1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <PlottingPositionHelper.hxx>
#include <CommonConverters.hxx>
#include <ViewDefines.hxx>
#include <Linear3DTransformation.hxx>
#include <VPolarTransformation.hxx>
#include <ShapeFactory.hxx>
#include <PropertyMapper.hxx>
#include <DateHelper.hxx>
#include <defines.hxx>
#include <com/sun/star/chart/TimeUnit.hpp>
#include <com/sun/star/chart2/AxisType.hpp>
#include <com/sun/star/drawing/DoubleSequence.hpp>
#include <com/sun/star/drawing/Position3D.hpp>
#include <com/sun/star/drawing/XShapes.hpp>
#include <o3tl/make_unique.hxx>
#include <rtl/math.hxx>
#include <tools/helpers.hxx>
namespace chart
{
using namespace ::com::sun::star;
using namespace ::com::sun::star::chart2;
PlottingPositionHelper::PlottingPositionHelper()
: m_aScales()
, m_aMatrixScreenToScene()
, m_bSwapXAndY( false )
, m_nXResolution( 1000 )
, m_nYResolution( 1000 )
, m_nZResolution( 1000 )
, m_bMaySkipPointsInRegressionCalculation( true )
, m_bDateAxis(false)
, m_nTimeResolution( css::chart::TimeUnit::DAY )
, m_aNullDate(30,12,1899)
, m_fScaledCategoryWidth(1.0)
, m_bAllowShiftXAxisPos(false)
, m_bAllowShiftZAxisPos(false)
{
}
PlottingPositionHelper::PlottingPositionHelper( const PlottingPositionHelper& rSource )
: m_aScales( rSource.m_aScales )
, m_aMatrixScreenToScene( rSource.m_aMatrixScreenToScene )
// m_xTransformationLogicToScene( nullptr ) //should be recalculated
, m_bSwapXAndY( rSource.m_bSwapXAndY )
, m_nXResolution( rSource.m_nXResolution )
, m_nYResolution( rSource.m_nYResolution )
, m_nZResolution( rSource.m_nZResolution )
, m_bMaySkipPointsInRegressionCalculation( rSource.m_bMaySkipPointsInRegressionCalculation )
, m_bDateAxis( rSource.m_bDateAxis )
, m_nTimeResolution( rSource.m_nTimeResolution )
, m_aNullDate( rSource.m_aNullDate )
, m_fScaledCategoryWidth( rSource.m_fScaledCategoryWidth )
, m_bAllowShiftXAxisPos( rSource.m_bAllowShiftXAxisPos )
, m_bAllowShiftZAxisPos( rSource.m_bAllowShiftZAxisPos )
{
}
PlottingPositionHelper::~PlottingPositionHelper()
{
}
std::unique_ptr<PlottingPositionHelper> PlottingPositionHelper::clone() const
{
return o3tl::make_unique<PlottingPositionHelper>(*this);
}
std::unique_ptr<PlottingPositionHelper> PlottingPositionHelper::createSecondaryPosHelper( const ExplicitScaleData& rSecondaryScale )
{
auto pRet = clone();
pRet->m_aScales[1]=rSecondaryScale;
return pRet;
}
void PlottingPositionHelper::setTransformationSceneToScreen( const drawing::HomogenMatrix& rMatrix)
{
m_aMatrixScreenToScene = HomogenMatrixToB3DHomMatrix(rMatrix);
m_xTransformationLogicToScene = nullptr;
}
void PlottingPositionHelper::setScales( const std::vector< ExplicitScaleData >& rScales, bool bSwapXAndYAxis )
{
m_aScales = rScales;
m_bSwapXAndY = bSwapXAndYAxis;
m_xTransformationLogicToScene = nullptr;
}
uno::Reference< XTransformation > PlottingPositionHelper::getTransformationScaledLogicToScene() const
{
//this is a standard transformation for a cartesian coordinate system
//transformation from 2) to 4) //@todo 2) and 4) need a ink to a document
//we need to apply this transformation to each geometric object because of a bug/problem
//of the old drawing layer (the UNO_NAME_3D_EXTRUDE_DEPTH is an integer value instead of an double )
