1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#ifndef INCLUDED_OOX_HELPER_HELPER_HXX
#define INCLUDED_OOX_HELPER_HELPER_HXX
#include <sal/config.h>
#include <algorithm>
#include <cstring>
#include <limits>
#include <osl/endian.h>
#include <rtl/math.hxx>
#include <rtl/string.hxx>
#include <rtl/textenc.h>
#include <sal/macros.h>
#include <sal/types.h>
#include <tools/color.hxx>
namespace oox {
// Helper macros ==============================================================
/** Expands to the 'index'-th element of a STATIC data array, or to 'def', if
'index' is out of the array limits. */
#define STATIC_ARRAY_SELECT( array, index, def ) \
((static_cast<size_t>(index) < SAL_N_ELEMENTS(array)) ? ((array)[static_cast<size_t>(index)]) : (def))
/** Convert an OUString to an ASCII C string. Use for debug purposes only. */
#define OUSTRING_TO_CSTR( str ) \
OUStringToOString( str, RTL_TEXTENCODING_ASCII_US ).getStr()
// Common constants ===========================================================
const sal_uInt8 WINDOWS_CHARSET_ANSI = 0;
const sal_uInt8 WINDOWS_CHARSET_DEFAULT = 1;
const sal_uInt8 WINDOWS_CHARSET_SYMBOL = 2;
const sal_uInt8 WINDOWS_CHARSET_APPLE_ROMAN = 77;
const sal_uInt8 WINDOWS_CHARSET_SHIFTJIS = 128;
const sal_uInt8 WINDOWS_CHARSET_HANGEUL = 129;
const sal_uInt8 WINDOWS_CHARSET_JOHAB = 130;
const sal_uInt8 WINDOWS_CHARSET_GB2312 = 134;
const sal_uInt8 WINDOWS_CHARSET_BIG5 = 136;
const sal_uInt8 WINDOWS_CHARSET_GREEK = 161;
const sal_uInt8 WINDOWS_CHARSET_TURKISH = 162;
const sal_uInt8 WINDOWS_CHARSET_VIETNAMESE = 163;
const sal_uInt8 WINDOWS_CHARSET_HEBREW = 177;
const sal_uInt8 WINDOWS_CHARSET_ARABIC = 178;
const sal_uInt8 WINDOWS_CHARSET_BALTIC = 186;
const sal_uInt8 WINDOWS_CHARSET_RUSSIAN = 204;
const sal_uInt8 WINDOWS_CHARSET_THAI = 222;
const sal_uInt8 WINDOWS_CHARSET_EASTERN = 238;
const sal_uInt8 WINDOWS_CHARSET_OEM = 255;
const ::Color API_RGB_TRANSPARENT (0xffffffff); ///< Transparent color for API calls.
const sal_uInt32 UNSIGNED_RGB_TRANSPARENT = static_cast<sal_uInt32>(-1); ///< Transparent color for unsigned int32 places.
const ::Color API_RGB_BLACK (0x000000); ///< Black color for API calls.
const ::Color API_RGB_GRAY (0x808080); ///< Gray color for API calls.
const ::Color API_RGB_WHITE (0xFFFFFF); ///< White color for API calls.
const sal_Int16 API_LINE_SOLID = 0;
const sal_Int16 API_LINE_DOTTED = 1;
const sal_Int16 API_LINE_DASHED = 2;
const sal_Int16 API_FINE_LINE_DASHED = 14;
const sal_Int16 API_LINE_NONE = 0;
const sal_Int16 API_LINE_HAIR = 2;
const sal_Int16 API_LINE_THIN = 35;
const sal_Int16 API_LINE_MEDIUM = 88;
const sal_Int16 API_LINE_THICK = 141;
const sal_Int16 API_ESCAPE_NONE = 0; ///< No escapement.
const sal_Int16 API_ESCAPE_SUPERSCRIPT = 101; ///< Superscript: raise characters automatically (magic value 101).
const sal_Int16 API_ESCAPE_SUBSCRIPT = -101; ///< Subscript: lower characters automatically (magic value -101).
const sal_Int8 API_ESCAPEHEIGHT_NONE = 100; ///< Relative character height if not escaped.
const sal_Int8 API_ESCAPEHEIGHT_DEFAULT = 58; ///< Relative character height if escaped.
