1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
*/
#include <oox/crypto/Standard2007Engine.hxx>
#include <oox/crypto/CryptTools.hxx>
#include <oox/helper/binaryinputstream.hxx>
#include <oox/helper/binaryoutputstream.hxx>
#include <rtl/digest.h>
#include <rtl/random.h>
#include <comphelper/hash.hxx>
namespace oox {
namespace core {
/* =========================================================================== */
/* Kudos to Caolan McNamara who provided the core decryption implementations. */
/* =========================================================================== */
namespace
{
void lclRandomGenerateValues(sal_uInt8* aArray, sal_uInt32 aSize)
{
rtlRandomPool aRandomPool = rtl_random_createPool();
rtl_random_getBytes(aRandomPool, aArray, aSize);
rtl_random_destroyPool(aRandomPool);
}
static const OUString lclCspName = "Microsoft Enhanced RSA and AES Cryptographic Provider";
constexpr const sal_uInt32 AES128Size = 16;
} // end anonymous namespace
bool Standard2007Engine::generateVerifier()
{
// only support key of size 128 bit (16 byte)
if (mKey.size() != 16)
return false;
std::vector<sal_uInt8> verifier(msfilter::ENCRYPTED_VERIFIER_LENGTH);
std::vector<sal_uInt8> encryptedVerifier(msfilter::ENCRYPTED_VERIFIER_LENGTH);
lclRandomGenerateValues(verifier.data(), verifier.size());
std::vector<sal_uInt8> iv;
Encrypt aEncryptorVerifier(mKey, iv, Crypto::AES_128_ECB);
if (aEncryptorVerifier.update(encryptedVerifier, verifier) != msfilter::ENCRYPTED_VERIFIER_LENGTH)
return false;
std::copy(encryptedVerifier.begin(), encryptedVerifier.end(), mInfo.verifier.encryptedVerifier);
mInfo.verifier.encryptedVerifierHashSize = msfilter::SHA1_HASH_LENGTH;
std::vector<sal_uInt8> hash = comphelper::Hash::calculateHash(verifier.data(), verifier.size(), comphelper::HashType::SHA1);
hash.resize(msfilter::SHA256_HASH_LENGTH, 0);
std::vector<sal_uInt8> encryptedHash(msfilter::SHA256_HASH_LENGTH, 0);
Encrypt aEncryptorHash(mKey, iv, Crypto::AES_128_ECB);
aEncryptorHash.update(encryptedHash, hash, hash.size());
std::copy(encryptedHash.begin(), encryptedHash.end(), mInfo.verifier.encryptedVerifierHash);
return true;
}
bool Standard2007Engine::calculateEncryptionKey(const OUString& rPassword)
{
sal_uInt32 saltSize = mInfo.verifier.saltSize;
sal_uInt32 passwordByteLength = rPassword.getLength() * 2;
const sal_uInt8* saltArray = mInfo.verifier.salt;
// Prepare initial data -> salt + password (in 16-bit chars)
std::vector<sal_uInt8> initialData(saltSize + passwordByteLength);
std::copy(saltArray, saltArray + saltSize, initialData.begin());
const sal_uInt8* passwordByteArray = reinterpret_cast<const sal_uInt8*>(rPassword.getStr());
std::copy(
passwordByteArray,
passwordByteArray + passwordByteLength,
initialData.begin() + saltSize);
// use "hash" vector for result of sha1 hashing
// calculate SHA1 hash of initialData
std::vector<sal_uInt8> hash = comphelper::Hash::calculateHash(initialData.data(), initialData.size(), comphelper::HashType::SHA1);
// data = iterator (4bytes) + hash
std::vector<sal_uInt8> data(msfilter::SHA1_HASH_LENGTH + 4, 0);
for (sal_Int32 i = 0; i < 50000; ++i)
{
ByteOrderConverter::writeLittleEndian(data.data(), i);
std::copy(hash.begin(), hash.end(), data.begin() + 4);
hash = comphelper::Hash::calculateHash(data.data(), data.size(), comphelper::HashType::SHA1);
}
std::copy(hash.begin(), hash.end(), data.begin() );
std::fill(data.begin() + msfilter::SHA1_HASH_LENGTH, data.end(), 0 );
hash = comphelper::Hash::calculateHash(data.data(), data.size(), comphelper::HashType::SHA1);
// derive key
std::vector<sal_uInt8> buffer(64, 0x36);
for (size_t i = 0; i < hash.size(); ++i)
buffer[i] ^= hash[i];
hash = comphelper::Hash::calculateHash(buffer.data(), buffer.size(), comphelper::HashType::SHA1);
if (mKey.size() > hash.size())
return false;
std::copy(hash.begin(), hash.begin() + mKey.size(), mKey.begin());
return true;
}
bool Standard2007Engine::generateEncryptionKey(const OUString& password)
{
mKey.clear();
/*
KeySize (4 bytes): An unsigned integer that specifies the number of bits in the encryption key.
