1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
|
/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2000, 2010 Oracle and/or its affiliates.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
/* Extended regular expression matching and search library,
version 0.12.
(Implements POSIX draft P1003.2/D11.2, except for some of the
internationalization features.)
Copyright (C) 1993, 94, 95, 96, 97, 98, 99 Free Software Foundation, Inc.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/*
Modified for OpenOffice.org to use sal_Unicode and Transliteration service.
*/
#include <regexp/reclass.hxx>
#if 0
/* If for any reason (porting, debug) we can't use alloca() use malloc()
instead. Use alloca() if possible for performance reasons, this _is_
significant, with malloc() the re_match2() method makes heavy use of regexps
through the TextSearch interface up to three times slower. This is _the_
bottleneck in some spreadsheet documents. */
#define REGEX_MALLOC
#endif
/* AIX requires this to be the first thing in the file. */
#if defined _AIX && !defined REGEX_MALLOC
#pragma alloca
#endif
#include <string.h>
#include <assert.h>
#include <rtl/ustring.hxx>
#include <com/sun/star/i18n/TransliterationModules.hpp>
/* Maximum number of duplicates an interval can allow. Some systems
(erroneously) define this in other header files, but we want our
value, so remove any previous define. */
#ifdef RE_DUP_MAX
# undef RE_DUP_MAX
#endif
/* If sizeof(int) == 2, then ((1 << 15) - 1) overflows. */
#define RE_DUP_MAX (0x7fff)
/* If `regs_allocated' is REGS_UNALLOCATED in the pattern buffer,
`re_match_2' returns information about at least this many registers
the first time a `regs' structure is passed. */
#ifndef RE_NREGS
# define RE_NREGS 30
#endif
// Macros
#define INIT_COMPILE_STACK_SIZE 32
#define INIT_BUF_SIZE ((1 << BYTEWIDTH)/BYTEWIDTH)
#define MAX_BUF_SIZE 65535L
#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
/* Since we have one byte reserved for the register number argument to
{start,stop}_memory, the maximum number of groups we can report
things about is what fits in that byte. */
#define MAX_REGNUM 255
#define MIN(x, y) ( (x) < (y) ? (x) : (y) )
#define MAX(x, y) ( (x) > (y) ? (x) : (y) )
// Always. We're not in Emacs and don't use relocating allocators.
#define MATCH_MAY_ALLOCATE
/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
use `alloca' instead of `malloc'. This is because malloc is slower and
causes storage fragmentation. On the other hand, malloc is more portable,
and easier to debug.
Because we sometimes use alloca, some routines have to be macros,
not functions -- `alloca'-allocated space disappears at the end of the
function it is called in. */
#ifdef REGEX_MALLOC
# define REGEX_ALLOCATE malloc
# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
# define REGEX_FREE free
#else /* not REGEX_MALLOC */
/* Emacs already defines alloca, sometimes. So does MSDEV. */
# ifndef alloca
/* Make alloca work the best possible way. */
# ifdef __GNUC__
# define alloca __builtin_alloca
# else /* not __GNUC__ */
# include <sal/alloca.h>
# endif /* not __GNUC__ */
# endif /* not alloca */
# define REGEX_ALLOCATE alloca
/* Assumes a `char *destination' variable. */
# define REGEX_REALLOCATE(source, osize, nsize) \
(destination = (char *) alloca (nsize), \
memcpy (destination, source, osize))
/* No need to do anything to free, after alloca. */
# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
#endif /* not REGEX_MALLOC */
/* Define how to allocate the failure stack. */
#ifdef REGEX_MALLOC
# define REGEX_ALLOCATE_STACK malloc
# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
# define REGEX_FREE_STACK free
#else /* not REGEX_MALLOC */
# define REGEX_ALLOCATE_STACK alloca
# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
REGEX_REALLOCATE (source, osize, nsize)
/* No need to explicitly free anything. */
# define REGEX_FREE_STACK(arg)
#endif /* not REGEX_MALLOC */
/* (Re)Allocate N items of type T using malloc, or fail. */
#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
#define RETALLOC_IF(addr, n, t) \
if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
#define BYTEWIDTH 16 /* In bits (assuming sizeof(sal_Unicode)*8) */
#define CHAR_CLASS_MAX_LENGTH 256
/* Fetch the next character in the uncompiled pattern, with no
translation. */
#define PATFETCH_RAW(c) \
do { \
if (p == pend) return REG_EEND; \
c = (sal_Unicode) *p++; \
} while (0)
/* Go backwards one character in the pattern. */
#define PATUNFETCH p--
#define FREE_STACK_RETURN(value) \
return(free(compile_stack.stack), value)
#define GET_BUFFER_SPACE(n) \
while ((sal_uInt32)(b - bufp->buffer + (n)) > bufp->allocated) \
EXTEND_BUFFER()
/* Extend the buffer by twice its current size via realloc and
reset the pointers that pointed into the old block to point to the
correct places in the new one. If extending the buffer results in it
being larger than MAX_BUF_SIZE, then flag memory exhausted. */
#define EXTEND_BUFFER() \
do { \
sal_Unicode *old_buffer = bufp->buffer; \
if (bufp->allocated == MAX_BUF_SIZE) \
return REG_ESIZE; \
bufp->allocated <<= 1; \
if (bufp->allocated > MAX_BUF_SIZE) \
bufp->allocated = MAX_BUF_SIZE; \
bufp->buffer = (sal_Unicode *) realloc(bufp->buffer, \
bufp->allocated * \
sizeof(sal_Unicode)); \
if (bufp->buffer == NULL) \
return REG_ESPACE; \
/* If the buffer moved, move all the pointers into it. */ \
if (old_buffer != bufp->buffer) { \
b = (b - old_buffer) + bufp->buffer; \
begalt = (begalt - old_buffer) + bufp->buffer; \
if (fixup_alt_jump) \
fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
if (laststart) \
laststart = (laststart - old_buffer) + bufp->buffer; \
if (pending_exact) \
pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
} \
} while (0)
#define BUF_PUSH(c) \
do { \
GET_BUFFER_SPACE(1); \
*b++ = (sal_Unicode)(c); \
} while(0)
/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
#define BUF_PUSH_2(c1, c2) \
do { \
GET_BUFFER_SPACE(2); \
*b++ = (sal_Unicode) (c1); \
*b++ = (sal_Unicode) (c2); \
} while (0)
/* As with BUF_PUSH_2, except for three bytes. */
#define BUF_PUSH_3(c1, c2, c3) \
do { \
GET_BUFFER_SPACE(3); \
*b++ = (sal_Unicode) (c1); \
*b++ = (sal_Unicode) (c2); \
*b++ = (sal_Unicode) (c3); \
} while (0)
/* Store a jump with opcode OP at LOC to location TO. We store a
relative address offset by the three bytes the jump itself occupies. */
#define STORE_JUMP(op, loc, to) \
store_op1(op, loc, (int) ((to) - (loc) - 3))
/* Likewise, for a two-argument jump. */
#define STORE_JUMP2(op, loc, to, arg) \
store_op2(op, loc, (int) ((to) - (loc) - 3), arg)
/* Store NUMBER in two contiguous sal_Unicode starting at DESTINATION. */
inline
void
Regexpr::store_number( sal_Unicode * destination, sal_Int32 number )
{
(destination)[0] = sal_Unicode((number) & 0xffff);
(destination)[1] = sal_Unicode((number) >> 16);
}
/* Same as STORE_NUMBER, except increment DESTINATION to
the byte after where the number is stored. Therefore, DESTINATION
must be an lvalue. */
inline
void
Regexpr::store_number_and_incr( sal_Unicode *& destination, sal_Int32 number )
{
store_number( destination, number );
(destination) += 2;
}
/* Put into DESTINATION a number stored in two contiguous sal_Unicode starting
at SOURCE. */
inline void Regexpr::extract_number( sal_Int32 & dest, sal_Unicode *source )
{
dest = (((sal_Int32) source[1]) << 16) | (source[0] & 0xffff);
}
/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
#define INSERT_JUMP(op, loc, to) \
insert_op1(op, loc, (sal_Int32) ((to) - (loc) - 3), b)
/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
#define INSERT_JUMP2(op, loc, to, arg) \
insert_op2(op, loc, (sal_Int32) ((to) - (loc) - 3), arg, b)
#define STREQ(s1, s2) (rtl_ustr_compare((s1), (s2)) ? (0) : (1))
#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
/* The next available element. */
#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
/* Get the next unsigned number in the uncompiled pattern. */
#define GET_UNSIGNED_NUMBER(num) { \
if (p != pend) { \
PATFETCH_RAW(c); \
while (c >= (sal_Unicode)'0' && c <= (sal_Unicode)'9') { \
if (num < 0) \
num = 0; \
num = num * 10 + c - (sal_Unicode)'0'; \
if (p == pend) \
break; \
PATFETCH_RAW(c); \
} \
} \
}
/* Get the next hex number in the uncompiled pattern. */
#define GET_HEX_NUMBER(num) { \
if (p != pend) { \
sal_Bool stop = false; \
sal_Int16 hexcnt = 1; \
PATFETCH_RAW(c); \
while ( (c >= (sal_Unicode)'0' && c <= (sal_Unicode)'9') || (c >= (sal_Unicode)'a' && c <= (sal_Unicode)'f') || (c >= (sal_Unicode)'A' && c <= (sal_Unicode)'F') ) { \
if (num < 0) \
num = 0; \
if ( c >= (sal_Unicode)'0' && c <= (sal_Unicode)'9' ) \
num = num * 16 + c - (sal_Unicode)'0'; \
else if ( c >= (sal_Unicode)'a' && c <= (sal_Unicode)'f' ) \
num = num * 16 + (10 + c - (sal_Unicode)'a'); \
else \
num = num * 16 + (10 + c - (sal_Unicode)'A'); \
if (p == pend || hexcnt == 4) { \
stop = true; \
break; \
} \
PATFETCH_RAW(c); \
hexcnt++; \
} \
\
if ( ! stop ) { \
PATUNFETCH; \
hexcnt--; \
} \
if ( hexcnt > 4 || (num < 0 || num > 0xffff) ) num = -1;\
} \
}
/* Number of failure points for which to initially allocate space
when matching. If this number is exceeded, we allocate more
space, so it is not a hard limit. */
#ifndef INIT_FAILURE_ALLOC
# define INIT_FAILURE_ALLOC 5
#endif
#define INIT_FAIL_STACK() \
do { \
fail_stack.stack = (fail_stack_elt_t *) \
REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
\
if (fail_stack.stack == NULL) \
return -2; \
\
fail_stack.size = INIT_FAILURE_ALLOC; \
fail_stack.avail = 0; \
} while (0)
#define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
Return 1 if succeeds, and 0 if either ran out of memory
allocating space for it or it was already too large.