if(!m_xTransformationLogicToScene.is())
{
::basegfx::B3DHomMatrix aMatrix;
double MinX = getLogicMinX();
double MinY = getLogicMinY();
double MinZ = getLogicMinZ();
double MaxX = getLogicMaxX();
double MaxY = getLogicMaxY();
double MaxZ = getLogicMaxZ();
AxisOrientation nXAxisOrientation = m_aScales[0].Orientation;
AxisOrientation nYAxisOrientation = m_aScales[1].Orientation;
AxisOrientation nZAxisOrientation = m_aScales[2].Orientation;
//apply scaling
doUnshiftedLogicScaling( &MinX, &MinY, &MinZ );
doUnshiftedLogicScaling( &MaxX, &MaxY, &MaxZ);
if(m_bSwapXAndY)
{
std::swap(MinX,MinY);
std::swap(MaxX,MaxY);
std::swap(nXAxisOrientation,nYAxisOrientation);
}
double fWidthX = MaxX - MinX;
double fWidthY = MaxY - MinY;
double fWidthZ = MaxZ - MinZ;
double fScaleDirectionX = nXAxisOrientation==AxisOrientation_MATHEMATICAL ? 1.0 : -1.0;
double fScaleDirectionY = nYAxisOrientation==AxisOrientation_MATHEMATICAL ? 1.0 : -1.0;
double fScaleDirectionZ = nZAxisOrientation==AxisOrientation_MATHEMATICAL ? -1.0 : 1.0;
double fScaleX = fScaleDirectionX*FIXED_SIZE_FOR_3D_CHART_VOLUME/fWidthX;
double fScaleY = fScaleDirectionY*FIXED_SIZE_FOR_3D_CHART_VOLUME/fWidthY;
double fScaleZ = fScaleDirectionZ*FIXED_SIZE_FOR_3D_CHART_VOLUME/fWidthZ;
aMatrix.scale(fScaleX, fScaleY, fScaleZ);
if( nXAxisOrientation==AxisOrientation_MATHEMATICAL )
aMatrix.translate(-MinX*fScaleX, 0.0, 0.0);
else
aMatrix.translate(-MaxX*fScaleX, 0.0, 0.0);
if( nYAxisOrientation==AxisOrientation_MATHEMATICAL )
aMatrix.translate(0.0, -MinY*fScaleY, 0.0);
else
aMatrix.translate(0.0, -MaxY*fScaleY, 0.0);
if( nZAxisOrientation==AxisOrientation_MATHEMATICAL )
aMatrix.translate(0.0, 0.0, -MaxZ*fScaleZ);//z direction in draw is reverse mathematical direction
else
aMatrix.translate(0.0, 0.0, -MinZ*fScaleZ);
aMatrix = m_aMatrixScreenToScene*aMatrix;
m_xTransformationLogicToScene = new Linear3DTransformation(B3DHomMatrixToHomogenMatrix( aMatrix ),m_bSwapXAndY);
}
return m_xTransformationLogicToScene;
}
drawing::Position3D PlottingPositionHelper::transformLogicToScene(
double fX, double fY, double fZ, bool bClip ) const
{
doLogicScaling( &fX,&fY,&fZ );
if(bClip)
clipScaledLogicValues( &fX,&fY,&fZ );
return transformScaledLogicToScene( fX, fY, fZ, false );
}
drawing::Position3D PlottingPositionHelper::transformScaledLogicToScene(
double fX, double fY, double fZ, bool bClip ) const
{
if( bClip )
clipScaledLogicValues( &fX,&fY,&fZ );
drawing::Position3D aPos( fX, fY, fZ);
uno::Reference< XTransformation > xTransformation =
getTransformationScaledLogicToScene();
uno::Sequence< double > aSeq =
xTransformation->transform( Position3DToSequence(aPos) );
return SequenceToPosition3D(aSeq);
}
awt::Point PlottingPositionHelper::transformSceneToScreenPosition( const drawing::Position3D& rScenePosition3D
, const uno::Reference< drawing::XShapes >& xSceneTarget
, ShapeFactory* pShapeFactory
, sal_Int32 nDimensionCount )
{
//@todo would like to have a cheaper method to do this transformation
awt::Point aScreenPoint( static_cast<sal_Int32>(rScenePosition3D.PositionX), static_cast<sal_Int32>(rScenePosition3D.PositionY) );
//transformation from scene to screen (only necessary for 3D):
if(nDimensionCount==3)
{
//create 3D anchor shape
tPropertyNameMap aDummyPropertyNameMap;
