1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <rtl/math.h>
#include <osl/diagnose.h>
#include <rtl/character.hxx>
#include <rtl/math.hxx>
#include <algorithm>
#include <cassert>
#include <cfenv>
#include <cmath>
#include <float.h>
#include <limits>
#include <limits.h>
#include <math.h>
#include <memory>
#include <stdlib.h>
#include <dtoa.h>
constexpr int minExp = -323, maxExp = 308;
constexpr double n10s[] = {
1e-323, 1e-322, 1e-321, 1e-320, 1e-319, 1e-318, 1e-317, 1e-316, 1e-315, 1e-314, 1e-313, 1e-312,
1e-311, 1e-310, 1e-309, 1e-308, 1e-307, 1e-306, 1e-305, 1e-304, 1e-303, 1e-302, 1e-301, 1e-300,
1e-299, 1e-298, 1e-297, 1e-296, 1e-295, 1e-294, 1e-293, 1e-292, 1e-291, 1e-290, 1e-289, 1e-288,
1e-287, 1e-286, 1e-285, 1e-284, 1e-283, 1e-282, 1e-281, 1e-280, 1e-279, 1e-278, 1e-277, 1e-276,
1e-275, 1e-274, 1e-273, 1e-272, 1e-271, 1e-270, 1e-269, 1e-268, 1e-267, 1e-266, 1e-265, 1e-264,
1e-263, 1e-262, 1e-261, 1e-260, 1e-259, 1e-258, 1e-257, 1e-256, 1e-255, 1e-254, 1e-253, 1e-252,
1e-251, 1e-250, 1e-249, 1e-248, 1e-247, 1e-246, 1e-245, 1e-244, 1e-243, 1e-242, 1e-241, 1e-240,
1e-239, 1e-238, 1e-237, 1e-236, 1e-235, 1e-234, 1e-233, 1e-232, 1e-231, 1e-230, 1e-229, 1e-228,
1e-227, 1e-226, 1e-225, 1e-224, 1e-223, 1e-222, 1e-221, 1e-220, 1e-219, 1e-218, 1e-217, 1e-216,
1e-215, 1e-214, 1e-213, 1e-212, 1e-211, 1e-210, 1e-209, 1e-208, 1e-207, 1e-206, 1e-205, 1e-204,
1e-203, 1e-202, 1e-201, 1e-200, 1e-199, 1e-198, 1e-197, 1e-196, 1e-195, 1e-194, 1e-193, 1e-192,
1e-191, 1e-190, 1e-189, 1e-188, 1e-187, 1e-186, 1e-185, 1e-184, 1e-183, 1e-182, 1e-181, 1e-180,
1e-179, 1e-178, 1e-177, 1e-176, 1e-175, 1e-174, 1e-173, 1e-172, 1e-171, 1e-170, 1e-169, 1e-168,
1e-167, 1e-166, 1e-165, 1e-164, 1e-163, 1e-162, 1e-161, 1e-160, 1e-159, 1e-158, 1e-157, 1e-156,
1e-155, 1e-154, 1e-153, 1e-152, 1e-151, 1e-150, 1e-149, 1e-148, 1e-147, 1e-146, 1e-145, 1e-144,
1e-143, 1e-142, 1e-141, 1e-140, 1e-139, 1e-138, 1e-137, 1e-136, 1e-135, 1e-134, 1e-133, 1e-132,
1e-131, 1e-130, 1e-129, 1e-128, 1e-127, 1e-126, 1e-125, 1e-124, 1e-123, 1e-122, 1e-121, 1e-120,
1e-119, 1e-118, 1e-117, 1e-116, 1e-115, 1e-114, 1e-113, 1e-112, 1e-111, 1e-110, 1e-109, 1e-108,
1e-107, 1e-106, 1e-105, 1e-104, 1e-103, 1e-102, 1e-101, 1e-100, 1e-99, 1e-98, 1e-97, 1e-96,
1e-95, 1e-94, 1e-93, 1e-92, 1e-91, 1e-90, 1e-89, 1e-88, 1e-87, 1e-86, 1e-85, 1e-84,
1e-83, 1e-82, 1e-81, 1e-80, 1e-79, 1e-78, 1e-77, 1e-76, 1e-75, 1e-74, 1e-73, 1e-72,
1e-71, 1e-70, 1e-69, 1e-68, 1e-67, 1e-66, 1e-65, 1e-64, 1e-63, 1e-62, 1e-61, 1e-60,
1e-59, 1e-58, 1e-57, 1e-56, 1e-55, 1e-54, 1e-53, 1e-52, 1e-51, 1e-50, 1e-49, 1e-48,
1e-47, 1e-46, 1e-45, 1e-44, 1e-43, 1e-42, 1e-41, 1e-40, 1e-39, 1e-38, 1e-37, 1e-36,
1e-35, 1e-34, 1e-33, 1e-32, 1e-31, 1e-30, 1e-29, 1e-28, 1e-27, 1e-26, 1e-25, 1e-24,
1e-23, 1e-22, 1e-21, 1e-20, 1e-19, 1e-18, 1e-17, 1e-16, 1e-15, 1e-14, 1e-13, 1e-12,
1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0,
1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12,
1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22, 1e23, 1e24,
1e25, 1e26, 1e27, 1e28, 1e29, 1e30, 1e31, 1e32, 1e33, 1e34, 1e35, 1e36,
1e37, 1e38, 1e39, 1e40, 1e41, 1e42, 1e43, 1e44, 1e45, 1e46, 1e47, 1e48,
1e49, 1e50, 1e51, 1e52, 1e53, 1e54, 1e55, 1e56, 1e57, 1e58, 1e59, 1e60,
1e61, 1e62, 1e63, 1e64, 1e65, 1e66, 1e67, 1e68, 1e69, 1e70, 1e71, 1e72,
1e73, 1e74, 1e75, 1e76, 1e77, 1e78, 1e79, 1e80, 1e81, 1e82, 1e83, 1e84,
1e85, 1e86, 1e87, 1e88, 1e89, 1e90, 1e91, 1e92, 1e93, 1e94, 1e95, 1e96,
1e97, 1e98, 1e99, 1e100, 1e101, 1e102, 1e103, 1e104, 1e105, 1e106, 1e107, 1e108,
1e109, 1e110, 1e111, 1e112, 1e113, 1e114, 1e115, 1e116, 1e117, 1e118, 1e119, 1e120,
1e121, 1e122, 1e123, 1e124, 1e125, 1e126, 1e127, 1e128, 1e129, 1e130, 1e131, 1e132,
1e133, 1e134, 1e135, 1e136, 1e137, 1e138, 1e139, 1e140, 1e141, 1e142, 1e143, 1e144,
