1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#ifndef INCLUDED_TOOLS_SOLAR_H
#define INCLUDED_TOOLS_SOLAR_H
#include <sal/types.h>
#include <osl/endian.h>
#include <algorithm>
/** Intermediate type to solve type clash with Windows headers.
Should be removed as soon as all code parts have been reviewed
and the correct type is known. Most of the times ULONG is meant
to be a 32-Bit unsigned integer type as sal_uInt32 is often
used for data exchange or for similar method args. */
typedef sal_uIntPtr sal_uLong; /* Replaces type ULONG */
// misc. macros to leverage platform and compiler differences
// solar binary types
/* Solar (portable) Binary (exchange) Type; OSI 6 subset
always little endian;
not necessarily aligned */
typedef sal_uInt8 SVBT16[2];
typedef sal_uInt8 SVBT32[4];
typedef sal_uInt8 SVBT64[8];
inline sal_uInt16 SVBT16ToUInt16( const SVBT16 p ) { return static_cast<sal_uInt16>
(static_cast<sal_uInt16>(p[0])
+ (static_cast<sal_uInt16>(p[1]) << 8)); }
inline sal_Int16 SVBT16ToInt16( const SVBT16 p ) { return sal_Int16(SVBT16ToUInt16(p)); }
inline sal_uInt32 SVBT32ToUInt32 ( const SVBT32 p ) { return static_cast<sal_uInt32>
(static_cast<sal_uInt32>(p[0])
+ (static_cast<sal_uInt32>(p[1]) << 8)
+ (static_cast<sal_uInt32>(p[2]) << 16)
+ (static_cast<sal_uInt32>(p[3]) << 24)); }
inline double SVBT64ToDouble( const SVBT64 p )
{
double n;
#if defined OSL_LITENDIAN
std::copy(p, p + 8, reinterpret_cast<sal_uInt8*>(&n));
#else
std::reverse_copy(p, p + 8, reinterpret_cast<sal_uInt8*>(&n));
#endif
return n;
}
inline void ShortToSVBT16( sal_uInt16 n, SVBT16 p )
{
p[0] = static_cast<sal_uInt8>(n);
p[1] = static_cast<sal_uInt8>(n >> 8);
}
inline void UInt32ToSVBT32 ( sal_uInt32 n, SVBT32 p )
{
p[0] = static_cast<sal_uInt8>(n);
p[1] = static_cast<sal_uInt8>(n >> 8);
p[2] = static_cast<sal_uInt8>(n >> 16);
p[3] = static_cast<sal_uInt8>(n >> 24);
}
inline void Int32ToSVBT32 ( sal_Int32 n, SVBT32 p ) { UInt32ToSVBT32(sal_uInt32(n), p); }
inline void DoubleToSVBT64( double n, SVBT64 p )
{
#if defined OSL_LITENDIAN
std::copy(reinterpret_cast<sal_uInt8*>(&n), reinterpret_cast<sal_uInt8*>(&n) + 8, p);
#else
std::reverse_copy(reinterpret_cast<sal_uInt8*>(&n), reinterpret_cast<sal_uInt8*>(&n) + 8, p);
#endif
}
#endif
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|