REGEX_REALLOCATE_STACK requires `destination' be declared. */
#define DOUBLE_FAIL_STACK(fail_stack) \
((fail_stack).size > (sal_uInt32) (re_max_failures * MAX_FAILURE_ITEMS) \
? 0 \
: ((fail_stack).stack = (fail_stack_elt_t *) \
REGEX_REALLOCATE_STACK ((fail_stack).stack, \
(fail_stack).size * sizeof (fail_stack_elt_t), \
((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
\
(fail_stack).stack == NULL \
? 0 \
: ((fail_stack).size <<= 1, \
1)))
#define REG_UNSET_VALUE (®_unset_dummy)
#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
#define IS_ACTIVE(R) ((R).bits.is_active)
#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
/* Call this when have matched a real character; it sets `matched' flags
for the subexpressions which we are currently inside. Also records
that those subexprs have matched. */
#define SET_REGS_MATCHED() \
do { \
if (!set_regs_matched_done) { \
sal_uInt32 r; \
set_regs_matched_done = 1; \
for (r = lowest_active_reg; r <= highest_active_reg; r++) { \
MATCHED_SOMETHING(reg_info[r]) \
= EVER_MATCHED_SOMETHING(reg_info[r]) \
= 1; \
} \
} \
} \
while (0)
#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
/* This converts PTR, a pointer into the search string `string2' into an offset from the beginning of that string. */
#define POINTER_TO_OFFSET(ptr) ((sal_Int32) ((ptr) - string2))
/* This is the number of items that are pushed and popped on the stack
for each register. */
#define NUM_REG_ITEMS 3
/* Individual items aside from the registers. */
# define NUM_NONREG_ITEMS 4
/* We push at most this many items on the stack. */
/* We used to use (num_regs - 1), which is the number of registers
this regexp will save; but that was changed to 5
to avoid stack overflow for a regexp with lots of parens. */
#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
/* We actually push this many items. */
#define NUM_FAILURE_ITEMS \
(((0 \
? 0 : highest_active_reg - lowest_active_reg + 1) \
* NUM_REG_ITEMS) \
+ NUM_NONREG_ITEMS)
/* How many items can still be added to the stack without overflowing it. */
#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
/* Push a pointer value onto the failure stack.
Assumes the variable `fail_stack'. Probably should only
be called from within `PUSH_FAILURE_POINT'. */
#define PUSH_FAILURE_POINTER(item) \
fail_stack.stack[fail_stack.avail++].pointer = (sal_Unicode *) (item)
/* This pushes an integer-valued item onto the failure stack.
Assumes the variable `fail_stack'. Probably should only
be called from within `PUSH_FAILURE_POINT'. */
#define PUSH_FAILURE_INT(item) \
fail_stack.stack[fail_stack.avail++].integer = (item)
/* Push a fail_stack_elt_t value onto the failure stack.
Assumes the variable `fail_stack'. Probably should only
be called from within `PUSH_FAILURE_POINT'. */
#define PUSH_FAILURE_ELT(item) \
fail_stack.stack[fail_stack.avail++] = (item)
/* These three POP... operations complement the three PUSH... operations.
All assume that `fail_stack' is nonempty. */
#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
/* Test if at very beginning or at very end of `string2'. */
#define AT_STRINGS_BEG(d) ((d) == string2 || !size2)
#define AT_STRINGS_END(d) ((d) == end2)
/* Checking for end of string */
#define PREFETCH() \
do { \
if ( d == end2 ) { \
goto fail; \
} \
} while (0)
sal_Bool
Regexpr::iswordbegin(const sal_Unicode *d, sal_Unicode *string, sal_Int32 ssize)
{
if ( d == string || ! ssize ) return true;
if ( !unicode::isAlphaDigit(d[-1]) && unicode::isAlphaDigit(d[0])) {
return true;
}
return false;
}
sal_Bool
Regexpr::iswordend(const sal_Unicode *d, sal_Unicode *string, sal_Int32 ssize)
{
if ( d == (string+ssize) ) return true;
if ( !unicode::isAlphaDigit(d[0]) && unicode::isAlphaDigit(d[-1])) {
return true;
}
return false;
}
/* Push the information about the state we will need
if we ever fail back to it.
Requires variables fail_stack, regstart, regend, and reg_info
be declared. DOUBLE_FAIL_STACK requires `destination'
be declared.
Does `return FAILURE_CODE' if runs out of memory. */
#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
do { \
char *destination; \
/* Must be int, so when we don't save any registers, the arithmetic \
of 0 + -1 isn't done as unsigned. */ \
/* Can't be int, since there is not a shred of a guarantee that int \
is wide enough to hold a value of something to which pointer can \
be assigned */ \
sal_uInt32 this_reg; \
\
/* Ensure we have enough space allocated for what we will push. */ \
while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) { \
if (!DOUBLE_FAIL_STACK(fail_stack)) \
return failure_code; \
} \
\
/* Push the info, starting with the registers. */ \
if (1) \
for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
this_reg++) { \
PUSH_FAILURE_POINTER(regstart[this_reg]); \
\
PUSH_FAILURE_POINTER (regend[this_reg]); \
\
PUSH_FAILURE_ELT(reg_info[this_reg].word); \
} \
\
PUSH_FAILURE_INT(lowest_active_reg); \
\
PUSH_FAILURE_INT(highest_active_reg); \
\
PUSH_FAILURE_POINTER(pattern_place); \
\
PUSH_FAILURE_POINTER(string_place); \
\
} while (0)
/* Pops what PUSH_FAIL_STACK pushes.
We restore into the parameters, all of which should be lvalues:
STR -- the saved data position.
PAT -- the saved pattern position.
LOW_REG, HIGH_REG -- the highest and lowest active registers.
REGSTART, REGEND -- arrays of string positions.
REG_INFO -- array of information about each subexpression.
Also assumes the variables `fail_stack' and (if debugging), `bufp',
`pend', `string2', and `size2'. */
#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info) {\
sal_uInt32 this_reg; \
sal_Unicode *string_temp; \
\
assert(!FAIL_STACK_EMPTY()); \
\
/* Remove failure points and point to how many regs pushed. */ \
assert(fail_stack.avail >= NUM_NONREG_ITEMS); \
\
/* If the saved string location is NULL, it came from an \
on_failure_keep_string_jump opcode, and we want to throw away the \
saved NULL, thus retaining our current position in the string. */ \
string_temp = POP_FAILURE_POINTER(); \
if (string_temp != NULL) \
str = (const sal_Unicode *) string_temp; \
\
pat = (sal_Unicode *) POP_FAILURE_POINTER(); \
\
/* Restore register info. */ \
high_reg = (sal_uInt32) POP_FAILURE_INT(); \
\
low_reg = (sal_uInt32) POP_FAILURE_INT(); \
\
if (1) \
for (this_reg = high_reg; this_reg >= low_reg; this_reg--) { \
\
reg_info[this_reg].word = POP_FAILURE_ELT(); \
\
regend[this_reg] = (const sal_Unicode *) POP_FAILURE_POINTER(); \
\
regstart[this_reg] = (const sal_Unicode *) POP_FAILURE_POINTER(); \
} else { \
for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) {\
reg_info[this_reg].word.integer = 0; \
regend[this_reg] = 0; \
regstart[this_reg] = 0; \
} \
highest_active_reg = high_reg; \
} \
\
set_regs_matched_done = 0; \
} /* POP_FAILURE_POINT */
inline
void
Regexpr::extract_number_and_incr( sal_Int32 & destination, sal_Unicode *& source )
{
extract_number(destination, source);
source += 2;
}
inline
void
Regexpr::store_op1(re_opcode_t op, sal_Unicode *loc, sal_Int32 arg)
{
*loc = (sal_Unicode) op;
store_number(loc + 1, arg);
}
/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
inline
void
Regexpr::store_op2(re_opcode_t op, sal_Unicode *loc, sal_Int32 arg1, sal_Int32 arg2)
{
*loc = (sal_Unicode) op;
store_number(loc + 1, arg1);
store_number(loc + 3, arg2);
}
void
Regexpr::insert_op1(re_opcode_t op, sal_Unicode *loc, sal_Int32 arg, sal_Unicode *end)
{
register sal_Unicode *pfrom = end;
register sal_Unicode *pto = end + 3;
while (pfrom != loc) {
*--pto = *--pfrom;
}
store_op1(op, loc, arg);
}
/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
void
Regexpr::insert_op2(re_opcode_t op, sal_Unicode *loc, sal_Int32 arg1, sal_Int32 arg2, sal_Unicode *end)
{
register sal_Unicode *pfrom = end;
register sal_Unicode *pto = end + 5;
while (pfrom != loc)
*--pto = *--pfrom;
store_op2 (op, loc, arg1, arg2);
}
/* P points to just after a ^ in PATTERN. Return true if that ^ comes
after an alternative or a begin-subexpression. We assume there is at
least one character before the ^. */
sal_Bool
Regexpr::at_begline_loc_p(const sal_Unicode *local_pattern, const sal_Unicode *p)
{
const sal_Unicode *prev = p - 2;
sal_Bool prev_prev_backslash = prev > local_pattern && prev[-1] == '\\';
return(
/* After a subexpression? */
(*prev == (sal_Unicode)'(' && prev_prev_backslash)
/* After an alternative? */
|| (*prev == (sal_Unicode)'|' && prev_prev_backslash));
}
/* The dual of at_begline_loc_p. This one is for $. We assume there is
at least one character after the $, i.e., `P < PEND'. */
sal_Bool
Regexpr::at_endline_loc_p(const sal_Unicode *p, const sal_Unicode * /* pend */ )
{
const sal_Unicode *next = p;
//sal_Bool next_backslash = *next == (sal_Unicode)'\\';
//const sal_Unicode *next_next = p + 1 < pend ? p + 1 : 0;
return(
/* Before a subexpression? */