uno::Reference< drawing::XShape > xShape3DAnchor = pShapeFactory->createCube( xSceneTarget
, rScenePosition3D,drawing::Direction3D(1,1,1)
, 0, nullptr, aDummyPropertyNameMap);
//get 2D position from xShape3DAnchor
aScreenPoint = xShape3DAnchor->getPosition();
xSceneTarget->remove(xShape3DAnchor);
}
return aScreenPoint;
}
void PlottingPositionHelper::transformScaledLogicToScene( drawing::PolyPolygonShape3D& rPolygon ) const
{
drawing::Position3D aScenePosition;
for( sal_Int32 nS = rPolygon.SequenceX.getLength(); nS--;)
{
drawing::DoubleSequence& xValues = rPolygon.SequenceX[nS];
drawing::DoubleSequence& yValues = rPolygon.SequenceY[nS];
drawing::DoubleSequence& zValues = rPolygon.SequenceZ[nS];
for( sal_Int32 nP = xValues.getLength(); nP--; )
{
double& fX = xValues[nP];
double& fY = yValues[nP];
double& fZ = zValues[nP];
aScenePosition = transformScaledLogicToScene( fX,fY,fZ,true );
fX = aScenePosition.PositionX;
fY = aScenePosition.PositionY;
fZ = aScenePosition.PositionZ;
}
}
}
void PlottingPositionHelper::clipScaledLogicValues( double* pX, double* pY, double* pZ ) const
{
//get logic clip values:
double MinX = getLogicMinX();
double MinY = getLogicMinY();
double MinZ = getLogicMinZ();
double MaxX = getLogicMaxX();
double MaxY = getLogicMaxY();
double MaxZ = getLogicMaxZ();
//apply scaling
doUnshiftedLogicScaling( &MinX, &MinY, &MinZ );
doUnshiftedLogicScaling( &MaxX, &MaxY, &MaxZ);
if(pX)
{
if( *pX < MinX )
*pX = MinX;
else if( *pX > MaxX )
*pX = MaxX;
}
if(pY)
{
if( *pY < MinY )
*pY = MinY;
else if( *pY > MaxY )
*pY = MaxY;
}
if(pZ)
{
if( *pZ < MinZ )
*pZ = MinZ;
else if( *pZ > MaxZ )
*pZ = MaxZ;
}
}
basegfx::B2DRectangle PlottingPositionHelper::getScaledLogicClipDoubleRect() const
{
//get logic clip values:
double MinX = getLogicMinX();
double MinY = getLogicMinY();
double MinZ = getLogicMinZ();
double MaxX = getLogicMaxX();
double MaxY = getLogicMaxY();
double MaxZ = getLogicMaxZ();
//apply scaling
doUnshiftedLogicScaling( &MinX, &MinY, &MinZ );
doUnshiftedLogicScaling( &MaxX, &MaxY, &MaxZ);
basegfx::B2DRectangle aRet( MinX, MaxY, MaxX, MinY );
return aRet;
}
drawing::Direction3D PlottingPositionHelper::getScaledLogicWidth() const
{
drawing::Direction3D aRet;
double MinX = getLogicMinX();
double MinY = getLogicMinY();
double MinZ = getLogicMinZ();
double MaxX = getLogicMaxX();
double MaxY = getLogicMaxY();
double MaxZ = getLogicMaxZ();
doLogicScaling( &MinX, &MinY, &MinZ );
doLogicScaling( &MaxX, &MaxY, &MaxZ);
aRet.DirectionX = MaxX - MinX;
aRet.DirectionY = MaxY - MinY;
aRet.DirectionZ = MaxZ - MinZ;
return aRet;
}
PolarPlottingPositionHelper::PolarPlottingPositionHelper()
: m_fRadiusOffset(0.0)
, m_fAngleDegreeOffset(90.0)
, m_aUnitCartesianToScene()
{
m_bMaySkipPointsInRegressionCalculation = false;
}
PolarPlottingPositionHelper::PolarPlottingPositionHelper( const PolarPlottingPositionHelper& rSource )
: PlottingPositionHelper(rSource)
, m_fRadiusOffset( rSource.m_fRadiusOffset )
, m_fAngleDegreeOffset( rSource.m_fAngleDegreeOffset )
, m_aUnitCartesianToScene( rSource.m_aUnitCartesianToScene )
{
}
PolarPlottingPositionHelper::~PolarPlottingPositionHelper()
{
}
std::unique_ptr<PlottingPositionHelper> PolarPlottingPositionHelper::clone() const
{