MUST be a multiple of 8. MUST be one of the values in the following table:
Algorithm Value Comment
Any 0x00000000 Determined by Flags
RC4 0x00000028 – 0x00000080 (inclusive) 8-bit increments.
AES 0x00000080, 0x000000C0, 0x00000100 128, 192 or 256-bit
*/
if (mInfo.header.keyBits > 8192) // should we strictly enforce the above 256 bit limit ?
return false;
mKey.resize(mInfo.header.keyBits / 8, 0);
if (mKey.empty())
return false;
calculateEncryptionKey(password);
std::vector<sal_uInt8> encryptedVerifier(msfilter::ENCRYPTED_VERIFIER_LENGTH);
std::copy(
mInfo.verifier.encryptedVerifier,
mInfo.verifier.encryptedVerifier + msfilter::ENCRYPTED_VERIFIER_LENGTH,
encryptedVerifier.begin());
std::vector<sal_uInt8> encryptedHash(msfilter::SHA256_HASH_LENGTH);
std::copy(
mInfo.verifier.encryptedVerifierHash,
mInfo.verifier.encryptedVerifierHash + msfilter::SHA256_HASH_LENGTH,
encryptedHash.begin());
std::vector<sal_uInt8> verifier(encryptedVerifier.size(), 0);
Decrypt::aes128ecb(verifier, encryptedVerifier, mKey);
std::vector<sal_uInt8> verifierHash(encryptedHash.size(), 0);
Decrypt::aes128ecb(verifierHash, encryptedHash, mKey);
std::vector<sal_uInt8> hash = comphelper::Hash::calculateHash(verifier.data(), verifier.size(), comphelper::HashType::SHA1);
return std::equal(hash.begin(), hash.end(), verifierHash.begin());
}
bool Standard2007Engine::decrypt(BinaryXInputStream& aInputStream,
BinaryXOutputStream& aOutputStream)
{
sal_uInt32 totalSize = aInputStream.readuInt32(); // Document unencrypted size - 4 bytes
aInputStream.skip(4); // Reserved 4 Bytes
std::vector<sal_uInt8> iv;
Decrypt aDecryptor(mKey, iv, Crypto::AES_128_ECB);
std::vector<sal_uInt8> inputBuffer (4096);
std::vector<sal_uInt8> outputBuffer(4096);
sal_uInt32 inputLength;
sal_uInt32 outputLength;
sal_uInt32 remaining = totalSize;
while ((inputLength = aInputStream.readMemory(inputBuffer.data(), inputBuffer.size())) > 0)
{
outputLength = aDecryptor.update(outputBuffer, inputBuffer, inputLength);
sal_uInt32 writeLength = std::min(outputLength, remaining);
aOutputStream.writeMemory(outputBuffer.data(), writeLength);
remaining -= outputLength;
}
return true;
}
bool Standard2007Engine::checkDataIntegrity()
{
return true;
}
bool Standard2007Engine::setupEncryption(OUString const & password)
{
mInfo.header.flags = msfilter::ENCRYPTINFO_AES | msfilter::ENCRYPTINFO_CRYPTOAPI;
mInfo.header.algId = msfilter::ENCRYPT_ALGO_AES128;
mInfo.header.algIdHash = msfilter::ENCRYPT_HASH_SHA1;
mInfo.header.keyBits = msfilter::ENCRYPT_KEY_SIZE_AES_128;
mInfo.header.providedType = msfilter::ENCRYPT_PROVIDER_TYPE_AES;
lclRandomGenerateValues(mInfo.verifier.salt, mInfo.verifier.saltSize);
const sal_Int32 keyLength = mInfo.header.keyBits / 8;
mKey.clear();
mKey.resize(keyLength, 0);
if (!calculateEncryptionKey(password))
return false;
if (!generateVerifier())
return false;
return true;
}
void Standard2007Engine::writeEncryptionInfo(BinaryXOutputStream& rStream)
{
rStream.WriteUInt32(msfilter::VERSION_INFO_2007_FORMAT);
sal_uInt32 cspNameSize = (lclCspName.getLength() * 2) + 2;
sal_uInt32 encryptionHeaderSize = static_cast<sal_uInt32>(sizeof(msfilter::EncryptionStandardHeader));
rStream.WriteUInt32(mInfo.header.flags);
sal_uInt32 headerSize = encryptionHeaderSize + cspNameSize;
rStream.WriteUInt32(headerSize);
rStream.writeMemory(&mInfo.header, encryptionHeaderSize);