// Limitate values ------------------------------------------------------------
template< typename ReturnType, typename Type >
inline ReturnType getLimitedValue( Type nValue, Type nMin, Type nMax )
{
return static_cast< ReturnType >( ::std::min( ::std::max( nValue, nMin ), nMax ) );
}
template< typename ReturnType, typename Type >
inline ReturnType getIntervalValue( Type nValue, Type nBegin, Type nEnd )
{
static_assert(::std::numeric_limits< Type >::is_integer, "is integer");
Type nInterval = nEnd - nBegin;
Type nCount = (nValue < nBegin) ? -((nBegin - nValue - 1) / nInterval + 1) : ((nValue - nBegin) / nInterval);
return static_cast< ReturnType >( nValue - nCount * nInterval );
}
template< typename ReturnType >
inline ReturnType getDoubleIntervalValue( double fValue, double fBegin, double fEnd )
{
double fInterval = fEnd - fBegin;
double fCount = (fValue < fBegin) ? -(::rtl::math::approxFloor( (fBegin - fValue - 1.0) / fInterval ) + 1.0) : ::rtl::math::approxFloor( (fValue - fBegin) / fInterval );
return static_cast< ReturnType >( fValue - fCount * fInterval );
}
// Read from bitfields --------------------------------------------------------
/** Returns true, if at least one of the bits set in nMask is set in nBitField. */
template< typename Type >
inline bool getFlag( Type nBitField, Type nMask )
{
return (nBitField & nMask) != 0;
}
/** Returns nSet, if at least one bit of nMask is set in nBitField, otherwise nUnset. */
template< typename ReturnType, typename Type >
inline ReturnType getFlagValue( Type nBitField, Type nMask, ReturnType nSet, ReturnType nUnset )
{
return getFlag( nBitField, nMask ) ? nSet : nUnset;
}
/** Extracts a value from a bit field.
Returns the data fragment from nBitField, that starts at bit nStartBit
(0-based, bit 0 is rightmost) with the width of nBitCount. The returned
value will be right-aligned (normalized).
For instance: extractValue<T>(0x4321,8,4) returns 3 (value in bits 8-11).
*/
template< typename ReturnType, typename Type >
inline ReturnType extractValue( Type nBitField, sal_uInt8 nStartBit, sal_uInt8 nBitCount )
{
sal_uInt64 nMask = 1; nMask <<= nBitCount; --nMask;
return static_cast< ReturnType >( nMask & (nBitField >> nStartBit) );
}
// Write to bitfields ---------------------------------------------------------
/** Sets or clears (according to bSet) all set bits of nMask in ornBitField. */
template< typename Type >
inline void setFlag( Type& ornBitField, Type nMask, bool bSet = true )
{
if( bSet ) ornBitField |= nMask; else ornBitField &= ~nMask;
}
/** Optional value, similar to ::boost::optional<>, with convenience accessors.
*/
template< typename Type >
class OptValue
{
public:
OptValue() : maValue(), mbHasValue( false ) {}
explicit OptValue( const Type& rValue ) : maValue( rValue ), mbHasValue( true ) {}
explicit OptValue( bool bHasValue, const Type& rValue ) : maValue( rValue ), mbHasValue( bHasValue ) {}
bool has() const { return mbHasValue; }
bool operator!() const { return !mbHasValue; }
bool differsFrom( const Type& rValue ) const { return mbHasValue && (maValue != rValue); }
const Type& get() const { return maValue; }
const Type& get( const Type& rDefValue ) const { return mbHasValue ? maValue : rDefValue; }
void set( const Type& rValue ) { maValue = rValue; mbHasValue = true; }
Type& use() { mbHasValue = true; return maValue; }
OptValue& operator=( const Type& rValue ) { set( rValue ); return *this; }
bool operator==( const OptValue& rValue ) const {
return ( ( !mbHasValue && rValue.mbHasValue == false ) ||
( mbHasValue == rValue.mbHasValue && maValue == rValue.maValue ) );
}
void assignIfUsed( const OptValue& rValue ) { if( rValue.mbHasValue ) set( rValue.maValue ); }
private:
Type maValue;
bool mbHasValue;
};
/** Provides platform independent functions to convert from or to little-endian
byte order, e.g. for reading data from or writing data to memory or a
binary stream.