return o3tl::make_unique<PolarPlottingPositionHelper>(*this);
}
void PolarPlottingPositionHelper::setTransformationSceneToScreen( const drawing::HomogenMatrix& rMatrix)
{
PlottingPositionHelper::setTransformationSceneToScreen( rMatrix);
m_aUnitCartesianToScene =impl_calculateMatrixUnitCartesianToScene( m_aMatrixScreenToScene );
}
void PolarPlottingPositionHelper::setScales( const std::vector< ExplicitScaleData >& rScales, bool bSwapXAndYAxis )
{
PlottingPositionHelper::setScales( rScales, bSwapXAndYAxis );
m_aUnitCartesianToScene =impl_calculateMatrixUnitCartesianToScene( m_aMatrixScreenToScene );
}
::basegfx::B3DHomMatrix PolarPlottingPositionHelper::impl_calculateMatrixUnitCartesianToScene( const ::basegfx::B3DHomMatrix& rMatrixScreenToScene ) const
{
::basegfx::B3DHomMatrix aRet;
if( m_aScales.empty() )
return aRet;
double fTranslate =1.0;
double fScale =FIXED_SIZE_FOR_3D_CHART_VOLUME/2.0;
double fTranslateLogicZ;
double fScaleLogicZ;
{
double fScaleDirectionZ = m_aScales[2].Orientation==AxisOrientation_MATHEMATICAL ? 1.0 : -1.0;
double MinZ = getLogicMinZ();
double MaxZ = getLogicMaxZ();
doLogicScaling( nullptr, nullptr, &MinZ );
doLogicScaling( nullptr, nullptr, &MaxZ );
double fWidthZ = MaxZ - MinZ;
if( m_aScales[2].Orientation==AxisOrientation_MATHEMATICAL )
fTranslateLogicZ=MinZ;
else
fTranslateLogicZ=MaxZ;
fScaleLogicZ = fScaleDirectionZ*FIXED_SIZE_FOR_3D_CHART_VOLUME/fWidthZ;
}
double fTranslateX = fTranslate;
double fTranslateY = fTranslate;
double fTranslateZ = fTranslateLogicZ;
double fScaleX = fScale;
double fScaleY = fScale;
double fScaleZ = fScaleLogicZ;
aRet.translate(fTranslateX, fTranslateY, fTranslateZ);//x first
aRet.scale(fScaleX, fScaleY, fScaleZ);//x first
aRet = rMatrixScreenToScene * aRet;
return aRet;
}
uno::Reference< XTransformation > PolarPlottingPositionHelper::getTransformationScaledLogicToScene() const
{
if( !m_xTransformationLogicToScene.is() )
m_xTransformationLogicToScene = new VPolarTransformation(*this);
return m_xTransformationLogicToScene;
}
double PolarPlottingPositionHelper::getWidthAngleDegree( double& fStartLogicValueOnAngleAxis, double& fEndLogicValueOnAngleAxis ) const
{
const ExplicitScaleData& rAngleScale = m_bSwapXAndY ? m_aScales[1] : m_aScales[0];
if( rAngleScale.Orientation != AxisOrientation_MATHEMATICAL )
{
double fHelp = fEndLogicValueOnAngleAxis;
fEndLogicValueOnAngleAxis = fStartLogicValueOnAngleAxis;
fStartLogicValueOnAngleAxis = fHelp;
}
double fStartAngleDegree = transformToAngleDegree( fStartLogicValueOnAngleAxis );
double fEndAngleDegree = transformToAngleDegree( fEndLogicValueOnAngleAxis );
double fWidthAngleDegree = fEndAngleDegree - fStartAngleDegree;
if( ::rtl::math::approxEqual( fStartAngleDegree, fEndAngleDegree )
&& !::rtl::math::approxEqual( fStartLogicValueOnAngleAxis, fEndLogicValueOnAngleAxis ) )
fWidthAngleDegree = 360.0;
while(fWidthAngleDegree<0.0)
fWidthAngleDegree+=360.0;
while(fWidthAngleDegree>360.0)
fWidthAngleDegree-=360.0;
return fWidthAngleDegree;
}
//This method does a lot of computation for understanding which scale to
//utilize and if reverse orientation should be used. Indeed, for a pie or donut,
//the final result is as simple as multiplying by 360 and adding
//`m_fAngleDegreeOffset`.