1e145, 1e146, 1e147, 1e148, 1e149, 1e150, 1e151, 1e152, 1e153, 1e154, 1e155, 1e156,
1e157, 1e158, 1e159, 1e160, 1e161, 1e162, 1e163, 1e164, 1e165, 1e166, 1e167, 1e168,
1e169, 1e170, 1e171, 1e172, 1e173, 1e174, 1e175, 1e176, 1e177, 1e178, 1e179, 1e180,
1e181, 1e182, 1e183, 1e184, 1e185, 1e186, 1e187, 1e188, 1e189, 1e190, 1e191, 1e192,
1e193, 1e194, 1e195, 1e196, 1e197, 1e198, 1e199, 1e200, 1e201, 1e202, 1e203, 1e204,
1e205, 1e206, 1e207, 1e208, 1e209, 1e210, 1e211, 1e212, 1e213, 1e214, 1e215, 1e216,
1e217, 1e218, 1e219, 1e220, 1e221, 1e222, 1e223, 1e224, 1e225, 1e226, 1e227, 1e228,
1e229, 1e230, 1e231, 1e232, 1e233, 1e234, 1e235, 1e236, 1e237, 1e238, 1e239, 1e240,
1e241, 1e242, 1e243, 1e244, 1e245, 1e246, 1e247, 1e248, 1e249, 1e250, 1e251, 1e252,
1e253, 1e254, 1e255, 1e256, 1e257, 1e258, 1e259, 1e260, 1e261, 1e262, 1e263, 1e264,
1e265, 1e266, 1e267, 1e268, 1e269, 1e270, 1e271, 1e272, 1e273, 1e274, 1e275, 1e276,
1e277, 1e278, 1e279, 1e280, 1e281, 1e282, 1e283, 1e284, 1e285, 1e286, 1e287, 1e288,
1e289, 1e290, 1e291, 1e292, 1e293, 1e294, 1e295, 1e296, 1e297, 1e298, 1e299, 1e300,
1e301, 1e302, 1e303, 1e304, 1e305, 1e306, 1e307, 1e308,
};
static_assert(SAL_N_ELEMENTS(n10s) == maxExp - minExp + 1);
// return pow(10.0,nExp) optimized for exponents in the interval [-323,308] (i.e., incl. denormals)
static double getN10Exp(int nExp)
{
if (nExp < minExp || nExp > maxExp)
return pow(10.0, static_cast<double>(nExp)); // will return 0 or INF with IEEE 754
return n10s[nExp - minExp];
}
namespace {
double const nCorrVal[] = {
0, 9e-1, 9e-2, 9e-3, 9e-4, 9e-5, 9e-6, 9e-7, 9e-8,
9e-9, 9e-10, 9e-11, 9e-12, 9e-13, 9e-14, 9e-15
};
struct StringTraits
{
typedef char Char;
typedef rtl_String String;
static void createString(rtl_String ** pString,
char const * pChars, sal_Int32 nLen)
{
rtl_string_newFromStr_WithLength(pString, pChars, nLen);
}
static void createBuffer(rtl_String ** pBuffer,
const sal_Int32 * pCapacity)
{
rtl_string_new_WithLength(pBuffer, *pCapacity);
}
static void appendChars(rtl_String ** pBuffer, sal_Int32 * pCapacity,
sal_Int32 * pOffset, char const * pChars,
sal_Int32 nLen)
{
assert(pChars);
rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen);
*pOffset += nLen;
}
static void appendAscii(rtl_String ** pBuffer, sal_Int32 * pCapacity,
sal_Int32 * pOffset, char const * pStr,
sal_Int32 nLen)
{
assert(pStr);
rtl_stringbuffer_insert(pBuffer, pCapacity, *pOffset, pStr, nLen);
*pOffset += nLen;
}
};
struct UStringTraits
{
typedef sal_Unicode Char;
typedef rtl_uString String;
static void createString(rtl_uString ** pString,
sal_Unicode const * pChars, sal_Int32 nLen)
{
rtl_uString_newFromStr_WithLength(pString, pChars, nLen);
}
static void createBuffer(rtl_uString ** pBuffer,
const sal_Int32 * pCapacity)
{
rtl_uString_new_WithLength(pBuffer, *pCapacity);
}
static void appendChars(rtl_uString ** pBuffer,
sal_Int32 * pCapacity, sal_Int32 * pOffset,
sal_Unicode const * pChars, sal_Int32 nLen)
{
assert(pChars);
rtl_uStringbuffer_insert(pBuffer, pCapacity, *pOffset, pChars, nLen);
*pOffset += nLen;
}
static void appendAscii(rtl_uString ** pBuffer,
sal_Int32 * pCapacity, sal_Int32 * pOffset,
char const * pStr, sal_Int32 nLen)
{
rtl_uStringbuffer_insert_ascii(pBuffer, pCapacity, *pOffset, pStr,
nLen);
*pOffset += nLen;
}
};
/** If value (passed as absolute value) is an integer representable as double,
which we handle explicitly at some places.
*/
bool isRepresentableInteger(double fAbsValue)
{
assert(fAbsValue >= 0.0);
const sal_Int64 kMaxInt = (static_cast< sal_Int64 >(1) << 53) - 1;
if (fAbsValue <= static_cast< double >(kMaxInt))
{
sal_Int64 nInt = static_cast< sal_Int64 >(fAbsValue);
// Check the integer range again because double comparison may yield
// true within the precision range.
