1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#ifndef INCLUDED_BASEBMP_POLYPOLYGONRENDERER_HXX
#define INCLUDED_BASEBMP_POLYPOLYGONRENDERER_HXX
#include <basegfx/point/b2dpoint.hxx>
#include <basegfx/range/b2drange.hxx>
#include <basegfx/range/b2ibox.hxx>
#include <basegfx/polygon/b2dpolypolygon.hxx>
#include <basegfx/polygon/b2dpolypolygontools.hxx>
#include <basegfx/polygon/b2dpolypolygonfillrule.hxx>
#include <basegfx/numeric/ftools.hxx>
#include <vigra/diff2d.hxx>
#include <vigra/iteratortraits.hxx>
#include <vector>
namespace basebmp
{
namespace detail
{
/// convert int32 to 32:32 fixed point
inline sal_Int64 toFractional( sal_Int32 v ) { return sal_Int64(sal_uInt64(v) << 32); }
/// convert double to 32:32 fixed point
inline sal_Int64 toFractional( double v ) { return (sal_Int64)(v*SAL_MAX_UINT32 + (v < 0.0 ? -0.5 : 0.5 )); }
/// convert 32:32 fixed point to int32 (truncate)
inline sal_Int32 toInteger( sal_Int64 v ) { return (sal_Int32)(v < 0 ? ~((~v) >> 32) : v >> 32); }
/// convert 32:32 fixed point to int32 (properly rounded)
inline sal_Int32 toRoundedInteger( sal_Int64 v ) { return toInteger(v) + (sal_Int32)((v&0x80000000) >> 31); }
/** internal vertex store -
Different from B2DPoint, since we don't need floating
point coords, but orientation of vertex and y counter
*/
struct Vertex
{
sal_Int32 mnYCounter;
sal_Int64 mnX;
sal_Int64 mnXDelta;
bool mbDownwards; // needed for nonzero winding rule
// fills
Vertex() :
mnYCounter(0),
mnX(0),
mnXDelta(0),
mbDownwards(true)
{}
Vertex( basegfx::B2DPoint const& rPt1,
basegfx::B2DPoint const& rPt2,
bool bDownwards ) :
mnYCounter( basegfx::fround(rPt2.getY()) -
basegfx::fround(rPt1.getY()) ),
mnX( toFractional( basegfx::fround(rPt1.getX()) )),
mnXDelta( toFractional(
((rPt2.getX() - rPt1.getX()) /
(double)mnYCounter) )),
mbDownwards(bDownwards)
{}
};
typedef std::vector< std::vector<Vertex> > VectorOfVectorOfVertices;
typedef std::vector< Vertex* > VectorOfVertexPtr;
/// non-templated setup of GET
sal_uInt32 setupGlobalEdgeTable( VectorOfVectorOfVertices& rGET,
basegfx::B2DPolyPolygon const& rPoly,
sal_Int32 nMinY );
/// sort rAETSrc, copy not-yet-ended edges over to rAETDest
void sortAET( VectorOfVertexPtr& rAETSrc,
VectorOfVertexPtr& rAETDest );
/// For the STL algorithms
struct RasterConvertVertexComparator
{
RasterConvertVertexComparator() {}
bool operator()( const Vertex& rLHS,
const Vertex& rRHS ) const
{
return rLHS.mnX < rRHS.mnX;
}
bool operator()( const Vertex* pLHS,
const Vertex* pRHS ) const
{
return pLHS->mnX < pRHS->mnX;
}
};
} // namespace detail
/** Raster-convert a poly-polygon.
This algorithm does not perform antialiasing, and thus
internally works with integer vertex coordinates.
@param begin
Left, top edge of the destination bitmap. This position is
considered (0,0) relative to all polygon vertices
@param ad
Accessor to set pixel values
@param fillColor
Color to use for filling
@param rClipRect
Clipping rectangle, relative to the begin iterator. No pixel outside
this clip rect will be modified.
@param rPoly
Polygon to fill
*/
template< class DestIterator, class DestAccessor, typename T >
void renderClippedPolyPolygon( DestIterator begin,
DestAccessor ad,
T fillColor,
const basegfx::B2IBox& rClipRect,
basegfx::B2DPolyPolygon const& rPoly,
basegfx::FillRule eFillRule )
{
const sal_Int32 nClipX1( std::max((sal_Int32)0,rClipRect.getMinX()) );
const sal_Int32 nClipX2( rClipRect.getMaxX() );
const sal_Int32 nClipY1( std::max((sal_Int32)0,rClipRect.getMinY()) );
const sal_Int32 nClipY2( rClipRect.getMaxY() );
const sal_Int64 nClipX1_frac( detail::toFractional(nClipX1) );
const sal_Int64 nClipX2_frac( detail::toFractional(nClipX2) );
basegfx::B2DRange const aPolyBounds( basegfx::tools::getRange(rPoly) );
const sal_Int32 nMinY( basegfx::fround(aPolyBounds.getMinY()) );
const sal_Int32 nMaxY(
std::min(
nClipY2-1,
basegfx::fround(aPolyBounds.getMaxY())));
if( nMinY > nMaxY )
return; // really, nothing to do then.