double PolarPlottingPositionHelper::transformToAngleDegree( double fLogicValueOnAngleAxis, bool bDoScaling ) const
{
double fRet=0.0;
double fAxisAngleScaleDirection = 1.0;
{
const ExplicitScaleData& rScale = m_bSwapXAndY ? m_aScales[1] : m_aScales[0];
if(rScale.Orientation != AxisOrientation_MATHEMATICAL)
fAxisAngleScaleDirection *= -1.0;
}
double MinAngleValue = 0.0;
double MaxAngleValue = 0.0;
{
double MinX = getLogicMinX();
double MinY = getLogicMinY();
double MaxX = getLogicMaxX();
double MaxY = getLogicMaxY();
double MinZ = getLogicMinZ();
double MaxZ = getLogicMaxZ();
doLogicScaling( &MinX, &MinY, &MinZ );
doLogicScaling( &MaxX, &MaxY, &MaxZ);
MinAngleValue = m_bSwapXAndY ? MinY : MinX;
MaxAngleValue = m_bSwapXAndY ? MaxY : MaxX;
}
double fScaledLogicAngleValue = 0.0;
if(bDoScaling)
{
double fX = m_bSwapXAndY ? getLogicMaxX() : fLogicValueOnAngleAxis;
double fY = m_bSwapXAndY ? fLogicValueOnAngleAxis : getLogicMaxY();
double fZ = getLogicMaxZ();
clipLogicValues( &fX, &fY, &fZ );
doLogicScaling( &fX, &fY, &fZ );
fScaledLogicAngleValue = m_bSwapXAndY ? fY : fX;
}
else
fScaledLogicAngleValue = fLogicValueOnAngleAxis;
fRet = m_fAngleDegreeOffset
+ fAxisAngleScaleDirection*(fScaledLogicAngleValue-MinAngleValue)*360.0
/fabs(MaxAngleValue-MinAngleValue);
return NormAngle360(fRet);
}
/**
* Given a value in the radius axis scale range, it returns, in the simplest
* case (that is when `m_fRadiusOffset` is zero), the normalized value; when
* `m_fRadiusOffset` is not zero (e.g. as in the case of a donut), the interval
* used for normalization is extended by `m_fRadiusOffset`: if the axis
* orientation is not reversed the new interval becomes
* [scale.Minimum - m_fRadiusOffset, scale.Maximum] else it becomes
* [scale.Minimum, scale.Maximum + m_fRadiusOffset].
* Pay attention here! For the latter case, since the axis orientation is
* reversed, the normalization is reversed too. Indeed, we have
* `transformToRadius(scale.Maximum + m_fRadiusOffset) = 0` and
* `transformToRadius(scale.Minimum) = 1`.
*
* For a pie chart the radius axis scale range is initialized by the
* `getMinimum` and `getMaximum` methods of the `PieChart` object (see notes
* for `VCoordinateSystem::prepareAutomaticAxisScaling`).
* So we have scale.Minimum = 0.5 (always constant!) and
* scale.Maximum = 0.5 + number_of_rings + max_offset
* (see notes for `PieChart::getMaxOffset`).
* Hence we get the following general formulas for computing normalized inner
* and outer radius:
*
* 1- transformToRadius(inner_radius) =
* (number_of_rings - (ring_index + 1) + m_fRadiusOffset)
* / (number_of_rings + max_offset + m_fRadiusOffset)
*
* 2- transformToRadius(outer_radius) =
* (1 + number_of_rings - (ring_index + 1) + m_fRadiusOffset)
* / (number_of_rings + max_offset + m_fRadiusOffset).