*next == (sal_Unicode)')'
// (next_backslash && next_next && *next_next == (sal_Unicode)')')
/* Before an alternative? */
|| *next == (sal_Unicode)'|' );
// || (next_backslash && next_next && *next_next == (sal_Unicode)'|'));
}
reg_errcode_t
Regexpr::compile_range(sal_Unicode range_start, sal_Unicode range_end, sal_Unicode *b)
{
sal_uInt32 this_char;
/* If the start is after the end, the range is empty. */
if (range_start > range_end)
return REG_NOERROR;
/* Here we see why `this_char' has to be larger than an `sal_Unicode'
-- the range is inclusive, so if `range_end' == 0xffff
(assuming 16-bit characters), we would otherwise go into an infinite
loop, since all characters <= 0xffff. */
for (this_char = range_start; this_char <= range_end; this_char++) {
set_list_bit( sal_Unicode(this_char), b);
}
return REG_NOERROR;
}
/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
false if it's not. */
sal_Bool
Regexpr::group_in_compile_stack(compile_stack_type compile_stack, sal_uInt32 regnum)
{
sal_Int32 this_element;
for (this_element = compile_stack.avail - 1;
this_element >= 0;
this_element--) {
if (compile_stack.stack[this_element].regnum == regnum) {
return true;
}
}
return false;
}
Regexpr::Regexpr( const ::com::sun::star::util::SearchOptions & rOptions,
::com::sun::star::uno::Reference<
::com::sun::star::i18n::XExtendedTransliteration > XTrans)
{
bufp = NULL;
pattern = NULL;
if ( rOptions.algorithmType != ::com::sun::star::util::SearchAlgorithms_REGEXP ) {
return;
}
if ( rOptions.searchString == NULL ||
rOptions.searchString.getLength() <= 0) {
return;
}
pattern = (sal_Unicode *)rOptions.searchString.getStr();
patsize = rOptions.searchString.getLength();
re_max_failures = 2000;
translit = XTrans;
translate = translit.is() ? 1 : 0;
bufp = NULL;
isIgnoreCase = ((rOptions.transliterateFlags &
::com::sun::star::i18n::TransliterationModules_IGNORE_CASE) != 0);
// Compile Regular expression pattern
if ( regcomp() != REG_NOERROR )
{
if ( bufp )
{
if ( bufp->buffer )
free(bufp->buffer);
if( bufp->fastmap )
free(bufp->fastmap);
free(bufp);
bufp = NULL;
}
}
}
Regexpr::~Regexpr()
{
// translit->remove();
if( bufp )
{
if( bufp->buffer )
free(bufp->buffer);
if( bufp->fastmap )
free(bufp->fastmap);
free(bufp);
bufp = NULL;
}
}
// sets a new line to search in (restore start/end_ptr)
void
Regexpr::set_line(const sal_Unicode *new_line, sal_Int32 len)
{
line = new_line;
linelen = len;
}
// main function for searching the pattern
// returns negative or startpos and sets regs
sal_Int32
Regexpr::re_search(struct re_registers *regs, sal_Int32 pOffset)
{
// Check if pattern buffer is NULL
if ( bufp == NULL ) {
return(-3);
}
sal_Int32 range;
sal_Int32 startpos;
sal_Int32 stoppos;
startpos = pOffset;
if ( linelen < 0 ) {
range = linelen + 1;
linelen = -(linelen);
stoppos = pOffset + 1;
} else {
range = linelen - 1;
stoppos = linelen;
}
for ( ; ; ) {
sal_Int32 val = re_match2(regs, startpos, stoppos);
#ifndef REGEX_MALLOC
# ifdef C_ALLOCA
alloca (0);
# endif
#endif
// Return success if match found
if (val == 0) {
break;
}
if (val == -2) {
return(-2);
}
// If match only beginning of string (startpos)
if (!range) {
break;
}
// If search match from startpos to startpos+range
else if (range > 0) { // Forward string search
range--;
startpos++;
} else { // Reverse string search
range++;
startpos--;
}
}
if ( regs->num_of_match > 0 )
return(0);
else
return(-1);
}
sal_Int32
Regexpr::regcomp()
{
bufp = (struct re_pattern_buffer *)malloc(sizeof(struct re_pattern_buffer));
if ( bufp == NULL ) {
return(-1);
}
bufp->buffer = 0;
bufp->allocated = 0;
bufp->used = 0;
//bufp->fastmap = (sal_Unicode*) malloc((1 << BYTEWIDTH) * sizeof(sal_Unicode));
// No fastmap with Unicode
bufp->fastmap = NULL;
return(regex_compile());
}
sal_Int32
Regexpr::regex_compile()
{
register sal_Unicode c, c1;
const sal_Unicode *p1;
register sal_Unicode *b;
/* Keeps track of unclosed groups. */
compile_stack_type compile_stack;
/* Points to the current (ending) position in the pattern. */
const sal_Unicode *p = pattern;
const sal_Unicode *pend = pattern + patsize;
/* Address of the count-byte of the most recently inserted `exactn'
command. This makes it possible to tell if a new exact-match
character can be added to that command or if the character requires
a new `exactn' command. */
sal_Unicode *pending_exact = 0;
/* Address of start of the most recently finished expression.
This tells, e.g., postfix * where to find the start of its
operand. Reset at the beginning of groups and alternatives. */
sal_Unicode *laststart = 0;
/* Address of beginning of regexp, or inside of last group. */
sal_Unicode *begalt;
/* Place in the uncompiled pattern (i.e., the {) to
which to go back if the interval is invalid. */
const sal_Unicode *beg_interval;
/* Address of the place where a forward jump should go to the end of
the containing expression. Each alternative of an `or' -- except the
last -- ends with a forward jump of this sort. */
sal_Unicode *fixup_alt_jump = 0;
/* Counts open-groups as they are encountered. Remembered for the
matching close-group on the compile stack, so the same register
number is put in the stop_memory as the start_memory. */
sal_Int32 regnum = 0;
/* Initialize the compile stack. */
compile_stack.stack = (compile_stack_elt_t *)malloc(INIT_COMPILE_STACK_SIZE * sizeof(compile_stack_elt_t));
if (compile_stack.stack == NULL)
return(REG_ESPACE);
compile_stack.size = INIT_COMPILE_STACK_SIZE;
compile_stack.avail = 0;
/* Initialize the pattern buffer. */
bufp->fastmap_accurate = 0;
bufp->not_bol = 0;
bufp->not_eol = 0;
bufp->newline_anchor = 1;
/* Set `used' to zero, so that if we return an error, the pattern
printer (for debugging) will think there's no pattern. We reset it
at the end. */
bufp->used = 0;
/* Always count groups. */
bufp->re_nsub = 0;
if (bufp->allocated == 0) {
if (bufp->buffer) {
/* If zero allocated, but buffer is non-null, try to realloc
enough space. This loses if buffer's address is bogus, but
that is the user's responsibility. */
bufp->buffer = (sal_Unicode *)realloc(bufp->buffer, INIT_BUF_SIZE * sizeof(sal_Unicode));
} else { /* Caller did not allocate a buffer. Do it for them. */
bufp->buffer = (sal_Unicode *)malloc(INIT_BUF_SIZE * sizeof(sal_Unicode));
}
if (!bufp->buffer) FREE_STACK_RETURN(REG_ESPACE);
bufp->allocated = INIT_BUF_SIZE;
}
begalt = b = bufp->buffer;
/* Loop through the uncompiled pattern until we're at the end. */
while (p != pend) {
PATFETCH_RAW(c);
switch (c) {
case (sal_Unicode)'^': {
if ( /* If at start of pattern, it's an operator. */
p == pattern + 1
/* Otherwise, depends on what's come before. */
|| at_begline_loc_p(pattern, p))
BUF_PUSH(begline);
else
goto normal_char;
}
break;
case (sal_Unicode)'$': {
if ( /* If at end of pattern, it's an operator. */
p == pend
/* Otherwise, depends on what's next. */
|| at_endline_loc_p(p, pend)) {
BUF_PUSH(endline);
} else {
goto normal_char;
}
}
break;
case (sal_Unicode)'+':
case (sal_Unicode)'?':
case (sal_Unicode)'*':
/* If there is no previous pattern... */
if (!laststart) {
goto normal_char;
}
{
/* Are we optimizing this jump? */
sal_Bool keep_string_p = false;
/* 1 means zero (many) matches is allowed. */
sal_Unicode zero_times_ok = 0, many_times_ok = 0;
/* If there is a sequence of repetition chars, collapse it
down to just one (the right one). We can't combine
interval operators with these because of, e.g., `a{2}*',
which should only match an even number of `a's. */
for (;;) {
zero_times_ok |= c != (sal_Unicode)'+';
many_times_ok |= c != (sal_Unicode)'?';
if (p == pend)
break;
PATFETCH_RAW(c);
if (c == (sal_Unicode)'*' || (c == (sal_Unicode)'+'
|| c == (sal_Unicode)'?')) {
} else {
PATUNFETCH;
break;
}
/* If we get here, we found another repeat character. */
}
/* Star, etc. applied to an empty pattern is equivalent
to an empty pattern. */
if (!laststart) {
break;
}
/* Now we know whether or not zero matches is allowed
and also whether or not two or more matches is allowed. */
if (many_times_ok) {
/* More than one repetition is allowed, so put in at the
end a backward relative jump from `b' to before the next
jump we're going to put in below (which jumps from
laststart to after this jump).
But if we are at the `*' in the exact sequence `.*\n',
insert an unconditional jump backwards to the .,
instead of the beginning of the loop. This way we only
push a failure point once, instead of every time
through the loop. */
assert(p - 1 > pattern);
/* Allocate the space for the jump. */
GET_BUFFER_SPACE(3);
/* We know we are not at the first character of the pattern,
because laststart was nonzero. And we've already
incremented `p', by the way, to be the character after
the `*'. Do we have to do something analogous here
for null bytes, because of RE_DOT_NOT_NULL? */
if (*(p - 2) == (sal_Unicode)'.'
