the b.b. in F we have theta mod 180 == 0
    if( fmod(fThetaRad, M_PI) == 0.0 )
    {
        fDistanceCP = fPieRadius - fDistancePF;
    }
    else // general case
    {
        // we can compute d(C,P) by applying some trigonometric formula to
        // the triangle CFP : we know length(d) and length(r) = r and we have
        // computed the angle in P (theta); so named delta the angle in C and
        // gamma the angle in F, by the relation:
        //
        //                r         d(P,F)     d(C,P)
        //            --------- = --------- = ---------
        //            sin theta   sin delta   sin gamma
        //
        // we get the wanted distance
        double fSinTheta = sin( fThetaRad );
        double fSinDelta = fDistancePF * fSinTheta / fPieRadius;
        double fDeltaRad = asin( fSinDelta );
        double fGammaRad = M_PI - (fThetaRad + fDeltaRad);
        double fSinGamma = sin( fGammaRad );
        fDistanceCP = fPieRadius * fSinGamma / fSinTheta;
    }

    // define the positional vector
    basegfx::B2DVector aPositionalVector( cos(fAlphaRad), sin(fAlphaRad) );
    aPositionalVector.setLength(fDistanceCP);

    // we define a direction vector in order to know
    // in which quadrant we are working
    basegfx::B2DVector aDirection(1.0, 1.0);
    if( 90 <= fBisectingRayAngleDeg && fBisectingRayAngleDeg < 270 )
    {
        aDirection.setX(-1.0);
    }
    if( fBisectingRayAngleDeg >= 180 )
    {
        aDirection.setY(-1.0);
    }

    // compute vertices N, M and G respect with pie center C
    basegfx::B2DVector aNearestVertex(aPositionalVector);
    aNearestVertex[nAxisIndex] += -aDirection[nAxisIndex] * fDistanceNP;
    basegfx::B2DVector aVertexM(aNearestVertex);
    aVertexM[nAxisIndex] += aDirection[nAxisIndex] * fNearestEdgeLength;
    basegfx::B2DVector aVertexG(aNearestVertex);
    aVertexG[nOrthogonalAxisIndex] += aDirection[nOrthogonalAxisIndex] * fOrthogonalEdgeLength;

    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      beta = " << basegfx::rad2deg(fBetaRad) );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      theta = " << basegfx::rad2deg(fThetaRad) );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "        fAlphaMod90 = " << fAlphaMod90 );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "        fSign = " << fSign );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      distance(C,P) = " << fDistanceCP );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      direction vector = " << aDirection );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      N = " << aNearestVertex );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      M = " << aVertexM );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      G = " << aVertexG );

    // in order to be able to place the label inside the pie slice we need
    // to check that each angle between s and the ray starting from C and
    // passing through a b.b. vertex is less than half width of the pie slice;
    // when the nearest edge e crosses a Cartesian axis it is sufficient
    // to test only the vertices belonging to e, else we need to test
    // the 2 vertices that aren’t either N or F . Note that if a b.b. edge
    // crosses a Cartesian axis then it is the nearest edge to C

    // check the angle between CP and CM
    double fAngleRad = aPositionalVector.angle(aVertexM);
    double fAngleDeg = NormAngle360(basegfx::rad2deg(fAngleRad));
    if( fAngleDeg > 180 )  // in case the wrong angle has been computed
        fAngleDeg = 360 - fAngleDeg;
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      angle between CP and CM: " << fAngleDeg );
    if( fAngleDeg > fHalfWidthAngleDeg )
    {
        return false;
    }

    if( ( aNearestVertex[nAxisIndex] >= 0 && aVertexM[nAxisIndex] <= 0 )
            || ( aNearestVertex[nAxisIndex] <= 0 && aVertexM[nAxisIndex] >= 0 ) )
    {
        // check the angle between CP and CN
        fAngleRad = aPositionalVector.angle(aNearestVertex);
        fAngleDeg = NormAngle360(basegfx::rad2deg(fAngleRad));
        if( fAngleDeg > 180 )  // in case the wrong angle has been computed
            fAngleDeg = 360 - fAngleDeg;
        SAL_INFO( "chart2.pie.label.bestfit.inside",
                  "      angle between CP and CN: " << fAngleDeg );
        if( fAngleDeg > fHalfWidthAngleDeg )
        {
            return false;
        }
    }
    else
    {
        // check the angle between CP and CG
        fAngleRad = aPositionalVector.angle(aVertexG);
        fAngleDeg = NormAngle360(basegfx::rad2deg(fAngleRad));
        if( fAngleDeg > 180 )  // in case the wrong angle has been computed
            fAngleDeg = 360 - fAngleDeg;
        SAL_INFO( "chart2.pie.label.bestfit.inside",
                  "      angle between CP and CG: " << fAngleDeg );
        if( fAngleDeg > fHalfWidthAngleDeg )
        {
            return false;
        }
    }

    // compute the b.b. center respect with the pie center
    basegfx::B2DVector aBBCenter(aNearestVertex);
    aBBCenter[nAxisIndex] += aDirection[nAxisIndex] * fNearestEdgeLength / 2;
    aBBCenter[nOrthogonalAxisIndex] += aDirection[nOrthogonalAxisIndex] * fOrthogonalEdgeLength / 2;

    // compute the b.b. anchor point
    basegfx::B2IVector aNewAnchorPoint = aPieCenter;
    aNewAnchorPoint[0] += floor(aBBCenter[0]);
    aNewAnchorPoint[1] -= floor(aBBCenter[1]); // the Y axis on the screen points downward

    // compute the translation vector for moving the label from the current
    // screen position to the new one
    basegfx::B2IVector aTranslationVector = aNewAnchorPoint - rPieLabelInfo.aFirstPosition;

    // compute the new screen position and move the label
    // XShape::getPosition returns the top left vertex of the b.b. of the shape
    awt::Point aOldPos( rPieLabelInfo.xLabelGroupShape->getPosition() );
    awt::Point aNewPos( aOldPos.X + aTranslationVector.getX(),
                        aOldPos.Y + aTranslationVector.getY() );
    rPieLabelInfo.xLabelGroupShape->setPosition(aNewPos);

    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      center = " <<  aBBCenter );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      new anchor point = " << aNewAnchorPoint );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      translation vector = " <<  aTranslationVector );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      old position = (" << aOldPos.X << "," << aOldPos.Y << ")" );
    SAL_INFO( "chart2.pie.label.bestfit.inside",
              "      new position = (" << aNewPos.X << "," << aNewPos.Y << ")" );

    return true;
}

/** Handle the placement of the label in the best fit case.
 *  First off the routine try to place the label inside the related pie slice,
 *  if this is not possible the label is placed outside.
 */
void PieChart::performLabelBestFit(ShapeParam& rShapeParam, PieLabelInfo const & rPieLabelInfo)
{
    if( m_bUseRings )
        return;

    if( !performLabelBestFitInnerPlacement(rShapeParam, rPieLabelInfo) )
    {
        // TODO
    }
}

} //namespace chart

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */