summaryrefslogtreecommitdiff
path: root/hwpfilter/source/solver.h
blob: 50c41c499e6b74c30b06e3893ac30207adea3d74 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/*************************************************************************
 *
 *  OpenOffice.org - a multi-platform office productivity suite
 *
 *  $RCSfile: solver.h,v $
 *
 *  $Revision: 1.2 $
 *
 *  last change: $Author: rt $ $Date: 2005-09-07 16:45:53 $
 *
 *  The Contents of this file are made available subject to
 *  the terms of GNU Lesser General Public License Version 2.1.
 *
 *
 *    GNU Lesser General Public License Version 2.1
 *    =============================================
 *    Copyright 2005 by Sun Microsystems, Inc.
 *    901 San Antonio Road, Palo Alto, CA 94303, USA
 *
 *    This library is free software; you can redistribute it and/or
 *    modify it under the terms of the GNU Lesser General Public
 *    License version 2.1, as published by the Free Software Foundation.
 *
 *    This library is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *    Lesser General Public License for more details.
 *
 *    You should have received a copy of the GNU Lesser General Public
 *    License along with this library; if not, write to the Free Software
 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 *    MA  02111-1307  USA
 *
 ************************************************************************/

#ifndef _SOLVER_H_
#define _SOLVER_H_

class mgcLinearSystem
{
public:
  mgcLinearSystem() {;}

  float** NewMatrix (int N);
  void DeleteMatrix (int N, float** A);
  float* NewVector (int N);
  void DeleteVector (int N, float* B);

  int Inverse (int N, float** A);
  // Input:
  //     A[N][N], entries are A[row][col]
  // Output:
  //     return value is TRUE if successful, FALSE if pivoting failed
  //     A[N][N], inverse matrix

  int Solve (int N, float** A, float* b);
  // Input:
  //     A[N][N] coefficient matrix, entries are A[row][col]
  //     b[N] vector, entries are b[row]
  // Output:
  //     return value is TRUE if successful, FALSE if pivoting failed
  //     A[N][N] is inverse matrix
  //     b[N] is solution x to Ax = b

  int SolveTri (int N, float* a, float* b, float* c, float* r, float* u);
  // Input:
  //     Matrix is tridiagonal.
  //     Lower diagonal a[N-1]
  //     Main  diagonal b[N]
  //     Upper diagonal c[N-1]
  //     Right-hand side r[N]
  // Output:
  //     return value is TRUE if successful, FALSE if pivoting failed
  //     u[N] is solution

  int SolveConstTri (int N, float a, float b, float c, float* r, float* u);
  // Input:
  //     Matrix is tridiagonal.
  //     Lower diagonal is constant, a
  //     Main  diagonal is constant, b
  //     Upper diagonal is constant, c
  //     Right-hand side r[N]
  // Output:
  //     return value is TRUE if successful, FALSE if pivoting failed
  //     u[N] is solution

  int SolveSymmetric (int N, float** A, float* b);
  // Input:
  //     A[N][N] symmetric coefficient matrix, entries are A[row][col]
  //     b[N] vector, entries are b[row]
  // Output:
  //     return value is TRUE if successful, FALSE if (nearly) singular
  //     decomposition A = L D L^t (diagonal terms of L are all 1)
  //         A[i][i] = entries of diagonal D
  //         A[i][j] for i > j = lower triangular part of L
  //     b[N] is solution to x to Ax = b

  int SymmetricInverse (int N, float** A, float** Ainv);
  // Input:
  //     A[N][N], entries are A[row][col]
  // Output:
  //     return value is TRUE if successful, FALSE if algorithm failed
  //     Ainv[N][N], inverse matrix
};

class mgcLinearSystemD
{
public:
  mgcLinearSystemD() {;}

  double** NewMatrix (int N);
  void DeleteMatrix (int N, double** A);
  double* NewVector (int N);
  void DeleteVector (int N, double* B);

  int Inverse (int N, double** A);
  // Input:
  //     A[N][N], entries are A[row][col]
  // Output:
  //     return value is TRUE if successful, FALSE if pivoting failed
  //     A[N][N], inverse matrix

  int Solve (int N, double** A, double* b);
  // Input:
  //     A[N][N] coefficient matrix, entries are A[row][col]
  //     b[N] vector, entries are b[row]
  // Output:
  //     return value is TRUE if successful, FALSE if pivoting failed
  //     A[N][N] is inverse matrix
  //     b[N] is solution x to Ax = b

  int SolveTri (int N, double* a, double* b, double* c, double* r,
      double* u);
  // Input:
  //     Matrix is tridiagonal.
  //     Lower diagonal a[N-1]
  //     Main  diagonal b[N]
  //     Upper diagonal c[N-1]
  //     Right-hand side r[N]
  // Output:
  //     return value is TRUE if successful, FALSE if pivoting failed
  //     u[N] is solution

  int SolveConstTri (int N, double a, double b, double c, double* r,
      double* u);
  // Input:
  //     Matrix is tridiagonal.
  //     Lower diagonal is constant, a
  //     Main  diagonal is constant, b
  //     Upper diagonal is constant, c
  //     Right-hand side r[N]
  // Output:
  //     return value is TRUE if successful, FALSE if pivoting failed
  //     u[N] is solution

  int SolveSymmetric (int N, double** A, double* b);
  // Input:
  //     A[N][N] symmetric coefficient matrix, entries are A[row][col]
  //     b[N] vector, entries are b[row]
  // Output:
  //     return value is TRUE if successful, FALSE if (nearly) singular
  //     decomposition A = L D L^t (diagonal terms of L are all 1)
  //         A[i][i] = entries of diagonal D
  //         A[i][j] for i > j = lower triangular part of L
  //     b[N] is solution to x to Ax = b

  int SymmetricInverse (int N, double** A, double** Ainv);
  // Input:
  //     A[N][N], entries are A[row][col]
  // Output:
  //     return value is TRUE if successful, FALSE if algorithm failed
  //     Ainv[N][N], inverse matrix
};

#endif