On big-endian platforms, the byte order in the passed values is swapped,
this can be used for converting big-endian to and from little-endian data.
On little-endian platforms, the conversion functions are implemented empty,
thus compilers should completely optimize away the function call.
*/
class ByteOrderConverter
{
public:
#ifdef OSL_BIGENDIAN
static void convertLittleEndian( sal_Int8& ) {} // present for usage in templates
static void convertLittleEndian( sal_uInt8& ) {} // present for usage in templates
static void convertLittleEndian( char16_t& rnValue ) { swap2( reinterpret_cast< sal_uInt8* >( &rnValue ) ); }
static void convertLittleEndian( sal_Int16& rnValue ) { swap2( reinterpret_cast< sal_uInt8* >( &rnValue ) ); }
static void convertLittleEndian( sal_uInt16& rnValue ) { swap2( reinterpret_cast< sal_uInt8* >( &rnValue ) ); }
static void convertLittleEndian( sal_Int32& rnValue ) { swap4( reinterpret_cast< sal_uInt8* >( &rnValue ) ); }
static void convertLittleEndian( sal_uInt32& rnValue ) { swap4( reinterpret_cast< sal_uInt8* >( &rnValue ) ); }
static void convertLittleEndian( sal_Int64& rnValue ) { swap8( reinterpret_cast< sal_uInt8* >( &rnValue ) ); }
static void convertLittleEndian( sal_uInt64& rnValue ) { swap8( reinterpret_cast< sal_uInt8* >( &rnValue ) ); }
static void convertLittleEndian( float& rfValue ) { swap4( reinterpret_cast< sal_uInt8* >( &rfValue ) ); }
static void convertLittleEndian( double& rfValue ) { swap8( reinterpret_cast< sal_uInt8* >( &rfValue ) ); }
template< typename Type >
inline static void convertLittleEndianArray( Type* pnArray, size_t nElemCount );
static void convertLittleEndianArray( sal_Int8*, size_t ) {}
static void convertLittleEndianArray( sal_uInt8*, size_t ) {}
#else
template< typename Type >
static void convertLittleEndian( Type& ) {}
template< typename Type >
static void convertLittleEndianArray( Type*, size_t ) {}
#endif
/** Writes a value to memory, while converting it to little-endian.
@param pDstBuffer The memory buffer to write the value to.
@param nValue The value to be written to memory in little-endian.
*/
template< typename Type >
inline static void writeLittleEndian( void* pDstBuffer, Type nValue );
#ifdef OSL_BIGENDIAN
private:
inline static void swap2( sal_uInt8* pnData );
inline static void swap4( sal_uInt8* pnData );
inline static void swap8( sal_uInt8* pnData );
#endif
};
template< typename Type >
inline void ByteOrderConverter::writeLittleEndian( void* pDstBuffer, Type nValue )
{
convertLittleEndian( nValue );
memcpy( pDstBuffer, &nValue, sizeof( Type ) );
}
#ifdef OSL_BIGENDIAN
template< typename Type >
inline void ByteOrderConverter::convertLittleEndianArray( Type* pnArray, size_t nElemCount )
{
for( Type* pnArrayEnd = pnArray + nElemCount; pnArray != pnArrayEnd; ++pnArray )
convertLittleEndian( *pnArray );
}
inline void ByteOrderConverter::swap2( sal_uInt8* pnData )
{
::std::swap( pnData[ 0 ], pnData[ 1 ] );
}
inline void ByteOrderConverter::swap4( sal_uInt8* pnData )
{
::std::swap( pnData[ 0 ], pnData[ 3 ] );
::std::swap( pnData[ 1 ], pnData[ 2 ] );
}
inline void ByteOrderConverter::swap8( sal_uInt8* pnData )
{
::std::swap( pnData[ 0 ], pnData[ 7 ] );
::std::swap( pnData[ 1 ], pnData[ 6 ] );
::std::swap( pnData[ 2 ], pnData[ 5 ] );
::std::swap( pnData[ 3 ], pnData[ 4 ] );
}
#endif
} // namespace oox
#endif
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|