1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#ifndef INCLUDED_SVX_SVDTRANS_HXX
#define INCLUDED_SVX_SVDTRANS_HXX
#include <rtl/ustring.hxx>
#include <sal/log.hxx>
#include <svx/svxdllapi.h>
#include <tools/fract.hxx>
#include <tools/gen.hxx>
#include <tools/poly.hxx>
#include <vcl/field.hxx>
#include <vcl/mapmod.hxx>
// The DrawingEngine's angles are specified in 1/100th degrees
// We need to convert these angles to radians, in order to be able
// to process them with trigonometric functions.
// This is done, using the constant nPi180.
//
// Example usage:
// nAngle ... is an angle in 1/100 Deg
//
// Which is converted, by this:
// double nSin=sin(nAngle*nPi180);
//
// To convert it back, we use divison.
const double nPi=3.14159265358979323846;
const double nPi180=0.000174532925199432957692222; // If we have too few digits, we get tan(4500*nPi180)!=1.0
// That maximum shear angle
#define SDRMAXSHEAR 8900
class XPolygon;
class XPolyPolygon;
inline long Round(double a) { return a>0.0 ? (long)(a+0.5) : -(long)((-a)+0.5); }
inline void MoveRect(Rectangle& rRect, const Size& S) { rRect.Move(S.Width(),S.Height()); }
inline void MovePoint(Point& rPnt, const Size& S) { rPnt.X()+=S.Width(); rPnt.Y()+=S.Height(); }
inline void MovePoly(Polygon& rPoly, const Size& S) { rPoly.Move(S.Width(),S.Height()); }
inline void MovePoly(tools::PolyPolygon& rPoly, const Size& S) { rPoly.Move(S.Width(),S.Height()); }
void MoveXPoly(XPolygon& rPoly, const Size& S);
SVX_DLLPUBLIC void ResizeRect(Rectangle& rRect, const Point& rRef, const Fraction& xFact, const Fraction& yFact, bool bNoJustify = false);
inline void ResizePoint(Point& rPnt, const Point& rRef, Fraction xFact, Fraction yFact);
void ResizePoly(Polygon& rPoly, const Point& rRef, const Fraction& xFact, const Fraction& yFact);
void ResizeXPoly(XPolygon& rPoly, const Point& rRef, const Fraction& xFact, const Fraction& yFact);
inline void RotatePoint(Point& rPnt, const Point& rRef, double sn, double cs);
SVX_DLLPUBLIC void RotatePoly(Polygon& rPoly, const Point& rRef, double sn, double cs);
void RotateXPoly(XPolygon& rPoly, const Point& rRef, double sn, double cs);
void RotateXPoly(XPolyPolygon& rPoly, const Point& rRef, double sn, double cs);
void MirrorPoint(Point& rPnt, const Point& rRef1, const Point& rRef2);
void MirrorPoly(Polygon& rPoly, const Point& rRef1, const Point& rRef2);
void MirrorXPoly(XPolygon& rPoly, const Point& rRef1, const Point& rRef2);
inline void ShearPoint(Point& rPnt, const Point& rRef, double tn, bool bVShear = false);
SVX_DLLPUBLIC void ShearPoly(Polygon& rPoly, const Point& rRef, double tn, bool bVShear = false);
void ShearXPoly(XPolygon& rPoly, const Point& rRef, double tn, bool bVShear = false);
/**
* rPnt.X/rPnt.Y is set to rCenter.X or rCenter.Y!
* We then only need to rotate rPnt by rCenter.
*
* @return the returned angle is in rad
*/
inline double GetCrookAngle(Point& rPnt, const Point& rCenter, const Point& rRad, bool bVertical);
/**
* The following methods accept a point of an XPolygon, whereas the neighbouring
* control points of the actual point are passed in pC1/pC2.
* Via rSin/rCos, sin(nAngle) and cos(nAngle) are returned.