detail::VectorOfVectorOfVertices aGET; // the Global Edge Table
aGET.resize( nMaxY - nMinY + 1 );
sal_uInt32 const nVertexCount(
detail::setupGlobalEdgeTable( aGET, rPoly, nMinY ) );
// Perform actual scan conversion
//----------------------------------------------------------------------
if( aGET.empty() )
return;
detail::VectorOfVertexPtr aAET1; // the Active Edge Table
detail::VectorOfVertexPtr aAET2;
detail::VectorOfVertexPtr* pAET = &aAET1;
detail::VectorOfVertexPtr* pAETOther = &aAET2;
aAET1.reserve( nVertexCount );
aAET2.reserve( nVertexCount );
// current scanline - initially, points to first scanline
// within the clip rect, or to the polygon's first scanline
// (whichever is greater)
DestIterator aScanline( begin +
vigra::Diff2D(
0,
std::max(nMinY,
nClipY1)) );
detail::RasterConvertVertexComparator aComp;
// now process each of the nMaxY - nMinY + 1 scanlines
// ------------------------------------------------------------
for( sal_Int32 y=nMinY; y <= nMaxY; ++y )
{
if( !aGET[y-nMinY].empty() )
{
// merge AET with current scanline's new vertices (both
// are already correctly sorted)
detail::VectorOfVectorOfVertices::value_type::iterator vertex=aGET[y-nMinY].begin();
detail::VectorOfVectorOfVertices::value_type::iterator const end=aGET[y-nMinY].end();
while( vertex != end )
{
// find insertion pos by binary search, and put ptr
// into active edge vector
pAET->insert( std::lower_bound( pAET->begin(),
pAET->end(),
&(*vertex),
aComp ),
&(*vertex) );
++vertex;
}
}
// with less than two active edges, no fill visible
if( pAET->size() >= 2 )
{
typename vigra::IteratorTraits<DestIterator>::row_iterator
rowIter( aScanline.rowIterator() );
// process each span in current scanline, with
// even-odd fill rule
detail::VectorOfVertexPtr::iterator currVertex( pAET->begin() );
detail::VectorOfVertexPtr::iterator const lastVertex( pAET->end()-1 );
sal_uInt32 nCrossedEdges(0);
sal_Int32 nWindingNumber(0);
while( currVertex != lastVertex )
{
// TODO(P1): might be worth a try to extend the
// size()==2 case also to the actual filling
// here. YMMV.
detail::Vertex& rV1( **currVertex );
detail::Vertex const& rV2( **++currVertex );
nWindingNumber += -1 + 2*int(rV1.mbDownwards);
// calc fill status for both rules. might save a
// few percent runtime to specialize here...
const bool bEvenOddFill(
eFillRule == basegfx::FillRule_EVEN_ODD && !(nCrossedEdges & 0x01) );
const bool bNonZeroWindingFill(
eFillRule == basegfx::FillRule_NONZERO_WINDING_NUMBER && nWindingNumber != 0 );
// is span visible?
if( (bEvenOddFill || bNonZeroWindingFill) &&
y >= nClipY1 &&
rV1.mnX < nClipX2_frac &&
rV2.mnX > nClipX1_frac )
{
// clip span to horizontal bounds
sal_Int32 const nStartX(
std::max( nClipX1,
std::min( nClipX2-1,
detail::toRoundedInteger(rV1.mnX) )));
sal_Int32 const nEndX(
std::max( nClipX1,
std::min( nClipX2,
detail::toRoundedInteger(rV2.mnX) )));
typename vigra::IteratorTraits<DestIterator>::row_iterator
currPix( rowIter + nStartX);
typename vigra::IteratorTraits<DestIterator>::row_iterator
rowEnd( rowIter + nEndX );
// TODO(P2): Provide specialized span fill methods on the
// iterator/accessor
while( currPix != rowEnd )
ad.set(fillColor, currPix++);
}
// step vertices
rV1.mnX += rV1.mnXDelta;
--rV1.mnYCounter;
++nCrossedEdges;
}
// step vertex also for the last one
detail::Vertex& rLastV( **currVertex );
rLastV.mnX += rLastV.mnXDelta;
--rLastV.mnYCounter;
// prune AET from ended edges, and keep it sorted
// ---------------------------------------------------------
pAETOther->clear();
if( pAET->size() == 2 )
{
// the case of exactly two active edges is both
// sufficiently common (all 'simple' polygons have
// it), and further more would complicate the
// generic case below (which works with a sliding
// triple of vertices).
if( !aComp(*(*pAET)[0], *(*pAET)[1]) )
std::swap(*(*pAET)[0], *(*pAET)[1]);
if( (*pAET)[0]->mnYCounter > 0 )
pAETOther->push_back( (*pAET)[0] );
if( (*pAET)[1]->mnYCounter > 0 )
pAETOther->push_back( (*pAET)[1] );
}
else
{
bool bFallbackTaken(false);
currVertex = pAET->begin();
detail::VectorOfVertexPtr::iterator prevVertex( currVertex );
while( currVertex != lastVertex )
{
// try to get away with one linear swoop and
// simple neighbor swapping. this is an
// overwhelmingly common case - polygons with
// excessively crisscrossing edges (which on
// top of that cross more than one other edge
// per scanline) are seldom. And even if we
// get such a beast here, this extra loop has
// still only linear cost
if( aComp(**(currVertex+1),**currVertex) )
{
std::swap(*currVertex, *(currVertex+1));
if( aComp(**currVertex,**prevVertex) )
{
// one swap was not sufficient -
// fallback to generic sort algo, then
detail::sortAET(*pAET, *pAETOther);
bFallbackTaken = true;
break;
}
}
if( (*currVertex)->mnYCounter > 0 )
pAETOther->push_back( *currVertex );
prevVertex = currVertex++;
}
// don't forget to add last vertex (loop above
// only deals with n-1 vertices)
if( !bFallbackTaken && (*currVertex)->mnYCounter > 0 )
pAETOther->push_back( *currVertex );
}
std::swap( pAET, pAETOther );
}
if( y >= nClipY1 )
++aScanline.y;
}
}
} // namespace basebmp
#endif /* INCLUDED_BASEBMP_POLYPOLYGONRENDERER_HXX */
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|