// XXX loplugin:fpcomparison complains about floating-point comparison
// for static_cast<double>(nInt) == fAbsValue, though we actually want
// this here.
if (nInt > kMaxInt)
return false;
double fInt = static_cast< double >(nInt);
return !(fInt < fAbsValue) && !(fInt > fAbsValue);
}
return false;
}
// Returns 1-based index of least significant bit in a number, or zero if number is zero
int findFirstSetBit(unsigned n)
{
#if defined _WIN32
unsigned long pos;
unsigned char bNonZero = _BitScanForward(&pos, n);
return (bNonZero == 0) ? 0 : pos + 1;
#else
return __builtin_ffs(n);
#endif
}
/** Returns number of binary bits for fractional part of the number
Expects a proper non-negative double value, not +-INF, not NAN
*/
int getBitsInFracPart(double fAbsValue)
{
assert(std::isfinite(fAbsValue) && fAbsValue >= 0.0);
if (fAbsValue == 0.0)
return 0;
auto pValParts = reinterpret_cast< const sal_math_Double * >(&fAbsValue);
int nExponent = pValParts->inf_parts.exponent - 1023;
if (nExponent >= 52)
return 0; // All bits in fraction are in integer part of the number
int nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_lo);
if (nLeastSignificant == 0)
{
nLeastSignificant = findFirstSetBit(pValParts->inf_parts.fraction_hi);
if (nLeastSignificant == 0)
nLeastSignificant = 53; // the implied leading 1 is the least significant
else
nLeastSignificant += 32;
}
int nFracSignificant = 53 - nLeastSignificant;
int nBitsInFracPart = nFracSignificant - nExponent;
return std::max(nBitsInFracPart, 0);
}
template< typename T >
void doubleToString(typename T::String ** pResult,
sal_Int32 * pResultCapacity, sal_Int32 nResultOffset,
double fValue, rtl_math_StringFormat eFormat,
sal_Int32 nDecPlaces, typename T::Char cDecSeparator,
sal_Int32 const * pGroups,
typename T::Char cGroupSeparator,
bool bEraseTrailingDecZeros)
{
static double const nRoundVal[] = {
5.0e+0, 0.5e+0, 0.5e-1, 0.5e-2, 0.5e-3, 0.5e-4, 0.5e-5, 0.5e-6,
0.5e-7, 0.5e-8, 0.5e-9, 0.5e-10,0.5e-11,0.5e-12,0.5e-13,0.5e-14
};
// sign adjustment, instead of testing for fValue<0.0 this will also fetch
// -0.0
bool bSign = std::signbit(fValue);
if (bSign)
fValue = -fValue;
if (std::isnan(fValue))
{
// #i112652# XMLSchema-2
sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("NaN");
if (!pResultCapacity)
{
pResultCapacity = &nCapacity;
T::createBuffer(pResult, pResultCapacity);
nResultOffset = 0;
}
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
RTL_CONSTASCII_STRINGPARAM("NaN"));
return;
}
bool bHuge = fValue == HUGE_VAL; // g++ 3.0.1 requires it this way...
if (bHuge || std::isinf(fValue))
{
// #i112652# XMLSchema-2
sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH("-INF");
if (!pResultCapacity)
{
pResultCapacity = &nCapacity;
T::createBuffer(pResult, pResultCapacity);
nResultOffset = 0;
}
if ( bSign )
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
RTL_CONSTASCII_STRINGPARAM("-"));
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
RTL_CONSTASCII_STRINGPARAM("INF"));
return;
}
// Unfortunately the old rounding below writes 1.79769313486232e+308 for
// DBL_MAX and 4 subsequent nextafter(...,0).
static const double fB1 = std::nextafter( DBL_MAX, 0);
static const double fB2 = std::nextafter( fB1, 0);
static const double fB3 = std::nextafter( fB2, 0);
static const double fB4 = std::nextafter( fB3, 0);
if ((fValue >= fB4) && eFormat != rtl_math_StringFormat_F)
{
// 1.7976931348623157e+308 instead of rounded 1.79769313486232e+308
// that can't be converted back as out of range. For rounded values if
// they exceed range they should not be written to exchange strings or
// file formats.
// Writing pDig up to decimals(-1,-2) then appending one digit from
// pRou xor one or two digits from pSlot[].
constexpr char pDig[] = "7976931348623157";
constexpr char pRou[] = "8087931359623267"; // the only up-carry is 80
static_assert(SAL_N_ELEMENTS(pDig) == SAL_N_ELEMENTS(pRou), "digit count mismatch");
constexpr sal_Int32 nDig2 = RTL_CONSTASCII_LENGTH(pRou) - 2;
sal_Int32 nCapacity = RTL_CONSTASCII_LENGTH(pRou) + 8; // + "-1.E+308"
const char pSlot[5][2][3] =
{ // rounded, not
"67", "57", // DBL_MAX
"65", "55",
"53", "53",
"51", "51",
"59", "49",
};
if (!pResultCapacity)
{
pResultCapacity = &nCapacity;
T::createBuffer(pResult, pResultCapacity);
nResultOffset = 0;
}
if (bSign)
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
RTL_CONSTASCII_STRINGPARAM("-"));
nDecPlaces = std::clamp<sal_Int32>( nDecPlaces, 0, RTL_CONSTASCII_LENGTH(pRou));
if (nDecPlaces == 0)
{
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
RTL_CONSTASCII_STRINGPARAM("2"));
}
else
{
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
RTL_CONSTASCII_STRINGPARAM("1"));
T::appendChars(pResult, pResultCapacity, &nResultOffset, &cDecSeparator, 1);
if (nDecPlaces <= 2)
{
T::appendAscii(pResult, pResultCapacity, &nResultOffset, pRou, nDecPlaces);
}
else if (nDecPlaces <= nDig2)
{
T::appendAscii(pResult, pResultCapacity, &nResultOffset, pDig, nDecPlaces - 1);
T::appendAscii(pResult, pResultCapacity, &nResultOffset, pRou + nDecPlaces - 1, 1);
}
else
{
const sal_Int32 nDec = nDecPlaces - nDig2;
nDecPlaces -= nDec;
// nDec-1 is also offset into slot, rounded(1-1=0) or not(2-1=1)
const size_t nSlot = ((fValue < fB3) ? 4 : ((fValue < fB2) ? 3
: ((fValue < fB1) ? 2 : ((fValue < DBL_MAX) ? 1 : 0))));
T::appendAscii(pResult, pResultCapacity, &nResultOffset, pDig, nDecPlaces);
T::appendAscii(pResult, pResultCapacity, &nResultOffset, pSlot[nSlot][nDec-1], nDec);
}
}
T::appendAscii(pResult, pResultCapacity, &nResultOffset,
RTL_CONSTASCII_STRINGPARAM("E+308"));
return;
}
// Use integer representation for integer values that fit into the
// mantissa (1.((2^53)-1)) with a precision of 1 for highest accuracy.
if ((eFormat == rtl_math_StringFormat_Automatic ||
eFormat == rtl_math_StringFormat_F) && isRepresentableInteger(fValue))
{
sal_Int64 nInt = static_cast< sal_Int64 >(fValue);
if (nDecPlaces == rtl_math_DecimalPlaces_Max)
nDecPlaces = 0;
else
nDecPlaces = ::std::clamp< sal_Int32 >(nDecPlaces, -15, 15);
if (bEraseTrailingDecZeros && nDecPlaces > 0)
nDecPlaces = 0;
// Round before decimal position.
if (nDecPlaces < 0)
{
sal_Int64 nRounding = static_cast< sal_Int64 >(getN10Exp(-nDecPlaces - 1));
const sal_Int64 nTemp = (nInt / nRounding + 5) / 10;
nInt = nTemp * 10 * nRounding;
}
// Max 1 sign, 16 integer digits, 15 group separators, 1 decimal
// separator, 15 decimals digits.
typename T::Char aBuf[64];
typename T::Char* pEnd = aBuf + 40;
typename T::Char* pStart = pEnd;
// Backward fill.
sal_Int32 nGrouping = cGroupSeparator && pGroups ? *pGroups : 0;
sal_Int32 nGroupDigits = 0;
do
{
typename T::Char nDigit = nInt % 10;
nInt /= 10;
*--pStart = nDigit + '0';
if (nGrouping && nGrouping == ++nGroupDigits && nInt)
{
*--pStart = cGroupSeparator;
if (*(pGroups + 1))
nGrouping = *++pGroups;
nGroupDigits = 0;
}
}
while (nInt);
if (bSign)
*--pStart = '-';
// Append decimals.
if (nDecPlaces > 0)
{
*pEnd++ = cDecSeparator;
pEnd = std::fill_n(pEnd, nDecPlaces, '0');
}
if (!pResultCapacity)
T::createString(pResult, pStart, pEnd - pStart);
else
T::appendChars(pResult, pResultCapacity, &nResultOffset, pStart, pEnd - pStart);
return;
}
// find the exponent
int nExp = 0;
if ( fValue > 0.0 )
{
// Cap nExp at a small value beyond which "fValue /= N10Exp" would lose precision (or N10Exp
// might even be zero); that will produce output with the decimal point in a non-normalized
// position, but the current quality of output for such small values is probably abysmal,
// anyway:
nExp = std::max(
static_cast< int >(floor(log10(fValue))), std::numeric_limits<double>::min_exponent10);
double const N10Exp = getN10Exp(nExp);
assert(N10Exp != 0);
fValue /= N10Exp;
}
switch (eFormat)
{
case rtl_math_StringFormat_Automatic:
{ // E or F depending on exponent magnitude
int nPrec;
if (nExp <= -15 || nExp >= 15) // was <-16, >16 in ancient versions, which leads to inaccuracies
{
nPrec = 14;
eFormat = rtl_math_StringFormat_E;
}
else
{
if (nExp < 14)
{
nPrec = 15 - nExp - 1;
eFormat = rtl_math_StringFormat_F;
}
else
{
nPrec = 15;
eFormat = rtl_math_StringFormat_F;
}
}
if (nDecPlaces == rtl_math_DecimalPlaces_Max)
nDecPlaces = nPrec;
}
break;
case rtl_math_StringFormat_G :
case rtl_math_StringFormat_G1 :
case rtl_math_StringFormat_G2 :
{ // G-Point, similar to sprintf %G
if (nDecPlaces == rtl_math_DecimalPlaces_DefaultSignificance)
nDecPlaces = 6;
if (nExp < -4 || nExp >= nDecPlaces)
{
nDecPlaces = std::max< sal_Int32 >(1, nDecPlaces - 1);
if (eFormat == rtl_math_StringFormat_G)
eFormat = rtl_math_StringFormat_E;
else if (eFormat == rtl_math_StringFormat_G2)
eFormat = rtl_math_StringFormat_E2;
else if (eFormat == rtl_math_StringFormat_G1)
eFormat = rtl_math_StringFormat_E1;
}
else
{
nDecPlaces = std::max< sal_Int32 >(0, nDecPlaces - nExp - 1);
eFormat = rtl_math_StringFormat_F;
}
}
break;
default:
break;
}
// Too large values for nDecPlaces make no sense; it might also be
// rtl_math_DecimalPlaces_Max was passed with rtl_math_StringFormat_F or
// others, but we don't want to allocate/deallocate 2GB just to fill it
// with trailing '0' characters..