*
* @return the returned angle is in rad
*/
double CrookRotateXPoint(Point& rPnt, Point* pC1, Point* pC2, const Point& rCenter,
const Point& rRad, double& rSin, double& rCos, bool bVert);
double CrookSlantXPoint(Point& rPnt, Point* pC1, Point* pC2, const Point& rCenter,
const Point& rRad, double& rSin, double& rCos, bool bVert);
double CrookStretchXPoint(Point& rPnt, Point* pC1, Point* pC2, const Point& rCenter,
const Point& rRad, double& rSin, double& rCos, bool bVert,
const Rectangle& rRefRect);
void CrookRotatePoly(XPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert);
void CrookSlantPoly(XPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert);
void CrookStretchPoly(XPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert, const Rectangle& rRefRect);
void CrookRotatePoly(XPolyPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert);
void CrookSlantPoly(XPolyPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert);
void CrookStretchPoly(XPolyPolygon& rPoly, const Point& rCenter, const Point& rRad, bool bVert, const Rectangle& rRefRect);
/**************************************************************************************************/
/* Inline */
/**************************************************************************************************/
inline void ResizePoint(Point& rPnt, const Point& rRef, Fraction xFact, Fraction yFact)
{
if (!xFact.IsValid()) {
SAL_WARN( "svx.svdraw", "invalid fraction xFact, using Fraction(1,1)" );
xFact = Fraction(1,1);
}
if (!yFact.IsValid()) {
SAL_WARN( "svx.svdraw", "invalid fraction yFact, using Fraction(1,1)" );
yFact = Fraction(1,1);
}
rPnt.X() = rRef.X() + Round( (rPnt.X() - rRef.X()) * double(xFact) );
rPnt.Y() = rRef.Y() + Round( (rPnt.Y() - rRef.Y()) * double(yFact) );
}
inline void RotatePoint(Point& rPnt, const Point& rRef, double sn, double cs)
{
long dx=rPnt.X()-rRef.X();
long dy=rPnt.Y()-rRef.Y();
rPnt.X()=Round(rRef.X()+dx*cs+dy*sn);
rPnt.Y()=Round(rRef.Y()+dy*cs-dx*sn);
}
inline void ShearPoint(Point& rPnt, const Point& rRef, double tn, bool bVShear)
{
if (!bVShear) { // Horizontal
if (rPnt.Y()!=rRef.Y()) { // sonst nicht noetig
rPnt.X()-=Round((rPnt.Y()-rRef.Y())*tn);
}
} else { // or else vertical
if (rPnt.X()!=rRef.X()) { // else not needed
rPnt.Y()-=Round((rPnt.X()-rRef.X())*tn);
}
}
}
inline double GetCrookAngle(Point& rPnt, const Point& rCenter, const Point& rRad, bool bVertical)
{
double nAngle;
if (bVertical) {
long dy=rPnt.Y()-rCenter.Y();
nAngle=(double)dy/(double)rRad.Y();
rPnt.Y()=rCenter.Y();
} else {
long dx=rCenter.X()-rPnt.X();
nAngle=(double)dx/(double)rRad.X();
rPnt.X()=rCenter.X();
}
return nAngle;
}
/**************************************************************************************************/
/**************************************************************************************************/
/**
* The Y axis points down!
* The function negates the Y axis, when calculating the angle, such
* that GetAngle(Point(0,-1))=90 deg.
* GetAngle(Point(0,0)) returns 0.
*
* @return the returned value is in the range of -180.00..179.99 deg
* and is in 1/100 deg units
*/
SVX_DLLPUBLIC long GetAngle(const Point& rPnt);
long NormAngle180(long a); /// Normalize angle to -180.00..179.99
SVX_DLLPUBLIC long NormAngle360(long a); /// Normalize angle to 0.00..359.99
sal_uInt16 GetAngleSector(long nAngle); /// Determine sector within the cartesian coordinate system
/**
* Calculates the length of (0,0) via a^2 + b^2 = c^2
* In order to avoid overflows, we ignore some decimal places.
*/
long GetLen(const Point& rPnt);
/**
* The transformation of a rectangle into a polygon, by
* using angle parameters from GeoStat. ------------
* The point of reference is always the Point 0, meaning /1 2/
* the upper left corner of the initial rectangle. / /
* When calculating the polygon, the order is first / /
* shear and then the rotation. / /
* / / \
* / / |
* A) Inital rectangle aRect B) After applying Shear /0 3/ Rot|
* +------------------+ -------------------- ------------------
* |0 1| \0 1\ C) After applying Rotate
* | | \ \
* | | | \ \
* |3 2| | \3 2\
* +------------------+ | --------------------
* |Shr
*
* When converting the polygon back into a rect, the order is necessarily the
* other way around:
* - Calculating the rotation angle: angle of the line 0-1 in figure C) to the horizontal
* - Turning the sheared rect back (we get figure B)
* - Determining the width of the rect = length of the line 0-1 in figure B)
* - Determining the height of the rect = vertical distance between the points 0 and 3
* of figure B)
* - Determining the shear angle from the line 0-3 to the perpendicular line.
*
* We need to keep in mind that the polygon can be mirrored when it was
* transformed in the mean time (e.g. mirror or resize with negative factor).
* In that case, we first need to normalize, by swapping points (0 with 3 and 1
* with 2), so that it has the right orientation.
*
* Note: a positive shear angle means a shear with a positive visible curvature
* on the screen. Mathematically, that would be a negative curvature, as the
* Y axis runs from top to bottom on the screen.
* Rotation angle: positive means a visible left rotation.