*
* Here you have to take into account that values for inner and outer radius
* are swapped since the radius axis is reversed (See notes for
* `PiePositionHelper::getInnerAndOuterRadius`). So indeed inner_radius is
* the outer and outer_radius is the inner. Anyway still because of the reverse
* orientation, the normalization performed by `transformToRadius` is reversed
* too, as we have seen above. Hence `transformToRadius(inner_radius)` is
* really the normalized inner radius and `transformToRadius(outer_radius)` is
* really the normalized outer radius.
*
* Some basic examples where we apply the above formulas:
* 1- For a non-exploded pie chart we have:
* `transformToRadius(inner_radius) = 0`,
* `transformToRadius(outer_radius) = 1`.
* 2- For a non-exploded donut with a single ring we have:
* `transformToRadius(inner_radius) =
* m_fRadiusOffset/(1 + m_fRadiusOffset)`,
* `transformToRadius(outer_radius) =
* (1 + m_fRadiusOffset)/(1 + m_fRadiusOffset) = 1`.
* 3- For an exploded pie chart we have:
* `transformToRadius(inner_radius) = 0/(1 + max_offset) = 0`,
* `transformToRadius(outer_radius) = 1/(1 + max_offset)`.
*
* The third example needs some remark. Both the logical inner and outer
* radius passed to `transformToRadius` are offset by `max_offset`.
* However the returned normalized values do not contain any (normalized)
* offset term at all, otherwise the returned values would be
* `max_offset/(1 + max_offset)` and `1`. Hence, for exploded pie/donut,
* `transformToRadius` returns the normalized value of radii without any
* offset term. These values are smaller than in the non-exploded case by an
* amount equals to the value of the normalized maximum offset
* (`max_offset/(1 + max_offset)` in the example above). That is due to the
* fact that the normalization keeps into account the space needed for the
* offset. This is the correct behavior, in fact the offset for the current
* slice could be different from the maximum offset.
* These remarks should clarify why the `PieChart::createDataPoint` and
* `PieChart::createTextLabelShape` methods add the normalized offset (for the
* current slice) to the normalized radii in order to achieve the correct
* placement of slice and text shapes.
*/
double PolarPlottingPositionHelper::transformToRadius( double fLogicValueOnRadiusAxis, bool bDoScaling ) const
{
double fNormalRadius = 0.0;
{
double fScaledLogicRadiusValue = 0.0;
double fX = m_bSwapXAndY ? fLogicValueOnRadiusAxis: getLogicMaxX();
double fY = m_bSwapXAndY ? getLogicMaxY() : fLogicValueOnRadiusAxis;
if(bDoScaling)
doLogicScaling( &fX, &fY, nullptr );
fScaledLogicRadiusValue = m_bSwapXAndY ? fX : fY;
bool bMinIsInnerRadius = true;
const ExplicitScaleData& rScale = m_bSwapXAndY ? m_aScales[0] : m_aScales[1];
if(rScale.Orientation != AxisOrientation_MATHEMATICAL)
bMinIsInnerRadius = false;
double fInnerScaledLogicRadius=0.0;
double fOuterScaledLogicRadius=0.0;
{
double MinX = getLogicMinX();
double MinY = getLogicMinY();
doLogicScaling( &MinX, &MinY, nullptr );
double MaxX = getLogicMaxX();
double MaxY = getLogicMaxY();
doLogicScaling( &MaxX, &MaxY, nullptr );
double fMin = m_bSwapXAndY ? MinX : MinY;
double fMax = m_bSwapXAndY ? MaxX : MaxY;
fInnerScaledLogicRadius = bMinIsInnerRadius ? fMin : fMax;
fOuterScaledLogicRadius = bMinIsInnerRadius ? fMax : fMin;
}
if( bMinIsInnerRadius )
fInnerScaledLogicRadius -= fabs(m_fRadiusOffset);
