1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
#include "XBufferedThreadedStream.hxx"
using namespace css::uno;
namespace {
class UnzippingThread: public salhelper::Thread
{
XBufferedThreadedStream &mxStream;
public:
explicit UnzippingThread(XBufferedThreadedStream &xStream): Thread("Unzipping"), mxStream(xStream) {}
private:
virtual void execute() override
{
try
{
mxStream.produce();
}
catch (...)
{
mxStream.saveException(std::current_exception());
}
mxStream.setTerminateThread();
}
};
}
XBufferedThreadedStream::XBufferedThreadedStream(
const Reference<XInputStream>& xSrcStream,
sal_Int64 nStreamSize)
: mxSrcStream( xSrcStream )
, mnPos(0)
, mnStreamSize( nStreamSize )
, mnOffset( 0 )
, mxUnzippingThread( new UnzippingThread(*this) )
, mbTerminateThread( false )
{
mxUnzippingThread->launch();
}
XBufferedThreadedStream::~XBufferedThreadedStream()
{
setTerminateThread();
mxUnzippingThread->join();
}
/**
* Reads from UnbufferedStream in a separate thread and stores the buffer blocks
* in maPendingBuffers queue for further use.
*/
void XBufferedThreadedStream::produce()
{
Buffer pProducedBuffer;
sal_Int64 nTotalBytesRead(0);
std::unique_lock<std::mutex> aGuard( maBufferProtector );
do
{
if( !maUsedBuffers.empty() )
{
pProducedBuffer = maUsedBuffers.front();
maUsedBuffers.pop();
}
aGuard.unlock();
nTotalBytesRead += mxSrcStream->readBytes( pProducedBuffer, nBufferSize );
aGuard.lock();
maPendingBuffers.push( pProducedBuffer );
maBufferConsumeResume.notify_one();
if (!mbTerminateThread)
maBufferProduceResume.wait( aGuard, [&]{return canProduce(); } );
} while( !mbTerminateThread && nTotalBytesRead < mnStreamSize );
}
/**
* Fetches next available block from maPendingBuffers for use in Reading thread.
*/
const Buffer& XBufferedThreadedStream::getNextBlock()
{
std::unique_lock<std::mutex> aGuard( maBufferProtector );
const sal_Int32 nBufSize = maInUseBuffer.getLength();
if( nBufSize <= 0 || mnOffset >= nBufSize )
{
if( mnOffset >= nBufSize )
maUsedBuffers.push( maInUseBuffer );
maBufferConsumeResume.wait( aGuard, [&]{return canConsume(); } );
if( maPendingBuffers.empty() )
{
maInUseBuffer = Buffer();
if (maSavedException)
std::rethrow_exception(maSavedException);
}
else
{
maInUseBuffer = maPendingBuffers.front();
maPendingBuffers.pop();
mnOffset = 0;
if( maPendingBuffers.size() <= nBufferLowWater )
maBufferProduceResume.notify_one();
}
}
return maInUseBuffer;
}
void XBufferedThreadedStream::setTerminateThread()
{
std::scoped_lock<std::mutex> aGuard( maBufferProtector );
mbTerminateThread = true;
maBufferProduceResume.notify_one();
maBufferConsumeResume.notify_one();
}
sal_Int32 SAL_CALL XBufferedThreadedStream::readBytes( Sequence< sal_Int8 >& rData, sal_Int32 nBytesToRead )
{
if( !hasBytes() )
return 0;
const sal_Int32 nAvailableSize = static_cast< sal_Int32 > ( std::min< sal_Int64 >( nBytesToRead, remainingSize() ) );
rData.realloc( nAvailableSize );
auto pData = rData.getArray();
sal_Int32 i = 0, nPendingBytes = nAvailableSize;
while( nPendingBytes )
{
const Buffer &pBuffer = getNextBlock();
if( !pBuffer.hasElements() )
{
rData.realloc( nAvailableSize - nPendingBytes );
return nAvailableSize - nPendingBytes;
}
const sal_Int32 limit = std::min<sal_Int32>( nPendingBytes, pBuffer.getLength() - mnOffset );
memcpy( &pData[i], &pBuffer[mnOffset], limit );
nPendingBytes -= limit;
mnOffset += limit;
mnPos += limit;
i += limit;
}
return nAvailableSize;
}
sal_Int32 XBufferedThreadedStream::readSomeBytes( sal_Int8* pData, sal_Int32 nBytesToRead )
{
if( !hasBytes() )
return 0;
const sal_Int32 nAvailableSize = static_cast< sal_Int32 > ( std::min< sal_Int64 >( nBytesToRead, remainingSize() ) );
sal_Int32 i = 0, nPendingBytes = nAvailableSize;
while( nPendingBytes )
{
const Buffer &pBuffer = getNextBlock();
if( !pBuffer.hasElements() )
return nAvailableSize - nPendingBytes;
const sal_Int32 limit = std::min<sal_Int32>( nPendingBytes, pBuffer.getLength() - mnOffset );
memcpy( &pData[i], &pBuffer[mnOffset], limit );
nPendingBytes -= limit;
mnOffset += limit;
mnPos += limit;
i += limit;
}
return nAvailableSize;
}
sal_Int32 SAL_CALL XBufferedThreadedStream::readSomeBytes( Sequence< sal_Int8 >& aData, sal_Int32 nMaxBytesToRead )
{
return readBytes( aData, nMaxBytesToRead );
}
void SAL_CALL XBufferedThreadedStream::skipBytes( sal_Int32 nBytesToSkip )
{
if( nBytesToSkip )
{
Sequence < sal_Int8 > aSequence( nBytesToSkip );
readBytes( aSequence, nBytesToSkip );
}
}
sal_Int32 SAL_CALL XBufferedThreadedStream::available()
{
if( !hasBytes() )
return 0;
return static_cast< sal_Int32 > ( std::min< sal_Int64 >( SAL_MAX_INT32, remainingSize() ) );
}
void SAL_CALL XBufferedThreadedStream::closeInput()
{
setTerminateThread();
mxUnzippingThread->join();
mxSrcStream->closeInput();
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|