nDecPlaces = std::clamp<sal_Int32>(nDecPlaces, -20, 20);
sal_Int32 nDigits = nDecPlaces + 1;
if (eFormat == rtl_math_StringFormat_F)
nDigits += nExp;
// Round the number
if(nDigits >= 0)
{
fValue += nRoundVal[std::min<sal_Int32>(nDigits, 15)];
if (fValue >= 10)
{
fValue = 1.0;
nExp++;
if (eFormat == rtl_math_StringFormat_F)
nDigits++;
}
}
sal_Int32 nBuf =
(nDigits <= 0 ? std::max< sal_Int32 >(nDecPlaces, abs(nExp))
: nDigits + nDecPlaces ) + 10 + (pGroups ? abs(nDigits) * 2 : 0);
// max(nDigits) = max(nDecPlaces) + 1 + max(nExp) + 1 = 20 + 1 + 308 + 1 = 330
// max(nBuf) = max(nDigits) + max(nDecPlaces) + 10 + max(nDigits) * 2 = 330 * 3 + 20 + 10 = 1020
assert(nBuf <= 1024);
typename T::Char* pBuf = static_cast<typename T::Char*>(alloca(nBuf * sizeof(typename T::Char)));
typename T::Char * p = pBuf;
if ( bSign )
*p++ = '-';
bool bHasDec = false;
int nDecPos;
// Check for F format and number < 1
if(eFormat == rtl_math_StringFormat_F)
{
if(nExp < 0)
{
*p++ = '0';
if (nDecPlaces > 0)
{
*p++ = cDecSeparator;
bHasDec = true;
}
sal_Int32 i = (nDigits <= 0 ? nDecPlaces : -nExp - 1);
while((i--) > 0)
{
*p++ = '0';
}
nDecPos = 0;
}
else
{
nDecPos = nExp + 1;
}
}
else
{
nDecPos = 1;
}
int nGrouping = 0, nGroupSelector = 0, nGroupExceed = 0;
if (nDecPos > 1 && pGroups && pGroups[0] && cGroupSeparator)
{
while (nGrouping + pGroups[nGroupSelector] < nDecPos)
{
nGrouping += pGroups[nGroupSelector];
if (pGroups[nGroupSelector+1])
{
if (nGrouping + pGroups[nGroupSelector+1] >= nDecPos)
break; // while
++nGroupSelector;
}
else if (!nGroupExceed)
{
nGroupExceed = nGrouping;
}
}
}
// print the number
if (nDigits > 0)
{
for (int i = 0; ; i++)
{
if (i < 15) // was 16 in ancient versions, which leads to inaccuracies
{
int nDigit;
if (nDigits-1 == 0 && i > 0 && i < 14)
nDigit = floor( fValue + nCorrVal[15-i]);
else
nDigit = fValue + 1E-15;
if (nDigit >= 10)
{ // after-treatment of up-rounding to the next decade
typename T::Char* p1 = pBuf;
// Assert that no one changed the logic we rely on.
assert(!bSign || *p1 == '-');
// Do not touch leading minus sign put earlier.
if (bSign)
++p1;
assert(p1 <= p);
if (p1 == p)
{
*p++ = '1';
if (eFormat != rtl_math_StringFormat_F)
{
*p++ = cDecSeparator;
nExp++;
bHasDec = true;
}
*p++ = '0';
}
else
{
for (typename T::Char* p2 = p - 1; p2 >= p1; --p2)
{
typename T::Char cS = *p2;
if (cS == cDecSeparator)
continue;
if (cS != '9')
{
++*p2;
break;
}
*p2 = '0';
if (p2 == p1) // The number consisted of all 9s replaced to all 0s
{
if (eFormat == rtl_math_StringFormat_F)
{ // move everything to the right before inserting '1'
std::memmove(p2 + 1, p2, (p++ - p2) * sizeof(*p));
}
else
{
nExp++;
}
*p2 = '1';
}
}
*p++ = '0';
}
fValue = 0.0;
}
else
{
*p++ = nDigit + '0';
fValue = (fValue - nDigit) * 10.0;
}
}
else
{
*p++ = '0';
}
if (!--nDigits)
break; // for
if (nDecPos)
{
if(!--nDecPos)
{
*p++ = cDecSeparator;
bHasDec = true;
}
else if (nDecPos == nGrouping)
{
*p++ = cGroupSeparator;
nGrouping -= pGroups[nGroupSelector];
if (nGroupSelector && nGrouping < nGroupExceed)
--nGroupSelector;
}
}
}
}
if (!bHasDec && eFormat == rtl_math_StringFormat_F)
{ // nDecPlaces < 0 did round the value
while (--nDecPos > 0)
{ // fill before decimal point
if (nDecPos == nGrouping)
{
*p++ = cGroupSeparator;
nGrouping -= pGroups[nGroupSelector];
if (nGroupSelector && nGrouping < nGroupExceed)
--nGroupSelector;
}
*p++ = '0';
}
}
if (bEraseTrailingDecZeros && bHasDec && p > pBuf)
{
while (*(p-1) == '0')
{
p--;
}
if (*(p-1) == cDecSeparator)
p--;
}
// Print the exponent ('E', followed by '+' or '-', followed by exactly
// three digits for rtl_math_StringFormat_E). The code in
// rtl_[u]str_valueOf{Float|Double} relies on this format.
if (eFormat == rtl_math_StringFormat_E || eFormat == rtl_math_StringFormat_E2 || eFormat == rtl_math_StringFormat_E1)
{
if (p == pBuf)
*p++ = '1';
// maybe no nDigits if nDecPlaces < 0
*p++ = 'E';
if(nExp < 0)
{
nExp = -nExp;
*p++ = '-';
}
else
{
*p++ = '+';
}
if (eFormat == rtl_math_StringFormat_E || nExp >= 100)
*p++ = nExp / 100 + '0';
nExp %= 100;
if (eFormat == rtl_math_StringFormat_E || eFormat == rtl_math_StringFormat_E2 || nExp >= 10)
*p++ = nExp / 10 + '0';
*p++ = nExp % 10 + '0';
}
if (!pResultCapacity)
T::createString(pResult, pBuf, p - pBuf);
else
T::appendChars(pResult, pResultCapacity, &nResultOffset, pBuf, p - pBuf);
}
}
void SAL_CALL rtl_math_doubleToString(rtl_String ** pResult,
sal_Int32 * pResultCapacity,
sal_Int32 nResultOffset, double fValue,
rtl_math_StringFormat eFormat,
sal_Int32 nDecPlaces,
char cDecSeparator,
sal_Int32 const * pGroups,
char cGroupSeparator,
sal_Bool bEraseTrailingDecZeros)
SAL_THROW_EXTERN_C()
{
doubleToString< StringTraits >(
pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
}
void SAL_CALL rtl_math_doubleToUString(rtl_uString ** pResult,
sal_Int32 * pResultCapacity,
sal_Int32 nResultOffset, double fValue,
rtl_math_StringFormat eFormat,
sal_Int32 nDecPlaces,
sal_Unicode cDecSeparator,
sal_Int32 const * pGroups,
sal_Unicode cGroupSeparator,
sal_Bool bEraseTrailingDecZeros)
SAL_THROW_EXTERN_C()
{
doubleToString< UStringTraits >(
pResult, pResultCapacity, nResultOffset, fValue, eFormat, nDecPlaces,
cDecSeparator, pGroups, cGroupSeparator, bEraseTrailingDecZeros);
}
namespace {
template< typename CharT >
double stringToDouble(CharT const * pBegin, CharT const * pEnd,
CharT cDecSeparator, CharT cGroupSeparator,
rtl_math_ConversionStatus * pStatus,
CharT const ** pParsedEnd)
{
double fVal = 0.0;
rtl_math_ConversionStatus eStatus = rtl_math_ConversionStatus_Ok;
CharT const * p0 = pBegin;
while (p0 != pEnd && (*p0 == CharT(' ') || *p0 == CharT('\t')))
{
++p0;
}
bool bSign;
bool explicitSign = false;
if (p0 != pEnd && *p0 == CharT('-'))
{
bSign = true;
explicitSign = true;
++p0;
}
else
{
bSign = false;
if (p0 != pEnd && *p0 == CharT('+'))
{
explicitSign = true;
++p0;
}
}
CharT const * p = p0;
bool bDone = false;
// #i112652# XMLSchema-2
if ((pEnd - p) >= 3)
{
if (!explicitSign && (CharT('N') == p[0]) && (CharT('a') == p[1])
&& (CharT('N') == p[2]))
{
p += 3;
fVal = std::numeric_limits<double>::quiet_NaN();
bDone = true;
}
else if ((CharT('I') == p[0]) && (CharT('N') == p[1])
&& (CharT('F') == p[2]))
{
p += 3;
fVal = HUGE_VAL;
eStatus = rtl_math_ConversionStatus_OutOfRange;
bDone = true;
}
}
if (!bDone) // do not recognize e.g. NaN1.23
{
std::unique_ptr<char[]> bufInHeap;
std::unique_ptr<const CharT * []> bufInHeapMap;
constexpr int bufOnStackSize = 256;
char bufOnStack[bufOnStackSize];
const CharT* bufOnStackMap[bufOnStackSize];
char* buf = bufOnStack;
const CharT** bufmap = bufOnStackMap;
int bufpos = 0;
const size_t bufsize = pEnd - p + (bSign ? 2 : 1);
if (bufsize > bufOnStackSize)
{
bufInHeap = std::make_unique<char[]>(bufsize);
bufInHeapMap = std::make_unique<const CharT*[]>(bufsize);
buf = bufInHeap.get();
bufmap = bufInHeapMap.get();
}
if (bSign)
{
buf[0] = '-';
bufmap[0] = p; // yes, this may be the same pointer as for the next mapping
bufpos = 1;
}
// Put first zero to buffer for strings like "-0"
if (p != pEnd && *p == CharT('0'))
{
buf[bufpos] = '0';
bufmap[bufpos] = p;
++bufpos;
++p;
}
// Leading zeros and group separators between digits may be safely
// ignored. p0 < p implies that there was a leading 0 already,
// consecutive group separators may not happen as *(p+1) is checked for
// digit.
while (p != pEnd && (*p == CharT('0') || (*p == cGroupSeparator
&& p0 < p && p+1 < pEnd && rtl::isAsciiDigit(*(p+1)))))
{
++p;
}
// integer part of mantissa
for (; p != pEnd; ++p)
{
CharT c = *p;
if (rtl::isAsciiDigit(c))
{
buf[bufpos] = static_cast<char>(c);
bufmap[bufpos] = p;
++bufpos;
}
else if (c != cGroupSeparator)
{
break;
}
else if (p == p0 || (p+1 == pEnd) || !rtl::isAsciiDigit(*(p+1)))
{
// A leading or trailing (not followed by a digit) group
// separator character is not a group separator.
break;
}
}
// fraction part of mantissa
if (p != pEnd && *p == cDecSeparator)
{
buf[bufpos] = '.';
bufmap[bufpos] = p;
++bufpos;
++p;
for (; p != pEnd; ++p)
{
CharT c = *p;
if (!rtl::isAsciiDigit(c))
{
break;
}
buf[bufpos] = static_cast<char>(c);
bufmap[bufpos] = p;
++bufpos;
}
}
// Exponent
if (p != p0 && p != pEnd && (*p == CharT('E') || *p == CharT('e')))
{
buf[bufpos] = 'E';
bufmap[bufpos] = p;
++bufpos;
++p;
if (p != pEnd && *p == CharT('-'))
{
buf[bufpos] = '-';
bufmap[bufpos] = p;
++bufpos;
++p;
}
else if (p != pEnd && *p == CharT('+'))
++p;
for (; p != pEnd; ++p)
{
CharT c = *p;
if (!rtl::isAsciiDigit(c))
break;
buf[bufpos] = static_cast<char>(c);
bufmap[bufpos] = p;
++bufpos;
}
}
else if (p - p0 == 2 && p != pEnd && p[0] == CharT('#')
&& p[-1] == cDecSeparator && p[-2] == CharT('1'))
{
if (pEnd - p >= 4 && p[1] == CharT('I') && p[2] == CharT('N')
&& p[3] == CharT('F'))
{
// "1.#INF", "+1.#INF", "-1.#INF"
p += 4;
fVal = HUGE_VAL;
eStatus = rtl_math_ConversionStatus_OutOfRange;
// Eat any further digits:
while (p != pEnd && rtl::isAsciiDigit(*p))
++p;
bDone = true;
}
else if (pEnd - p >= 4 && p[1] == CharT('N') && p[2] == CharT('A')
&& p[3] == CharT('N'))
{
// "1.#NAN", "+1.#NAN", "-1.#NAN"
p += 4;
fVal = std::copysign(std::numeric_limits<double>::quiet_NaN(), bSign ? -1.0 : 1.0);
bSign = false; // don't negate again
// Eat any further digits:
while (p != pEnd && rtl::isAsciiDigit(*p))
{
++p;
}
bDone = true;
}
}
if (!bDone)
{
buf[bufpos] = '\0';
bufmap[bufpos] = p;
char* pCharParseEnd;
errno = 0;
fVal = strtod_nolocale(buf, &pCharParseEnd);
if (errno == ERANGE)
{
// Check for the dreaded rounded to 15 digits max value
// 1.79769313486232e+308 for 1.7976931348623157e+308 we wrote
// everywhere, accept with or without plus sign in exponent.