rStream.writeUnicodeArray(lclCspName);
rStream.WriteUInt16(0);
rStream.writeMemory(&mInfo.verifier, sizeof(msfilter::EncryptionVerifierAES));
}
void Standard2007Engine::encrypt(css::uno::Reference<css::io::XInputStream> & rxInputStream,
css::uno::Reference<css::io::XOutputStream> & rxOutputStream,
sal_uInt32 nSize)
{
if (mKey.empty())
return;
BinaryXOutputStream aBinaryOutputStream(rxOutputStream, false);
BinaryXInputStream aBinaryInputStream(rxInputStream, false);
aBinaryOutputStream.WriteUInt32(nSize); // size
aBinaryOutputStream.WriteUInt32(0U); // reserved
std::vector<sal_uInt8> inputBuffer(1024);
std::vector<sal_uInt8> outputBuffer(1024);
sal_uInt32 inputLength;
sal_uInt32 outputLength;
std::vector<sal_uInt8> iv;
Encrypt aEncryptor(mKey, iv, Crypto::AES_128_ECB);
while ((inputLength = aBinaryInputStream.readMemory(inputBuffer.data(), inputBuffer.size())) > 0)
{
// increase size to multiple of 16 (size of mKey) if necessary
inputLength = inputLength % AES128Size == 0 ?
inputLength : roundUp(inputLength, AES128Size);
outputLength = aEncryptor.update(outputBuffer, inputBuffer, inputLength);
aBinaryOutputStream.writeMemory(outputBuffer.data(), outputLength);
}
}
bool Standard2007Engine::readEncryptionInfo(css::uno::Reference<css::io::XInputStream> & rxInputStream)
{
BinaryXInputStream aBinaryStream(rxInputStream, false);
mInfo.header.flags = aBinaryStream.readuInt32();
if (getFlag(mInfo.header.flags, msfilter::ENCRYPTINFO_EXTERNAL))
return false;
sal_uInt32 nHeaderSize = aBinaryStream.readuInt32();
sal_uInt32 actualHeaderSize = sizeof(mInfo.header);
if (nHeaderSize < actualHeaderSize)
return false;
mInfo.header.flags = aBinaryStream.readuInt32();
mInfo.header.sizeExtra = aBinaryStream.readuInt32();
mInfo.header.algId = aBinaryStream.readuInt32();
mInfo.header.algIdHash = aBinaryStream.readuInt32();
mInfo.header.keyBits = aBinaryStream.readuInt32();
mInfo.header.providedType = aBinaryStream.readuInt32();
mInfo.header.reserved1 = aBinaryStream.readuInt32();
mInfo.header.reserved2 = aBinaryStream.readuInt32();
aBinaryStream.skip(nHeaderSize - actualHeaderSize);
mInfo.verifier.saltSize = aBinaryStream.readuInt32();
aBinaryStream.readArray(mInfo.verifier.salt, SAL_N_ELEMENTS(mInfo.verifier.salt));
aBinaryStream.readArray(mInfo.verifier.encryptedVerifier, SAL_N_ELEMENTS(mInfo.verifier.encryptedVerifier));
mInfo.verifier.encryptedVerifierHashSize = aBinaryStream.readuInt32();
aBinaryStream.readArray(mInfo.verifier.encryptedVerifierHash, SAL_N_ELEMENTS(mInfo.verifier.encryptedVerifierHash));
if (mInfo.verifier.saltSize != 16)
return false;
// check flags and algorithm IDs, required are AES128 and SHA-1
if (!getFlag(mInfo.header.flags, msfilter::ENCRYPTINFO_CRYPTOAPI))
return false;
if (!getFlag(mInfo.header.flags, msfilter::ENCRYPTINFO_AES))
return false;
// algorithm ID 0 defaults to AES128 too, if ENCRYPTINFO_AES flag is set
if (mInfo.header.algId != 0 && mInfo.header.algId != msfilter::ENCRYPT_ALGO_AES128)
return false;
// hash algorithm ID 0 defaults to SHA-1 too
if (mInfo.header.algIdHash != 0 && mInfo.header.algIdHash != msfilter::ENCRYPT_HASH_SHA1)
return false;
if (mInfo.verifier.encryptedVerifierHashSize != 20)
return false;
return !aBinaryStream.isEof();
}
} // namespace core
} // namespace oox
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|