&& zero_times_ok
&& p < pend && *p == (sal_Unicode)'\n') {
/* We have .*\n. */
STORE_JUMP(jump, b, laststart);
keep_string_p = true;
} else {
/* Anything else. */
STORE_JUMP(maybe_pop_jump, b, laststart - 3);
}
/* We've added more stuff to the buffer. */
b += 3;
}
/* On failure, jump from laststart to b + 3, which will be the
end of the buffer after this jump is inserted. */
GET_BUFFER_SPACE(3);
INSERT_JUMP(keep_string_p ? on_failure_keep_string_jump
: on_failure_jump,
laststart, b + 3);
pending_exact = 0;
b += 3;
if (!zero_times_ok) {
/* At least one repetition is required, so insert a
`dummy_failure_jump' before the initial
`on_failure_jump' instruction of the loop. This
effects a skip over that instruction the first time
we hit that loop. */
GET_BUFFER_SPACE(3);
INSERT_JUMP(dummy_failure_jump, laststart, laststart + 6);
b += 3;
}
}
break;
case (sal_Unicode)'.':
laststart = b;
BUF_PUSH(anychar);
break;
case (sal_Unicode)'[': {
sal_Bool have_range = false;
sal_Unicode last_char = 0xffff;
sal_Unicode first_range = 0xffff;
sal_Unicode second_range = 0xffff;
sal_Int16 bsiz;
if (p == pend) FREE_STACK_RETURN(REG_EBRACK);
/* Ensure that we have enough space to push a charset: the
opcode, the length count, and the bitset;
1 + 1 + (1 << BYTEWIDTH) / BYTEWIDTH "bytes" in all. */
bsiz = 2 + ((1 << BYTEWIDTH) / BYTEWIDTH);
GET_BUFFER_SPACE(bsiz);
laststart = b;
/* We test `*p == '^' twice, instead of using an if
statement, so we only need one BUF_PUSH. */
BUF_PUSH (*p == (sal_Unicode)'^' ? charset_not : charset);
if (*p == (sal_Unicode)'^')
p++;
/* Remember the first position in the bracket expression. */
p1 = p;
/* Push the number of "bytes" in the bitmap. */
BUF_PUSH((1 << BYTEWIDTH) / BYTEWIDTH);
/* Clear the whole map. */
memset(b, 0, ((1 << BYTEWIDTH) / BYTEWIDTH) * sizeof(sal_Unicode));
/* Read in characters and ranges, setting map bits. */
for (;;) {
if (p == pend) FREE_STACK_RETURN(REG_EBRACK);
PATFETCH_RAW(c);
if ( c == (sal_Unicode)'\\' ) {
PATFETCH_RAW(c);
if ( c == (sal_Unicode)'x' ) {
sal_Int32 UniChar = -1;
GET_HEX_NUMBER(UniChar);
if (UniChar < 0 || UniChar > 0xffff) FREE_STACK_RETURN(REG_BADPAT);
c = (sal_Unicode) UniChar;
last_char = c;
set_list_bit(last_char, b);
} else {
last_char = c;
set_list_bit(last_char, b);
}
} else if (c == (sal_Unicode)']') {
/* Could be the end of the bracket expression. If it's
not (i.e., when the bracket expression is `[]' so
far), the ']' character bit gets set way below. */
break;
} else if ( c == (sal_Unicode)'-' ) {
if ( !have_range ) {
if ( last_char != 0xffff ) {
first_range = last_char;
have_range = true;
continue;
} else {
last_char = (sal_Unicode)'-';
set_list_bit(last_char, b);
}
}
}
/* See if we're at the beginning of a possible character
class. */
else if (c == (sal_Unicode)':' && p[-2] == (sal_Unicode)'[') {
/* Leave room for the null. */
sal_Unicode str[CHAR_CLASS_MAX_LENGTH + 1];
PATFETCH_RAW(c);
c1 = 0;
/* If pattern is `[[:'. */
if (p == pend) FREE_STACK_RETURN(REG_EBRACK);
str[c1++] = c;
for (;;) {
PATFETCH_RAW(c);
if ((c == (sal_Unicode)':' && *p == (sal_Unicode)']') || p == pend)
break;
if (c1 < CHAR_CLASS_MAX_LENGTH)
str[c1++] = c;
else
/* This is in any case an invalid class name. */
str[0] = (sal_Unicode)'\0';
}
str[c1] = (sal_Unicode)'\0';
/* If isn't a word bracketed by `[:' and `:]':
undo the ending character, the letters, and leave
the leading `:' and `[' (but set bits for them). */
if (c == (sal_Unicode)':' && *p == (sal_Unicode)']') {
sal_Int32 ch;
// no support for GRAPH, PUNCT, or XDIGIT yet
sal_Bool is_alnum = STREQ(str, ::rtl::OUString(RTL_CONSTASCII_USTRINGPARAM("alnum")).getStr());
sal_Bool is_alpha = STREQ(str, ::rtl::OUString(RTL_CONSTASCII_USTRINGPARAM("alpha")).getStr());
sal_Bool is_cntrl = STREQ(str, ::rtl::OUString(RTL_CONSTASCII_USTRINGPARAM("cntrl")).getStr());
sal_Bool is_digit = STREQ(str, ::rtl::OUString(RTL_CONSTASCII_USTRINGPARAM("digit")).getStr());
sal_Bool is_lower = STREQ(str, ::rtl::OUString(RTL_CONSTASCII_USTRINGPARAM("lower")).getStr());
sal_Bool is_print = STREQ(str, ::rtl::OUString(RTL_CONSTASCII_USTRINGPARAM("print")).getStr());
sal_Bool is_space = STREQ(str, ::rtl::OUString(RTL_CONSTASCII_USTRINGPARAM("space")).getStr());
sal_Bool is_upper = STREQ(str, ::rtl::OUString(RTL_CONSTASCII_USTRINGPARAM("upper")).getStr());
if (!(is_alnum || is_alpha || is_cntrl ||
is_digit || is_lower || is_print || is_space || is_upper) )
FREE_STACK_RETURN(REG_ECTYPE);
/* Throw away the ] at the end of the character
class. */
PATFETCH_RAW(c);
if (p == pend) FREE_STACK_RETURN(REG_EBRACK);
for (ch = 0; ch < 1 << BYTEWIDTH; ch++) {
/* This was split into 3 if's to
avoid an arbitrary limit in some compiler. */
if ( (is_alnum && unicode::isAlphaDigit(sal_Unicode(ch))) ||
(is_alpha && unicode::isAlpha(sal_Unicode(ch))) ||
(is_cntrl && unicode::isControl(sal_Unicode(ch))))
set_list_bit(sal_Unicode(ch), b);
if ( (is_digit && unicode::isDigit(sal_Unicode(ch))) ||
(is_lower && unicode::isLower(sal_Unicode(ch))) ||
(is_print && unicode::isPrint(sal_Unicode(ch))))
set_list_bit(sal_Unicode(ch), b);
if ( (is_space && unicode::isSpace(sal_Unicode(ch))) ||
(is_upper && unicode::isUpper(sal_Unicode(ch))) )
set_list_bit(sal_Unicode(ch), b);
if ( isIgnoreCase && (is_upper || is_lower) &&
(unicode::isUpper(sal_Unicode(ch)) || unicode::isLower(sal_Unicode(ch))))
set_list_bit(sal_Unicode(ch), b);
}
break;
} else {
p = p1+1;
p1++;
last_char = (sal_Unicode)':';
set_list_bit(last_char, b);
}
} else {
last_char = c;
set_list_bit(last_char, b);
}
if ( have_range ) {
if ( last_char != 0xffff ) {
second_range = last_char;
have_range = false;
compile_range(first_range, second_range, b);
} else FREE_STACK_RETURN(REG_EBRACK);
} else {
if ( last_char != 0xffff ) {
set_list_bit(last_char, b);
} else FREE_STACK_RETURN(REG_EBRACK);
}
}
/* Discard any (non)matching list bytes that are all 0 at the
end of the map. Decrease the map-length byte too. */
bsiz = b[-1];
while ((sal_Int16) bsiz > 0 && b[bsiz - 1] == 0)
bsiz--;
b[-1] = (sal_Unicode)bsiz;
b += bsiz;
}
break;
case (sal_Unicode)'(':
goto handle_open;
case (sal_Unicode)')':
goto handle_close;
case (sal_Unicode)'\n':
goto normal_char;
case (sal_Unicode)'|':
goto handle_alt;
case (sal_Unicode)'{':
goto handle_interval;
case (sal_Unicode)'\\':
if (p == pend) FREE_STACK_RETURN(REG_EESCAPE);
/* Do not translate the character after the \, so that we can
distinguish, e.g., \B from \b, even if we normally would
translate, e.g., B to b. */
PATFETCH_RAW(c);
switch (c) {
case (sal_Unicode)'(':
goto normal_backslash;
handle_open:
bufp->re_nsub++;
regnum++;
if (COMPILE_STACK_FULL) {
compile_stack.stack = (compile_stack_elt_t *)realloc(compile_stack.stack, (compile_stack.size << 1) * sizeof(compile_stack_elt_t));
if (compile_stack.stack == NULL) return(REG_ESPACE);
compile_stack.size <<= 1;
}
/* These are the values to restore when we hit end of this
group. They are all relative offsets, so that if the
whole pattern moves because of realloc, they will still
be valid. */
COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
COMPILE_STACK_TOP.fixup_alt_jump
= fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
COMPILE_STACK_TOP.regnum = regnum;
/* We will eventually replace the 0 with the number of
groups inner to this one. But do not push a
start_memory for groups beyond the last one we can
represent in the compiled pattern. */
if (regnum <= MAX_REGNUM) {
COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
BUF_PUSH_3 (start_memory, regnum, 0);
}
compile_stack.avail++;
fixup_alt_jump = 0;
laststart = 0;
begalt = b;
/* If we've reached MAX_REGNUM groups, then this open
won't actually generate any code, so we'll have to
clear pending_exact explicitly. */
pending_exact = 0;
break;
case (sal_Unicode)')':
goto normal_backslash;
handle_close:
if (fixup_alt_jump) {
/* Push a dummy failure point at the end of the
alternative for a possible future
`pop_failure_jump' to pop. See comments at
`push_dummy_failure' in `re_match2'. */
BUF_PUSH(push_dummy_failure);
/* We allocated space for this jump when we assigned
to `fixup_alt_jump', in the `handle_alt' case below. */
STORE_JUMP(jump_past_alt, fixup_alt_jump, b - 1);
}
/* See similar code for backslashed left paren above. */
if (COMPILE_STACK_EMPTY) {
FREE_STACK_RETURN(REG_ERPAREN);
}
/* Since we just checked for an empty stack above, this
``can't happen''. */
assert (compile_stack.avail != 0);
{
/* We don't just want to restore into `regnum', because
later groups should continue to be numbered higher,
as in `(ab)c(de)' -- the second group is #2. */
sal_Int32 this_group_regnum;
compile_stack.avail--;
begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
fixup_alt_jump
= COMPILE_STACK_TOP.fixup_alt_jump
? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
: 0;
laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
this_group_regnum = COMPILE_STACK_TOP.regnum;
/* If we've reached MAX_REGNUM groups, then this open
won't actually generate any code, so we'll have to
clear pending_exact explicitly. */
pending_exact = 0;
/* We're at the end of the group, so now we know how many
groups were inside this one. */
if (this_group_regnum <= MAX_REGNUM) {
sal_Unicode *inner_group_loc
= bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
*inner_group_loc = sal::static_int_cast<sal_Unicode>( regnum - this_group_regnum );
BUF_PUSH_3 (stop_memory, this_group_regnum,
regnum - this_group_regnum);
}
}
break;
case (sal_Unicode)'|': /* `\|'.
* */
goto normal_backslash;
handle_alt:
/* Insert before the previous alternative a jump which
jumps to this alternative if the former fails. */
GET_BUFFER_SPACE (3);
INSERT_JUMP (on_failure_jump, begalt, b + 6);
pending_exact = 0;
b += 3;
/* The alternative before this one has a jump after it
which gets executed if it gets matched. Adjust that
jump so it will jump to this alternative's analogous
jump (put in below, which in turn will jump to the next
(if any) alternative's such jump, etc.). The last such
jump jumps to the correct final destination. A picture:
_____ _____
| | | |
| v | v
a | b | c
If we are at `b', then fixup_alt_jump right now points to a
three-byte space after `a'. We'll put in the jump, set
fixup_alt_jump to right after `b', and leave behind three
bytes which we'll fill in when we get to after `c'. */
if (fixup_alt_jump)
STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
/* Mark and leave space for a jump after this alternative,
to be filled in later either by next alternative or
when know we're at the end of a series of alternatives. */
fixup_alt_jump = b;
GET_BUFFER_SPACE (3);
b += 3;
laststart = 0;
begalt = b;
break;
case (sal_Unicode)'{':
goto normal_backslash;
handle_interval:
{
/* allows intervals. */
/* At least (most) this many matches must be made. */
sal_Int32 lower_bound = -1, upper_bound = -1;
beg_interval = p - 1;
if (p == pend) {
goto unfetch_interval;
}
GET_UNSIGNED_NUMBER(lower_bound);
if (c == (sal_Unicode)',') {
GET_UNSIGNED_NUMBER(upper_bound);
if (upper_bound < 0) upper_bound = RE_DUP_MAX;
} else
/* Interval such as `{1}' => match exactly once. */
upper_bound = lower_bound;
if (lower_bound < 0 || upper_bound > RE_DUP_MAX
|| lower_bound > upper_bound) {
goto unfetch_interval;
}
if (c != (sal_Unicode)'}') {
goto unfetch_interval;
}
/* We just parsed a valid interval. */
/* If it's invalid to have no preceding re. */
if (!laststart) {
goto unfetch_interval;
}
/* If the upper bound is zero, don't want to succeed at
all; jump from `laststart' to `b + 3', which will be
the end of the buffer after we insert the jump. */
if (upper_bound == 0) {
GET_BUFFER_SPACE(3);
INSERT_JUMP(jump, laststart, b + 3);
b += 3;
}
/* Otherwise, we have a nontrivial interval. When
we're all done, the pattern will look like:
set_number_at <jump count> <upper bound>
set_number_at <succeed_n count> <lower bound>
succeed_n <after jump addr> <succeed_n count>
<body of loop>
jump_n <succeed_n addr> <jump count>
(The upper bound and `jump_n' are omitted if
`upper_bound' is 1, though.) */
else {
/* If the upper bound is > 1, we need to insert
more at the end of the loop. */
unsigned nbytes = 10 + (upper_bound > 1) * 10;
GET_BUFFER_SPACE(nbytes);
/* Initialize lower bound of the `succeed_n', even
though it will be set during matching by its
attendant `set_number_at' (inserted next),
because `re_compile_fastmap' needs to know.
Jump to the `jump_n' we might insert below. */
INSERT_JUMP2(succeed_n, laststart,
b + 5 + (upper_bound > 1) * 5,
lower_bound);
b += 5;
/* Code to initialize the lower bound. Insert
before the `succeed_n'. The `5' is the last two
bytes of this `set_number_at', plus 3 bytes of
the following `succeed_n'. */
insert_op2(set_number_at, laststart, 5, lower_bound, b);
b += 5;
if (upper_bound > 1) {
/* More than one repetition is allowed, so
append a backward jump to the `succeed_n'
that starts this interval.
When we've reached this during matching,
we'll have matched the interval once, so
jump back only `upper_bound - 1' times. */
STORE_JUMP2(jump_n, b, laststart + 5,
upper_bound - 1);
b += 5;
/* The location we want to set is the second
parameter of the `jump_n'; that is `b-2' as
an absolute address. `laststart' will be
the `set_number_at' we're about to insert;
`laststart+3' the number to set, the source
for the relative address. But we are
inserting into the middle of the pattern --
so everything is getting moved up by 5.
Conclusion: (b - 2) - (laststart + 3) + 5,
i.e., b - laststart.
We insert this at the beginning of the loop
so that if we fail during matching, we'll
reinitialize the bounds. */
insert_op2(set_number_at, laststart, b - laststart,
upper_bound - 1, b);
b += 5;
}
}
pending_exact = 0;
beg_interval = NULL;
}
break;
unfetch_interval:
/* If an invalid interval, match the characters as literals. */
assert (beg_interval);
p = beg_interval;
beg_interval = NULL;
/* normal_char and normal_backslash need `c'. */
PATFETCH_RAW(c);
goto normal_char;
case (sal_Unicode)'`':
BUF_PUSH(begbuf);
break;
case (sal_Unicode)'\'':
BUF_PUSH(endbuf);
break;
case (sal_Unicode)'1': case (sal_Unicode)'2':
case (sal_Unicode)'3': case (sal_Unicode)'4':
case (sal_Unicode)'5': case (sal_Unicode)'6':
case (sal_Unicode)'7': case (sal_Unicode)'8':
case (sal_Unicode)'9':
c1 = c - (sal_Unicode)'0';
if (c1 > regnum)
FREE_STACK_RETURN(REG_ESUBREG);
/* Can't back reference to a subexpression if inside of it. */
if (group_in_compile_stack(compile_stack, (sal_uInt32) c1)) {
goto normal_char;
}
laststart = b;
BUF_PUSH_2(duplicate, c1);
break;
case (sal_Unicode)'+':
case (sal_Unicode)'?':
goto normal_backslash;
case (sal_Unicode)'x': // Unicode char
{
sal_Int32 UniChar = -1;
GET_HEX_NUMBER(UniChar);
if (UniChar < 0 || UniChar > 0xffff) FREE_STACK_RETURN(REG_BADPAT);
c = (sal_Unicode) UniChar;
goto normal_char;
}
// break; // unreachable - see goto above
case (sal_Unicode)'<': // begin Word boundary
BUF_PUSH(wordbeg);
break;
case (sal_Unicode)'>': // end Word boundary
BUF_PUSH(wordend);
break;
case (sal_Unicode)'n':
c = 0x0a;
goto normal_char;
case (sal_Unicode)'t':
c = 0x09;
goto normal_char;
default:
normal_backslash:
goto normal_char;
}
break;
default:
/* Expects the character in `c'. */
normal_char:
/* If no exactn currently being built. */
if ( pending_exact == NULL
/* If last exactn not at current position. */
|| pending_exact + *pending_exact + 1 != b
/* We have only one sal_Unicode char following the
exactn for the count. */
|| *pending_exact == (1 << BYTEWIDTH) - 1
/* If followed by a repetition operator. */
|| *p == (sal_Unicode)'*' || *p == (sal_Unicode)'^'
|| *p == (sal_Unicode)'+' || *p == (sal_Unicode)'?'
|| *p == (sal_Unicode) '{' ) {
/* Start building a new exactn. */
laststart = b;
BUF_PUSH_2(exactn, 0);
pending_exact = b - 1;
}
if ( translate ) {
try {
sal_Unicode tmp = translit->transliterateChar2Char(c);
BUF_PUSH(tmp);
(*pending_exact)++;
} catch (const ::com::sun::star::i18n::MultipleCharsOutputException&) {
::rtl::OUString o2( translit->transliterateChar2String( c));
sal_Int32 len2 = o2.getLength();
const sal_Unicode * k2 = o2.getStr();
for (sal_Int32 nmatch = 0; nmatch < len2; nmatch++) {
BUF_PUSH(k2[nmatch]);
(*pending_exact)++;
}
}
} else {
BUF_PUSH(c);
(*pending_exact)++;
}
break;
} /* switch (c) */
} /* while p != pend */
/* Through the pattern now. */
if (fixup_alt_jump)
STORE_JUMP(jump_past_alt, fixup_alt_jump, b);
if (!COMPILE_STACK_EMPTY)
FREE_STACK_RETURN(REG_EPAREN);
// Assumes no backtracking
BUF_PUSH(succeed);
if ( compile_stack.stack )
free(compile_stack.stack);
compile_stack.stack = NULL;
/* We have succeeded; set the length of the buffer. */
bufp->used = b - bufp->buffer;
return REG_NOERROR;
} /* regex_compile */
/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
bytes; nonzero otherwise. */
sal_Int32
Regexpr::bcmp_translate(const sal_Unicode *s1, const sal_Unicode *s2, sal_Int32 len)
{
for (sal_Int32 nmatch = 0; nmatch < len; nmatch++) {
if (*s1++ != *s2++) {
return(1);
}
}
return(0);
}
/* We are passed P pointing to a register number after a start_memory.
Return true if the pattern up to the corresponding stop_memory can
match the empty string, and false otherwise.
If we find the matching stop_memory, sets P to point to one past its number.
Otherwise, sets P to an undefined byte less than or equal to END.
We don't handle duplicates properly (yet). */
sal_Bool
Regexpr::group_match_null_string_p(sal_Unicode **p, sal_Unicode *end, register_info_type *reg_info)
{
sal_Int32 mcnt;
/* Point to after the args to the start_memory. */
sal_Unicode *p1 = *p + 2;
while (p1 < end) {
/* Skip over opcodes that can match nothing, and return true or
false, as appropriate, when we get to one that can't, or to the
matching stop_memory. */
switch ((re_opcode_t) *p1) {
/* Could be either a loop or a series of alternatives. */
case on_failure_jump:
p1++;
extract_number_and_incr(mcnt, p1);
/* If the next operation is not a jump backwards in the
pattern. */
if (mcnt >= 0) {
/* Go through the on_failure_jumps of the alternatives,
seeing if any of the alternatives cannot match nothing.
The last alternative starts with only a jump,
whereas the rest start with on_failure_jump and end
with a jump, e.g., here is the pattern for `a|b|c':
/on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
/on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
/exactn/1/c
So, we have to first go through the first (n-1)
alternatives and then deal with the last one separately. */
/* Deal with the first (n-1) alternatives, which start
with an on_failure_jump (see above) that jumps to right
past a jump_past_alt. */
while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) {
/* `mcnt' holds how many bytes long the alternative
is, including the ending `jump_past_alt' and
its number. */
if (!alt_match_null_string_p(p1, p1 + mcnt - 3, reg_info))
return false;
/* Move to right after this alternative, including the
jump_past_alt. */
p1 += mcnt;
/* Break if it's the beginning of an n-th alternative
that doesn't begin with an on_failure_jump. */
if ((re_opcode_t) *p1 != on_failure_jump)
break;
/* Still have to check that it's not an n-th
alternative that starts with an on_failure_jump. */
p1++;
extract_number_and_incr(mcnt, p1);
if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) {
/* Get to the beginning of the n-th alternative. */
p1 -= 3;
break;
}
}
/* Deal with the last alternative: go back and get number
of the `jump_past_alt' just before it. `mcnt' contains
the length of the alternative. */
extract_number(mcnt, p1 - 2);
if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
return false;
p1 += mcnt; /* Get past the n-th alternative. */
} /* if mcnt > 0 */
break;
case stop_memory:
assert (p1[1] == **p);
*p = p1 + 2;
return true;
default:
if (!common_op_match_null_string_p(&p1, end, reg_info))
return false;
}
} /* while p1 < end */
return false;
} /* group_match_null_string_p */
/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
It expects P to be the first byte of a single alternative and END one
byte past the last. The alternative can contain groups. */
sal_Bool
Regexpr::alt_match_null_string_p(sal_Unicode *p, sal_Unicode *end, register_info_type *reg_info)
{
sal_Int32 mcnt;
sal_Unicode *p1 = p;
while (p1 < end) {
/* Skip over opcodes that can match nothing, and break when we get
to one that can't. */
switch ((re_opcode_t) *p1) {
/* It's a loop. */
case on_failure_jump:
p1++;
extract_number_and_incr(mcnt, p1);
p1 += mcnt;
break;
default:
if (!common_op_match_null_string_p(&p1, end, reg_info))
return false;
}
} /* while p1 < end */
return true;
} /* alt_match_null_string_p */
/* Deals with the ops common to group_match_null_string_p and
alt_match_null_string_p.
Sets P to one after the op and its arguments, if any. */
sal_Bool
Regexpr::common_op_match_null_string_p(sal_Unicode **p, sal_Unicode *end, register_info_type *reg_info)
{
sal_Int32 mcnt;
sal_Bool ret;
sal_Int32 reg_no;
sal_Unicode *p1 = *p;
switch ((re_opcode_t) *p1++) {
case no_op:
case begline:
case endline:
case begbuf:
case endbuf:
break;
case start_memory:
reg_no = *p1;
assert (reg_no > 0 && reg_no <= MAX_REGNUM);
ret = group_match_null_string_p(&p1, end, reg_info);
/* Have to set this here in case we're checking a group which
contains a group and a back reference to it. */
if (REG_MATCH_NULL_STRING_P(reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
REG_MATCH_NULL_STRING_P(reg_info[reg_no]) = ret;
if (!ret)
return false;
break;
/* If this is an optimized succeed_n for zero times, make the jump. */
case jump:
extract_number_and_incr(mcnt, p1);
if (mcnt >= 0)
p1 += mcnt;
else
return false;
break;
case succeed_n:
/* Get to the number of times to succeed. */
p1 += 2;
extract_number_and_incr(mcnt, p1);
if (mcnt == 0)
{
p1 -= 4;
extract_number_and_incr(mcnt, p1);
p1 += mcnt;
}
else
return false;
break;
case duplicate:
if (!REG_MATCH_NULL_STRING_P(reg_info[*p1]))
return false;
break;
case set_number_at:
p1 += 4;
default:
/* All other opcodes mean we cannot match the empty string. */
return false;
}
*p = p1;
return true;
} /* common_op_match_null_string_p */
/* Free everything we malloc. */
#ifdef MATCH_MAY_ALLOCATE
# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
# define FREE_VARIABLES() \
do { \
REGEX_FREE_STACK (fail_stack.stack); \
FREE_VAR (regstart); \
FREE_VAR (regend); \
FREE_VAR (old_regstart); \
FREE_VAR (old_regend); \
FREE_VAR (best_regstart); \
FREE_VAR (best_regend); \
FREE_VAR (reg_info); \
FREE_VAR (reg_dummy); \
FREE_VAR (reg_info_dummy); \
} while (0)
#else
# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
#endif /* not MATCH_MAY_ALLOCATE */
/* This is a separate function so that we can force an alloca cleanup
afterwards. */
sal_Int32
Regexpr::re_match2(struct re_registers *regs, sal_Int32 pos, sal_Int32 range)
{
/* General temporaries. */
sal_Int32 mcnt;
sal_Unicode *p1;
/* Just past the end of the corresponding string. */
sal_Unicode *end2;
/* Pointers into string2, just past the last characters in
each to consider matching. */
sal_Unicode *end_match_2;
/* Where we are in the data, and the end of the current string. */
const sal_Unicode *d, *dend;
/* Where we are in the compiled pattern, and the end of the compiled
pattern. */
sal_Unicode *p = bufp->buffer;
register sal_Unicode *pend = p + bufp->used;
/* Mark the opcode just after a start_memory, so we can test for an
empty subpattern when we get to the stop_memory. */
sal_Unicode *just_past_start_mem = 0;
/* Failure point stack. Each place that can handle a failure further
down the line pushes a failure point on this stack. It consists of
restart, regend, and reg_info for all registers corresponding to
the subexpressions we're currently inside, plus the number of such
registers, and, finally, two sal_Unicode *'s. The first
sal_Unicode * is where to resume scanning the pattern; the second
one is where to resume scanning the strings. If the latter is
zero, the failure point is a ``dummy''; if a failure happens and
the failure point is a dummy, it gets discarded and the next next
one is tried. */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
fail_stack_type fail_stack;
#endif
/* We fill all the registers internally, independent of what we
return, for use in backreferences. The number here includes
an element for register zero. */
size_t num_regs = bufp->re_nsub + 1;
/* The currently active registers. */
sal_uInt32 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
sal_uInt32 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
/* Information on the contents of registers. These are pointers into
the input strings; they record just what was matched (on this
attempt) by a subexpression part of the pattern, that is, the
regnum-th regstart pointer points to where in the pattern we began
matching and the regnum-th regend points to right after where we
stopped matching the regnum-th subexpression. (The zeroth register
keeps track of what the whole pattern matches.) */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
const sal_Unicode **regstart, **regend;
#endif
/* If a group that's operated upon by a repetition operator fails to
match anything, then the register for its start will need to be
restored because it will have been set to wherever in the string we
are when we last see its open-group operator. Similarly for a
register's end. */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
const sal_Unicode **old_regstart, **old_regend;
#endif
/* The is_active field of reg_info helps us keep track of which (possibly
nested) subexpressions we are currently in. The matched_something
field of reg_info[reg_num] helps us tell whether or not we have
matched any of the pattern so far this time through the reg_num-th
subexpression. These two fields get reset each time through any
loop their register is in. */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
register_info_type *reg_info;
#endif
/* The following record the register info as found in the above
variables when we find a match better than any we've seen before.
This happens as we backtrack through the failure points, which in
turn happens only if we have not yet matched the entire string. */
//unsigned best_regs_set = false;
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
const sal_Unicode **best_regstart, **best_regend;
#endif
/* Logically, this is `best_regend[0]'. But we don't want to have to
allocate space for that if we're not allocating space for anything
else (see below). Also, we never need info about register 0 for
any of the other register vectors, and it seems rather a kludge to
treat `best_regend' differently than the rest. So we keep track of
the end of the best match so far in a separate variable. We
initialize this to NULL so that when we backtrack the first time
and need to test it, it's not garbage. */
//const sal_Unicode *match_end = NULL;
/* This helps SET_REGS_MATCHED avoid doing redundant work. */
sal_Int32 set_regs_matched_done = 0;
/* Used when we pop values we don't care about. */
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
const sal_Unicode **reg_dummy;
register_info_type *reg_info_dummy;
#endif
INIT_FAIL_STACK();
#ifdef MATCH_MAY_ALLOCATE
/* Do not bother to initialize all the register variables if there are
no groups in the pattern, as it takes a fair amount of time. If
there are groups, we include space for register 0 (the whole
pattern), even though we never use it, since it simplifies the
array indexing. We should fix this. */
if (bufp->re_nsub)
{
regstart = REGEX_TALLOC (num_regs, const sal_Unicode *);
regend = REGEX_TALLOC (num_regs, const sal_Unicode *);
old_regstart = REGEX_TALLOC (num_regs, const sal_Unicode *);
old_regend = REGEX_TALLOC (num_regs, const sal_Unicode *);
best_regstart = REGEX_TALLOC (num_regs, const sal_Unicode *);
best_regend = REGEX_TALLOC (num_regs, const sal_Unicode *);
reg_info = REGEX_TALLOC (num_regs, register_info_type);
reg_dummy = REGEX_TALLOC (num_regs, const sal_Unicode *);
reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
if (!(regstart && regend && old_regstart && old_regend && reg_info
&& best_regstart && best_regend && reg_dummy && reg_info_dummy))
{
FREE_VARIABLES ();
return -2;
}
}
else
{
/* We must initialize all our variables to NULL, so that
`FREE_VARIABLES' doesn't try to free them. */
regstart = regend = old_regstart = old_regend = best_regstart
= best_regend = reg_dummy = NULL;
reg_info = reg_info_dummy = (register_info_type *) NULL;
}
#endif /* MATCH_MAY_ALLOCATE */
sal_Unicode *string2 = (sal_Unicode *)line;
sal_Int32 size2 = linelen;
sal_Int32 stop = range;
/* The starting position is bogus. */
if (pos < 0 || pos >= size2 || linelen <= 0 ) {
FREE_VARIABLES ();
return(-1);
}
/* Initialize subexpression text positions to -1 to mark ones that no
start_memory/stop_memory has been seen for. Also initialize the
register information struct. */
for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) {
regstart[mcnt] = regend[mcnt]
= old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
IS_ACTIVE (reg_info[mcnt]) = 0;
MATCHED_SOMETHING (reg_info[mcnt]) = 0;
EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
}
end2 = (sal_Unicode *)(string2 + size2);
end_match_2 = (sal_Unicode *)(string2 + stop);
/* `p' scans through the pattern as `d' scans through the data.