const char* b = buf;
if (b[0] == '-')
++b;
if (((pCharParseEnd - b == 21) || (pCharParseEnd - b == 20))
&& !strncmp( b, "1.79769313486232", 16)
&& (b[16] == 'e' || b[16] == 'E')
&& (((pCharParseEnd - b == 21) && !strncmp( b+17, "+308", 4))
|| ((pCharParseEnd - b == 20) && !strncmp( b+17, "308", 3))))
{
fVal = (buf < b) ? -DBL_MAX : DBL_MAX;
}
else
{
eStatus = rtl_math_ConversionStatus_OutOfRange;
}
}
p = bufmap[pCharParseEnd - buf];
bSign = false;
}
}
// overflow also if more than DBL_MAX_10_EXP digits without decimal
// separator, or 0. and more than DBL_MIN_10_EXP digits, ...
bool bHuge = fVal == HUGE_VAL; // g++ 3.0.1 requires it this way...
if (bHuge)
eStatus = rtl_math_ConversionStatus_OutOfRange;
if (bSign)
fVal = -fVal;
if (pStatus)
*pStatus = eStatus;
if (pParsedEnd)
*pParsedEnd = p == p0 ? pBegin : p;
return fVal;
}
}
double SAL_CALL rtl_math_stringToDouble(char const * pBegin,
char const * pEnd,
char cDecSeparator,
char cGroupSeparator,
rtl_math_ConversionStatus * pStatus,
char const ** pParsedEnd)
SAL_THROW_EXTERN_C()
{
return stringToDouble(
reinterpret_cast<unsigned char const *>(pBegin),
reinterpret_cast<unsigned char const *>(pEnd),
static_cast<unsigned char>(cDecSeparator),
static_cast<unsigned char>(cGroupSeparator), pStatus,
reinterpret_cast<unsigned char const **>(pParsedEnd));
}
double SAL_CALL rtl_math_uStringToDouble(sal_Unicode const * pBegin,
sal_Unicode const * pEnd,
sal_Unicode cDecSeparator,
sal_Unicode cGroupSeparator,
rtl_math_ConversionStatus * pStatus,
sal_Unicode const ** pParsedEnd)
SAL_THROW_EXTERN_C()
{
return stringToDouble(pBegin, pEnd, cDecSeparator, cGroupSeparator, pStatus,
pParsedEnd);
}
double SAL_CALL rtl_math_round(double fValue, int nDecPlaces,
enum rtl_math_RoundingMode eMode)
SAL_THROW_EXTERN_C()
{
if (!std::isfinite(fValue))
return fValue;
if (fValue == 0.0)
return fValue;
if (nDecPlaces == 0)
{
switch (eMode)
{
case rtl_math_RoundingMode_Corrected:
return std::round(fValue);
case rtl_math_RoundingMode_HalfEven:
if (const int oldMode = std::fegetround(); std::fesetround(FE_TONEAREST) == 0)
{
fValue = std::nearbyint(fValue);
std::fesetround(oldMode);
return fValue;
}
break;
default:
break;
}
}
const double fOrigValue = fValue;
// sign adjustment
bool bSign = std::signbit( fValue );
if (bSign)
fValue = -fValue;
// Rounding to decimals between integer distance precision (gaps) does not
// make sense, do not even try to multiply/divide and introduce inaccuracy.
// For same reasons, do not attempt to round integers to decimals.
if (nDecPlaces >= 0
&& (fValue >= 0x1p52
|| isRepresentableInteger(fValue)))
return fOrigValue;
double fFac = 0;
if (nDecPlaces != 0)
{
if (nDecPlaces > 0)
{
// Determine how many decimals are representable in the precision.
// Anything greater 2^52 and 0.0 was already ruled out above.
// Theoretically 0.5, 0.25, 0.125, 0.0625, 0.03125, ...
const sal_math_Double* pd = reinterpret_cast<const sal_math_Double*>(&fValue);
const sal_Int32 nDec = 52 - (pd->parts.exponent - 1023);
if (nDec <= 0)
{
assert(!"Shouldn't this had been caught already as large number?");
return fOrigValue;
}
if (nDec < nDecPlaces)
nDecPlaces = nDec;
}
// Avoid 1e-5 (1.0000000000000001e-05) and such inaccurate fractional
// factors that later when dividing back spoil things. For negative
// decimals divide first with the inverse, then multiply the rounded
// value back.
fFac = getN10Exp(abs(nDecPlaces));
if (fFac == 0.0 || (nDecPlaces < 0 && !std::isfinite(fFac)))
// Underflow, rounding to that many integer positions would be 0.
return 0.0;
if (!std::isfinite(fFac))
// Overflow with very small values and high number of decimals.
return fOrigValue;
if (nDecPlaces < 0)
fValue /= fFac;
else
fValue *= fFac;
if (!std::isfinite(fValue))
return fOrigValue;
}
// Round only if not already in distance precision gaps of integers, where
// for [2^52,2^53) adding 0.5 would even yield the next representable
// integer.
if (fValue < 0x1p52)
{
switch ( eMode )
{
case rtl_math_RoundingMode_Corrected :
fValue = rtl::math::approxFloor(fValue + 0.5);
break;
case rtl_math_RoundingMode_Down:
fValue = rtl::math::approxFloor(fValue);
break;
case rtl_math_RoundingMode_Up:
fValue = rtl::math::approxCeil(fValue);
break;
case rtl_math_RoundingMode_Floor:
fValue = bSign ? rtl::math::approxCeil(fValue)
: rtl::math::approxFloor( fValue );
break;
case rtl_math_RoundingMode_Ceiling:
fValue = bSign ? rtl::math::approxFloor(fValue)
: rtl::math::approxCeil(fValue);
break;
case rtl_math_RoundingMode_HalfDown :
{
double f = floor(fValue);
fValue = ((fValue - f) <= 0.5) ? f : ceil(fValue);
}
break;
case rtl_math_RoundingMode_HalfUp:
{
double f = floor(fValue);
fValue = ((fValue - f) < 0.5) ? f : ceil(fValue);
}
break;
case rtl_math_RoundingMode_HalfEven:
#if defined FLT_ROUNDS
/*
Use fast version. FLT_ROUNDS may be defined to a function by some compilers!