*/
class GeoStat { // Geometric state for a rect
public:
long nRotationAngle;
long nShearAngle;
double nTan; // tan(nShearAngle)
double nSin; // sin(nRotationAngle)
double nCos; // cos(nRotationAngle)
bool bMirrored; // Horizontally mirrored? (ni)
public:
GeoStat(): nRotationAngle(0),nShearAngle(0),nTan(0.0),nSin(0.0),nCos(1.0),bMirrored(false) {}
void RecalcSinCos();
void RecalcTan();
};
Polygon Rect2Poly(const Rectangle& rRect, const GeoStat& rGeo);
void Poly2Rect(const Polygon& rPol, Rectangle& rRect, GeoStat& rGeo);
SVX_DLLPUBLIC void OrthoDistance8(const Point& rPt0, Point& rPt, bool bBigOrtho);
SVX_DLLPUBLIC void OrthoDistance4(const Point& rPt0, Point& rPt, bool bBigOrtho);
// Multiplication and subsequent division
// Calculation and intermediate values are in BigInt
SVX_DLLPUBLIC long BigMulDiv(long nVal, long nMul, long nDiv);
class FrPair {
Fraction aX;
Fraction aY;
public:
FrPair() : aX(0,1),aY(0,1) {}
FrPair(const Fraction& rBoth) : aX(rBoth),aY(rBoth) {}
FrPair(const Fraction& rX, const Fraction& rY) : aX(rX),aY(rY) {}
FrPair(long nMul, long nDiv) : aX(nMul,nDiv),aY(nMul,nDiv) {}
FrPair(long xMul, long xDiv, long yMul, long yDiv): aX(xMul,xDiv),aY(yMul,yDiv) {}
const Fraction& X() const { return aX; }
const Fraction& Y() const { return aY; }
Fraction& X() { return aX; }
Fraction& Y() { return aY; }
};
// To convert units of measurement
SVX_DLLPUBLIC FrPair GetMapFactor(MapUnit eS, MapUnit eD);
FrPair GetMapFactor(FieldUnit eS, FieldUnit eD);
inline bool IsMetric(MapUnit eU) {
return (eU==MAP_100TH_MM || eU==MAP_10TH_MM || eU==MAP_MM || eU==MAP_CM);
}
inline bool IsInch(MapUnit eU) {
return (eU==MAP_1000TH_INCH || eU==MAP_100TH_INCH || eU==MAP_10TH_INCH || eU==MAP_INCH ||
eU==MAP_POINT || eU==MAP_TWIP);
}
inline bool IsMetric(FieldUnit eU) {
return (eU==FUNIT_MM || eU==FUNIT_CM || eU==FUNIT_M || eU==FUNIT_KM || eU==FUNIT_100TH_MM);
}
inline bool IsInch(FieldUnit eU) {
return (eU==FUNIT_TWIP || eU==FUNIT_POINT || eU==FUNIT_PICA ||
eU==FUNIT_INCH || eU==FUNIT_FOOT || eU==FUNIT_MILE);
}
class SVX_DLLPUBLIC SdrFormatter {
long nMul_;
long nDiv_;
short nKomma_;
bool bSrcFU;
bool bDstFU;
bool bDirty;
MapUnit eSrcMU;
MapUnit eDstMU;
FieldUnit eSrcFU;
FieldUnit eDstFU;
private:
SVX_DLLPRIVATE void Undirty();
SVX_DLLPRIVATE void ForceUndirty() const { if (bDirty) const_cast<SdrFormatter*>(this)->Undirty(); }
public:
SdrFormatter(MapUnit eSrc, MapUnit eDst)
: nMul_(0)
, nDiv_(0)
, nKomma_(0)
, bSrcFU(false)
, bDstFU(false)
, bDirty(true)
, eSrcMU(eSrc)
, eDstMU(eDst)
, eSrcFU(FUNIT_NONE)
, eDstFU(FUNIT_NONE)
{
}
SdrFormatter(MapUnit eSrc, FieldUnit eDst) { eSrcMU=eSrc; bSrcFU=false; eDstFU=eDst; bDstFU=true; bDirty=true; }
SdrFormatter(FieldUnit eSrc, MapUnit eDst) { eSrcFU=eSrc; bSrcFU=true; eDstMU=eDst; bDstFU=false; bDirty=true; }
SdrFormatter(FieldUnit eSrc, FieldUnit eDst) { eSrcFU=eSrc; bSrcFU=true; eDstFU=eDst; bDstFU=true; bDirty=true; }
void TakeStr(long nVal, OUString& rStr) const;
static void TakeUnitStr(MapUnit eUnit, OUString& rStr);
static void TakeUnitStr(FieldUnit eUnit, OUString& rStr);
static OUString GetUnitStr(FieldUnit eUnit) { OUString aStr; TakeUnitStr(eUnit,aStr); return aStr; }
};
#endif // INCLUDED_SVX_SVDTRANS_HXX
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|