`dend' is the end of the input string that `d' points within. `d'
is advanced into the following input string whenever necessary, but
this happens before fetching; therefore, at the beginning of the
loop, `d' can be pointing at the end of a string, but it cannot
equal `string2'. */
d = string2 + pos;
dend = end_match_2;
/* This loops over pattern commands. It exits by returning from the
function if the match is complete, or it drops through if the match
fails at this starting point in the input data. */
for (;;) {
if (p == pend) {
/* End of pattern means we might have succeeded. */
/* If we haven't matched the entire string, and we want the
longest match, try backtracking. */
if (d != end_match_2) {
if (!FAIL_STACK_EMPTY()) {
goto fail;
}
} /* d != end_match_2 */
succeed_label:
/* If caller wants register contents data back, do it. */
if (regs) {
/* Have the register data arrays been allocated? */
if (regs->num_regs == 0) {
/* No. So allocate them with malloc. We need one
extra element beyond `num_regs' for the `-1' marker
GNU code uses. */
regs->num_of_match = 0;
regs->num_regs = MAX(RE_NREGS, num_regs + 1);
regs->start = (sal_Int32 *) malloc(regs->num_regs * sizeof(sal_Int32));
regs->end = (sal_Int32 *) malloc(regs->num_regs * sizeof(sal_Int32));
if (regs->start == NULL || regs->end == NULL) {
FREE_VARIABLES ();
return(-2);
}
} else if ( regs->num_regs > 0 ) {
/* Yes. If we need more elements than were already
allocated, reallocate them. If we need fewer, just
leave it alone. */
if (regs->num_regs < num_regs + 1) {
regs->num_regs = num_regs + 1;
regs->start = (sal_Int32 *) realloc(regs->start, regs->num_regs * sizeof(sal_Int32));
regs->end = (sal_Int32 *) realloc(regs->end, regs->num_regs * sizeof(sal_Int32));
if (regs->start == NULL || regs->end == NULL) {
FREE_VARIABLES ();
return(-2);
}
}
} else { // num_regs is negative
FREE_VARIABLES ();
return(-2);
}
/* Convert the pointer data in `regstart' and `regend' to
indices. Register zero has to be set differently,
since we haven't kept track of any info for it. */
if (regs->num_regs > 0) {
// Make sure a valid location
sal_Int32 dpos = d - string2;
if (pos == dpos || (d - 1) >= dend ) {
FREE_VARIABLES ();
return(-1);
}
regs->start[regs->num_of_match] = pos;
regs->end[regs->num_of_match] = ((sal_Int32) (d - string2));
regs->num_of_match++;
}
/* Go through the first `min (num_regs, regs->num_regs)'
registers, since that is all we initialized. */
for (mcnt = regs->num_of_match; (unsigned) mcnt < MIN(num_regs, regs->num_regs);
mcnt++) {
regs->start[mcnt] = regs->end[mcnt] = -1;
if( !(REG_UNSET(regstart[mcnt]) || REG_UNSET(regend[mcnt])) ) {
regs->start[regs->num_of_match] = (sal_Int32) POINTER_TO_OFFSET(regstart[mcnt]);
regs->end[regs->num_of_match] = (sal_Int32) POINTER_TO_OFFSET(regend[mcnt]);
regs->num_of_match++;
}
}
/* If the regs structure we return has more elements than
were in the pattern, set the extra elements to -1. If
we (re)allocated the registers, this is the case,
because we always allocate enough to have at least one
-1 at the end. */
for (mcnt = regs->num_of_match; (unsigned) mcnt < regs->num_regs; mcnt++)
regs->start[mcnt] = regs->end[mcnt] = -1;
} /* regs */
mcnt = d - pos - string2;
FREE_VARIABLES ();
return(0);
}
/* Otherwise match next pattern command. */
switch ((re_opcode_t) *p++) {
/* Ignore these. Used to ignore the n of succeed_n's which
currently have n == 0. */
case no_op:
break;
case succeed:
goto succeed_label;
/* Match the next n pattern characters exactly. The following
byte in the pattern defines n, and the n bytes after that
are the characters to match. */
case exactn:
mcnt = *p++;
do {
PREFETCH();
if ((sal_Unicode)*d++ != (sal_Unicode) *p++) goto fail;
} while (--mcnt);
SET_REGS_MATCHED();
break;
/* Match any character except possibly a newline or a null. */
case anychar:
PREFETCH();
if ( *d == (sal_Unicode)'\n' ||
*d == (sal_Unicode)'\000' )
goto fail;
SET_REGS_MATCHED();
d++;
break;
case charset:
case charset_not: {
register sal_Unicode c;
sal_Bool knot = (re_opcode_t) *(p - 1) == charset_not;
PREFETCH();
c = *d; /* The character to match. */
/* Cast to `sal_uInt32' instead of `sal_Unicode' in case the
bit list is a full 32 bytes long. */
if ((c < (sal_uInt32) (*p * BYTEWIDTH)) && (p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))))
knot = !knot;
p += 1 + *p;
if (!knot) {
goto fail;
}
SET_REGS_MATCHED();
d++;
break;
}
/* The beginning of a group is represented by start_memory.
The arguments are the register number in the next byte, and the
number of groups inner to this one in the next. The text
matched within the group is recorded (in the internal
registers data structure) under the register number. */
case start_memory:
/* Find out if this group can match the empty string. */
p1 = p; /* To send to group_match_null_string_p. */
if (REG_MATCH_NULL_STRING_P(reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
REG_MATCH_NULL_STRING_P(reg_info[*p]) = group_match_null_string_p(&p1, pend, reg_info);
/* Save the position in the string where we were the last time
we were at this open-group operator in case the group is
operated upon by a repetition operator, e.g., with `(a*)*b'
against `ab'; then we want to ignore where we are now in
the string in case this attempt to match fails. */
old_regstart[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p])
? REG_UNSET(regstart[*p]) ? d : regstart[*p]
: regstart[*p];
regstart[*p] = d;
IS_ACTIVE (reg_info[*p]) = 1;
MATCHED_SOMETHING(reg_info[*p]) = 0;
/* Clear this whenever we change the register activity status. */
set_regs_matched_done = 0;
/* This is the new highest active register. */
highest_active_reg = *p;
/* If nothing was active before, this is the new lowest active
register. */
if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
lowest_active_reg = *p;
/* Move past the register number and inner group count. */
p += 2;
just_past_start_mem = p;
break;
/* The stop_memory opcode represents the end of a group. Its
arguments are the same as start_memory's: the register
number, and the number of inner groups. */
case stop_memory:
/* We need to save the string position the last time we were at
this close-group operator in case the group is operated
upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
against `aba'; then we want to ignore where we are now in
the string in case this attempt to match fails. */
old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
? REG_UNSET(regend[*p]) ? d : regend[*p]
: regend[*p];
regend[*p] = d;
/* This register isn't active anymore. */
IS_ACTIVE(reg_info[*p]) = 0;
/* Clear this whenever we change the register activity status. */
set_regs_matched_done = 0;
/* If this was the only register active, nothing is active
anymore. */
if (lowest_active_reg == highest_active_reg) {
lowest_active_reg = NO_LOWEST_ACTIVE_REG;
highest_active_reg = NO_HIGHEST_ACTIVE_REG;
} else { /* We must scan for the new highest active register, since
it isn't necessarily one less than now: consider
(a(b)c(d(e)f)g). When group 3 ends, after the f), the
new highest active register is 1. */
sal_Unicode r = *p - 1;
while (r > 0 && !IS_ACTIVE (reg_info[r]))
r--;
/* If we end up at register zero, that means that we saved
the registers as the result of an `on_failure_jump', not
a `start_memory', and we jumped to past the innermost
`stop_memory'. For example, in ((.)*) we save
registers 1 and 2 as a result of the *, but when we pop
back to the second ), we are at the stop_memory 1.
Thus, nothing is active. */
if (r == 0) {
lowest_active_reg = NO_LOWEST_ACTIVE_REG;
highest_active_reg = NO_HIGHEST_ACTIVE_REG;
} else
highest_active_reg = r;
}
/* If just failed to match something this time around with a
group that's operated on by a repetition operator, try to
force exit from the ``loop'', and restore the register
information for this group that we had before trying this
last match. */
if ((!MATCHED_SOMETHING (reg_info[*p])
|| just_past_start_mem == p - 1)
&& (p + 2) < pend) {
sal_Bool is_a_jump_n = false;
p1 = p + 2;
mcnt = 0;
switch ((re_opcode_t) *p1++) {
case jump_n:
is_a_jump_n = true;
case pop_failure_jump:
case maybe_pop_jump:
case jump:
case dummy_failure_jump:
extract_number_and_incr(mcnt, p1);
if (is_a_jump_n)
p1 += 2;
break;
default:
/* do nothing */ ;
}
p1 += mcnt;
/* If the next operation is a jump backwards in the pattern
to an on_failure_jump right before the start_memory
corresponding to this stop_memory, exit from the loop
by forcing a failure after pushing on the stack the
on_failure_jump's jump in the pattern, and d. */
if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
&& (re_opcode_t) p1[3] == start_memory && p1[4] == *p) {
/* If this group ever matched anything, then restore
what its registers were before trying this last
failed match, e.g., with `(a*)*b' against `ab' for
regstart[1], and, e.g., with `((a*)*(b*)*)*'
against `aba' for regend[3].
Also restore the registers for inner groups for,
e.g., `((a*)(b*))*' against `aba' (register 3 would
otherwise get trashed). */
if (EVER_MATCHED_SOMETHING (reg_info[*p])) {
unsigned r;
EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
/* Restore this and inner groups' (if any) registers. */
for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
r++) {
regstart[r] = old_regstart[r];
/* xx why this test? */
if (old_regend[r] >= regstart[r])
regend[r] = old_regend[r];
}
}
p1++;
extract_number_and_incr(mcnt, p1);
PUSH_FAILURE_POINT(p1 + mcnt, d, -2);
goto fail;
}
}
/* Move past the register number and the inner group count. */
p += 2;
break;
/* \<digit> has been turned into a `duplicate' command which is
followed by the numeric value of <digit> as the register number. */
case duplicate:
{
register const sal_Unicode *d2, *dend2;
sal_Unicode regno = *p++; /* Get which register to match against. */
/* Can't back reference a group which we've never matched. */
if (REG_UNSET(regstart[regno]) || REG_UNSET(regend[regno])) {
goto fail;
}
/* Where in input to try to start matching. */
d2 = regstart[regno];
/* Where to stop matching; if both the place to start and
the place to stop matching are in the same string, then
set to the place to stop, otherwise, for now have to use
the end of the first string. */
dend2 = regend[regno];
for (;;) {
/* If necessary, advance to next segment in register
contents. */
while (d2 == dend2) {
if (dend2 == end_match_2) break;
if (dend2 == regend[regno]) break;
}
/* At end of register contents => success */
if (d2 == dend2) break;
PREFETCH();
/* How many characters left in this segment to match. */
mcnt = dend - d;
/* Want how many consecutive characters we can match in
one shot, so, if necessary, adjust the count. */
if (mcnt > dend2 - d2)
mcnt = dend2 - d2;
/* Compare that many; failure if mismatch, else move
past them. */
if (translate
? bcmp_translate(d, d2, mcnt)
: memcmp(d, d2, mcnt * sizeof(sal_Unicode))) {
goto fail;
}
d += mcnt, d2 += mcnt;
/* Do this because we've match some characters. */
SET_REGS_MATCHED();
}
}
break;
/* begline matches the empty string at the beginning of the string
(unless `not_bol' is set in `bufp'), and, if
`newline_anchor' is set, after newlines. */
case begline:
if (AT_STRINGS_BEG (d)) {
if (!bufp->not_bol) break;
} else if (d[-1] == '\n' && bufp->newline_anchor) {
break;
}
/* In all other cases, we fail. */
goto fail;
/* endline is the dual of begline. */
case endline:
if (AT_STRINGS_END(d)) {
if (!bufp->not_eol) break;
} else if (*d == '\n' && bufp->newline_anchor) {
break;
}
goto fail;
/* Match at the very beginning of the data. */
case begbuf:
if (AT_STRINGS_BEG (d))
break;
goto fail;
/* Match at the very end of the data. */
case endbuf:
if (AT_STRINGS_END (d))
break;
goto fail;
/* on_failure_keep_string_jump is used to optimize `.*\n'. It
pushes NULL as the value for the string on the stack. Then
`pop_failure_point' will keep the current value for the
string, instead of restoring it. To see why, consider
matching `foo\nbar' against `.*\n'. The .* matches the foo;
then the . fails against the \n. But the next thing we want
to do is match the \n against the \n; if we restored the
string value, we would be back at the foo.
Because this is used only in specific cases, we don't need to
check all the things that `on_failure_jump' does, to make
sure the right things get saved on the stack. Hence we don't
share its code. The only reason to push anything on the
stack at all is that otherwise we would have to change
`anychar's code to do something besides goto fail in this
case; that seems worse than this. */
case on_failure_keep_string_jump:
extract_number_and_incr(mcnt, p);
PUSH_FAILURE_POINT(p + mcnt, NULL, -2);
break;
/* Uses of on_failure_jump:
Each alternative starts with an on_failure_jump that points
to the beginning of the next alternative. Each alternative
except the last ends with a jump that in effect jumps past
the rest of the alternatives. (They really jump to the
ending jump of the following alternative, because tensioning
these jumps is a hassle.)