DBL_EPSILON is the smallest fractional number which can be represented,
its reciprocal is therefore the smallest number that cannot have a
fractional part. Once you add this reciprocal to `x', its fractional part
is stripped off. Simply subtracting the reciprocal back out returns `x'
without its fractional component.
Simple, clever, and elegant - thanks to Ross Cottrell, the original author,
who placed it into public domain.
volatile: prevent compiler from being too smart
*/
if (FLT_ROUNDS == 1)
{
volatile double x = fValue + 1.0 / DBL_EPSILON;
fValue = x - 1.0 / DBL_EPSILON;
}
else
#endif // FLT_ROUNDS
{
double f = floor(fValue);
if ((fValue - f) != 0.5)
{
fValue = floor( fValue + 0.5 );
}
else
{
double g = f / 2.0;
fValue = (g == floor( g )) ? f : (f + 1.0);
}
}
break;
default:
OSL_ASSERT(false);
break;
}
}
if (nDecPlaces != 0)
{
if (nDecPlaces < 0)
fValue *= fFac;
else
fValue /= fFac;
}
if (!std::isfinite(fValue))
return fOrigValue;
return bSign ? -fValue : fValue;
}
double SAL_CALL rtl_math_pow10Exp(double fValue, int nExp) SAL_THROW_EXTERN_C()
{
return fValue * getN10Exp(nExp);
}
double SAL_CALL rtl_math_approxValue( double fValue ) SAL_THROW_EXTERN_C()
{
const double fBigInt = 0x1p41; // 2^41 -> only 11 bits left for fractional part, fine as decimal
if (fValue == 0.0 || fValue == HUGE_VAL || !std::isfinite( fValue) || fValue > fBigInt)
{
// We don't handle these conditions. Bail out.
return fValue;
}
double fOrigValue = fValue;
bool bSign = std::signbit(fValue);
if (bSign)
fValue = -fValue;
// If the value is either integer representable as double,
// or only has small number of bits in fraction part, then we need not do any approximation
if (isRepresentableInteger(fValue) || getBitsInFracPart(fValue) <= 11)
return fOrigValue;
int nExp = static_cast< int >(floor(log10(fValue)));
nExp = 14 - nExp;
double fExpValue = getN10Exp(abs(nExp));
if (nExp < 0)
fValue /= fExpValue;
else
fValue *= fExpValue;
// If the original value was near DBL_MIN we got an overflow. Restore and
// bail out.
if (!std::isfinite(fValue))
return fOrigValue;
fValue = std::round(fValue);
if (nExp < 0)
fValue *= fExpValue;
else
fValue /= fExpValue;
// If the original value was near DBL_MAX we got an overflow. Restore and
// bail out.
if (!std::isfinite(fValue))
return fOrigValue;
return bSign ? -fValue : fValue;
}
bool SAL_CALL rtl_math_approxEqual(double a, double b) SAL_THROW_EXTERN_C()
{
static const double e48 = 0x1p-48;
static const double e44 = 0x1p-44;
if (a == b)
return true;
if (a == 0.0 || b == 0.0)
return false;
const double d = fabs(a - b);
if (!std::isfinite(d))
return false; // Nan or Inf involved
a = fabs(a);
if (d > (a * e44))
return false;
b = fabs(b);
if (d > (b * e44))
return false;
if (isRepresentableInteger(d) && isRepresentableInteger(a) && isRepresentableInteger(b))
return false; // special case for representable integers.
return (d < a * e48 && d < b * e48);
}
double SAL_CALL rtl_math_expm1(double fValue) SAL_THROW_EXTERN_C()
{
return expm1(fValue);
}
double SAL_CALL rtl_math_log1p(double fValue) SAL_THROW_EXTERN_C()
{
#ifdef __APPLE__
if (fValue == -0.0)
return fValue; // macOS 10.8 libc returns 0.0 for -0.0
#endif
return log1p(fValue);
}
double SAL_CALL rtl_math_atanh(double fValue) SAL_THROW_EXTERN_C()
#if defined __clang__
__attribute__((no_sanitize("float-divide-by-zero"))) // atahn(1) -> inf
#endif
{
return 0.5 * rtl_math_log1p(2.0 * fValue / (1.0-fValue));
}
/** Parent error function (erf) */
double SAL_CALL rtl_math_erf(double x) SAL_THROW_EXTERN_C()
{
return erf(x);
}
/** Parent complementary error function (erfc) */
double SAL_CALL rtl_math_erfc(double x) SAL_THROW_EXTERN_C()
{
return erfc(x);
}
/** improved accuracy of asinh for |x| large and for x near zero
@see #i97605#
*/
double SAL_CALL rtl_math_asinh(double fX) SAL_THROW_EXTERN_C()
{
if ( fX == 0.0 )
return 0.0;
double fSign = 1.0;
if ( fX < 0.0 )
{
fX = - fX;
fSign = -1.0;
}
if ( fX < 0.125 )
return fSign * rtl_math_log1p( fX + fX*fX / (1.0 + sqrt( 1.0 + fX*fX)));
if ( fX < 1.25e7 )
return fSign * log( fX + sqrt( 1.0 + fX*fX));
return fSign * log( 2.0*fX);
}
/** improved accuracy of acosh for x large and for x near 1
@see #i97605#
*/
double SAL_CALL rtl_math_acosh(double fX) SAL_THROW_EXTERN_C()
{
volatile double fZ = fX - 1.0;
if (fX < 1.0)
return std::numeric_limits<double>::quiet_NaN();
if ( fX == 1.0 )
return 0.0;
if ( fX < 1.1 )
return rtl_math_log1p( fZ + sqrt( fZ*fZ + 2.0*fZ));
if ( fX < 1.25e7 )
return log( fX + sqrt( fX*fX - 1.0));
return log( 2.0*fX);
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|