else
fInnerScaledLogicRadius += fabs(m_fRadiusOffset);
fNormalRadius = (fScaledLogicRadiusValue-fInnerScaledLogicRadius)/(fOuterScaledLogicRadius-fInnerScaledLogicRadius);
}
return fNormalRadius;
}
drawing::Position3D PolarPlottingPositionHelper::transformLogicToScene( double fX, double fY, double fZ, bool bClip ) const
{
if(bClip)
clipLogicValues( &fX,&fY,&fZ );
double fLogicValueOnAngleAxis = m_bSwapXAndY ? fY : fX;
double fLogicValueOnRadiusAxis = m_bSwapXAndY ? fX : fY;
return transformAngleRadiusToScene( fLogicValueOnAngleAxis, fLogicValueOnRadiusAxis, fZ );
}
drawing::Position3D PolarPlottingPositionHelper::transformScaledLogicToScene( double fX, double fY, double fZ, bool bClip ) const
{
if(bClip)
clipScaledLogicValues( &fX,&fY,&fZ );
double fLogicValueOnAngleAxis = m_bSwapXAndY ? fY : fX;
double fLogicValueOnRadiusAxis = m_bSwapXAndY ? fX : fY;
return transformAngleRadiusToScene( fLogicValueOnAngleAxis, fLogicValueOnRadiusAxis, fZ, false );
}
drawing::Position3D PolarPlottingPositionHelper::transformUnitCircleToScene( double fUnitAngleDegree, double fUnitRadius
, double fLogicZ ) const
{
double fAnglePi = basegfx::deg2rad(fUnitAngleDegree);
double fX=fUnitRadius*rtl::math::cos(fAnglePi);
double fY=fUnitRadius*rtl::math::sin(fAnglePi);
double fZ=fLogicZ;
//!! applying matrix to vector does ignore translation, so it is important to use a B3DPoint here instead of B3DVector
::basegfx::B3DPoint aPoint(fX,fY,fZ);
::basegfx::B3DPoint aRet = m_aUnitCartesianToScene * aPoint;
return B3DPointToPosition3D(aRet);
}
drawing::Position3D PolarPlottingPositionHelper::transformAngleRadiusToScene( double fLogicValueOnAngleAxis, double fLogicValueOnRadiusAxis, double fLogicZ, bool bDoScaling ) const
{
double fUnitAngleDegree = transformToAngleDegree(fLogicValueOnAngleAxis,bDoScaling);
double fUnitRadius = transformToRadius(fLogicValueOnRadiusAxis,bDoScaling);
return transformUnitCircleToScene( fUnitAngleDegree, fUnitRadius, fLogicZ );
}
double PolarPlottingPositionHelper::getOuterLogicRadius() const
{
const ExplicitScaleData& rScale = m_bSwapXAndY ? m_aScales[0] : m_aScales[1];
if( rScale.Orientation==AxisOrientation_MATHEMATICAL )
return rScale.Maximum;
else
return rScale.Minimum;
}
bool PlottingPositionHelper::isPercentY() const
{
return m_aScales[1].AxisType==AxisType::PERCENT;
}
double PlottingPositionHelper::getBaseValueY() const
{
return m_aScales[1].Origin;
}
void PlottingPositionHelper::setTimeResolution( long nTimeResolution, const Date& rNullDate )
{
m_nTimeResolution = nTimeResolution;
m_aNullDate = rNullDate;
//adapt category width
double fCategoryWidth = 1.0;
if( !m_aScales.empty() )
{
if( m_aScales[0].AxisType == css::chart2::AxisType::DATE )
{
m_bDateAxis = true;
if( nTimeResolution == css::chart::TimeUnit::YEAR )
{
const double fMonthCount = 12.0;//todo: this depends on the DateScaling and must be adjusted in case we use more generic calendars in future
fCategoryWidth = fMonthCount;
}
}
}
setScaledCategoryWidth(fCategoryWidth);
}
void PlottingPositionHelper::setScaledCategoryWidth( double fScaledCategoryWidth )
{
m_fScaledCategoryWidth = fScaledCategoryWidth;
}
void PlottingPositionHelper::AllowShiftXAxisPos( bool bAllowShift )
{
m_bAllowShiftXAxisPos = bAllowShift;
}
void PlottingPositionHelper::AllowShiftZAxisPos( bool bAllowShift )
{
m_bAllowShiftZAxisPos = bAllowShift;
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|