Repeats start with an on_failure_jump that points past both
the repetition text and either the following jump or
pop_failure_jump back to this on_failure_jump. */
case on_failure_jump:
on_failure:
extract_number_and_incr(mcnt, p);
/* If this on_failure_jump comes right before a group (i.e.,
the original * applied to a group), save the information
for that group and all inner ones, so that if we fail back
to this point, the group's information will be correct.
For example, in \(a*\)*\1, we need the preceding group,
and in \(zz\(a*\)b*\)\2, we need the inner group. */
/* We can't use `p' to check ahead because we push
a failure point to `p + mcnt' after we do this. */
p1 = p;
/* We need to skip no_op's before we look for the
start_memory in case this on_failure_jump is happening as
the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
against aba. */
while (p1 < pend && (re_opcode_t) *p1 == no_op)
p1++;
if (p1 < pend && (re_opcode_t) *p1 == start_memory) {
/* We have a new highest active register now. This will
get reset at the start_memory we are about to get to,
but we will have saved all the registers relevant to
this repetition op, as described above. */
highest_active_reg = *(p1 + 1) + *(p1 + 2);
if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
lowest_active_reg = *(p1 + 1);
}
PUSH_FAILURE_POINT(p + mcnt, d, -2);
break;
/* A smart repeat ends with `maybe_pop_jump'.
We change it to either `pop_failure_jump' or `jump'. */
case maybe_pop_jump:
extract_number_and_incr(mcnt, p);
{
register sal_Unicode *p2 = p;
/* Compare the beginning of the repeat with what in the
pattern follows its end. If we can establish that there
is nothing that they would both match, i.e., that we
would have to backtrack because of (as in, e.g., `a*a')
then we can change to pop_failure_jump, because we'll
never have to backtrack.
This is not true in the case of alternatives: in
`(a|ab)*' we do need to backtrack to the `ab' alternative
(e.g., if the string was `ab'). But instead of trying to
detect that here, the alternative has put on a dummy
failure point which is what we will end up popping. */
/* Skip over open/close-group commands.
If what follows this loop is a ...+ construct,
look at what begins its body, since we will have to
match at least one of that. */
while (1) {
if (p2 + 2 < pend
&& ((re_opcode_t) *p2 == stop_memory
|| (re_opcode_t) *p2 == start_memory))
p2 += 3;
else if (p2 + 6 < pend
&& (re_opcode_t) *p2 == dummy_failure_jump)
p2 += 6;
else
break;
}
p1 = p + mcnt;
/* p1[0] ... p1[2] are the `on_failure_jump' corresponding
to the `maybe_finalize_jump' of this case. Examine what
follows. */
/* If we're at the end of the pattern, we can change. */
if (p2 == pend) {
/* Consider what happens when matching ":\(.*\)"
against ":/". I don't really understand this code
yet. */
p[-3] = (sal_Unicode) pop_failure_jump;
} else if ((re_opcode_t) *p2 == exactn
|| (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) {
register sal_Unicode c = *p2 == (sal_Unicode) endline ? (sal_Unicode)'\n' : p2[2];
if ((re_opcode_t) p1[3] == exactn && p1[5] != c) {
p[-3] = (sal_Unicode) pop_failure_jump;
} else if ((re_opcode_t) p1[3] == charset
|| (re_opcode_t) p1[3] == charset_not) {
sal_Int32 knot = (re_opcode_t) p1[3] == charset_not;
if (c < (sal_Unicode) (p1[4] * BYTEWIDTH)
&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
knot = !knot;
/* `not' is equal to 1 if c would match, which means
that we can't change to pop_failure_jump. */
if (!knot) {
p[-3] = (unsigned char) pop_failure_jump;
}
}
} else if ((re_opcode_t) *p2 == charset) {
/* We win if the first character of the loop is not part
of the charset. */
if ((re_opcode_t) p1[3] == exactn
&& ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
&& (p2[2 + p1[5] / BYTEWIDTH]
& (1 << (p1[5] % BYTEWIDTH))))) {
p[-3] = (sal_Unicode) pop_failure_jump;
} else if ((re_opcode_t) p1[3] == charset_not) {
sal_Int32 idx;
/* We win if the charset_not inside the loop
lists every character listed in the charset after. */
for (idx = 0; idx < (int) p2[1]; idx++)
if (! (p2[2 + idx] == 0
|| (idx < (int) p1[4]
&& ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
break;
if (idx == p2[1]) {
p[-3] = (sal_Unicode) pop_failure_jump;
}
} else if ((re_opcode_t) p1[3] == charset) {
sal_Int32 idx;
/* We win if the charset inside the loop
has no overlap with the one after the loop. */
for (idx = 0;
idx < (sal_Int32) p2[1] && idx < (sal_Int32) p1[4];
idx++)
if ((p2[2 + idx] & p1[5 + idx]) != 0)
break;
if (idx == p2[1] || idx == p1[4]) {
p[-3] = (sal_Unicode) pop_failure_jump;
}
}
}
}
p -= 2; /* Point at relative address again. */
if ((re_opcode_t) p[-1] != pop_failure_jump) {
p[-1] = (sal_Unicode) jump;
goto unconditional_jump;
}
/* Note fall through. */
/* The end of a simple repeat has a pop_failure_jump back to
its matching on_failure_jump, where the latter will push a
failure point. The pop_failure_jump takes off failure
points put on by this pop_failure_jump's matching
on_failure_jump; we got through the pattern to here from the
matching on_failure_jump, so didn't fail. */
case pop_failure_jump:
{
/* We need to pass separate storage for the lowest and
highest registers, even though we don't care about the
actual values. Otherwise, we will restore only one
register from the stack, since lowest will == highest in
`pop_failure_point'. */
sal_uInt32 dummy_low_reg, dummy_high_reg;
sal_Unicode *pdummy = NULL;
const sal_Unicode *sdummy = NULL;
POP_FAILURE_POINT(sdummy, pdummy,
dummy_low_reg, dummy_high_reg,
reg_dummy, reg_dummy, reg_info_dummy);
(void)sdummy;
(void)pdummy;
}
/* Note fall through. */
unconditional_jump:
/* Note fall through. */
/* Unconditionally jump (without popping any failure points). */
case jump:
extract_number_and_incr(mcnt, p); /* Get the amount to jump. */
p += mcnt; /* Do the jump. */
break;
/* We need this opcode so we can detect where alternatives end
in `group_match_null_string_p' et al. */
case jump_past_alt:
goto unconditional_jump;
/* Normally, the on_failure_jump pushes a failure point, which
then gets popped at pop_failure_jump. We will end up at
pop_failure_jump, also, and with a pattern of, say, `a+', we
are skipping over the on_failure_jump, so we have to push
something meaningless for pop_failure_jump to pop. */
case dummy_failure_jump:
/* It doesn't matter what we push for the string here. What
the code at `fail' tests is the value for the pattern. */
PUSH_FAILURE_POINT(NULL, NULL, -2);
goto unconditional_jump;
/* At the end of an alternative, we need to push a dummy failure
point in case we are followed by a `pop_failure_jump', because
we don't want the failure point for the alternative to be
popped. For example, matching `(a|ab)*' against `aab'
requires that we match the `ab' alternative. */
case push_dummy_failure:
/* See comments just above at `dummy_failure_jump' about the
two zeroes. */
PUSH_FAILURE_POINT(NULL, NULL, -2);
break;
/* Have to succeed matching what follows at least n times.
After that, handle like `on_failure_jump'. */
case succeed_n:
extract_number(mcnt, p + 2);
assert (mcnt >= 0);
/* Originally, this is how many times we HAVE to succeed. */
if (mcnt > 0) {
mcnt--;
p += 2;
store_number_and_incr (p, mcnt);
} else if (mcnt == 0) {
p[2] = (sal_Unicode) no_op;
p[3] = (sal_Unicode) no_op;
goto on_failure;
}
break;
case jump_n:
extract_number(mcnt, p + 2);
/* Originally, this is how many times we CAN jump. */
if (mcnt) {
mcnt--;
store_number (p + 2, mcnt);
goto unconditional_jump;
}
/* If don't have to jump any more, skip over the rest of command. */
else
p += 4;
break;
case set_number_at:
{
extract_number_and_incr(mcnt, p);
p1 = p + mcnt;
extract_number_and_incr(mcnt, p);
store_number (p1, mcnt);
break;
}
case wordbeg:
if (iswordbegin(d, string2, size2))
break;
goto fail;
case wordend:
if (iswordend(d, string2, size2))
break;
goto fail;
default:
abort();
}
continue; /* Successfully executed one pattern command; keep going. */
/* We goto here if a matching operation fails. */
fail:
if (!FAIL_STACK_EMPTY()) {
/* A restart point is known. Restore to that state. */
POP_FAILURE_POINT(d, p,
lowest_active_reg, highest_active_reg,
regstart, regend, reg_info);
/* If this failure point is a dummy, try the next one. */
if (!p)
goto fail;
/* If we failed to the end of the pattern, don't examine *p. */
assert(p <= pend);
if (p < pend) {
sal_Bool is_a_jump_n = false;
/* If failed to a backwards jump that's part of a repetition
loop, need to pop this failure point and use the next
one. */
switch ((re_opcode_t) *p) {
case jump_n:
is_a_jump_n = true;
case maybe_pop_jump:
case pop_failure_jump:
case jump:
p1 = p + 1;
extract_number_and_incr(mcnt, p1);
p1 += mcnt;
if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
|| (!is_a_jump_n
&& (re_opcode_t) *p1 == on_failure_jump)) {
goto fail;
}
break;
default:
/* do nothing */ ;
}
}
} else {
break; /* Matching at this starting point really fails. */
}
} /* for (;;) */
FREE_VARIABLES ();
return(-1); /* Failure to match. */
} /* re_match2 */
/* Set the bit for character C in a list. */
void
Regexpr::set_list_bit(sal_Unicode c, sal_Unicode *b)
{
if ( translate ) {
try {
sal_Unicode tmp = translit->transliterateChar2Char(c);
b[tmp / BYTEWIDTH] |= 1 << (tmp % BYTEWIDTH);
} catch (const ::com::sun::star::i18n::MultipleCharsOutputException&) {
::rtl::OUString o2( translit->transliterateChar2String( c));
sal_Int32 len2 = o2.getLength();
const sal_Unicode * k2 = o2.getStr();
for (sal_Int32 nmatch = 0; nmatch < len2; nmatch++) {
b[k2[nmatch] / BYTEWIDTH] |= 1 << (k2[nmatch] % BYTEWIDTH);
}
}
} else {
b[c / BYTEWIDTH] |= 1 << (c % BYTEWIDTH);
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|