summaryrefslogtreecommitdiff
path: root/sc/inc/kahan.hxx
blob: c2560635fbdf5c533461ae507876fa066e2ad8eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; fill-column: 100 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 */

#pragma once

#include <rtl/math.hxx>
#include <cmath>

class KahanSum;
namespace sc::op
{
// Checkout available optimization options.
// Note that it turned out to be problematic to support CPU-specific code
// that's not guaranteed to be available on that specific platform (see
// git commit 2d36e7f5186ba5215f2b228b98c24520bd4f2882). SSE2 is guaranteed on
// x86_64 and it is our baseline requirement for x86 on Windows, so SSE2 use is
// hardcoded on those platforms.
// Whenever we raise baseline to e.g. AVX, this may get
// replaced with AVX code (get it from mentioned git commit).
// Do it similarly with other platforms.
#if defined(X86_64) || (defined(INTEL) && defined(_WIN32))
#define SC_USE_SSE2 1
KahanSum executeSSE2(size_t& i, size_t nSize, const double* pCurrent);
#else
#define SC_USE_SSE2 0
#endif
}

/**
  * This class provides LO with Kahan summation algorithm
  * About this algorithm: https://en.wikipedia.org/wiki/Kahan_summation_algorithm
  * For general purpose software we assume first order error is enough.
  *
  * Additionally queue and remember the last recent non-zero value and add it
  * similar to approxAdd() when obtaining the final result to further eliminate
  * accuracy errors. (e.g. for the dreaded 0.1 + 0.2 - 0.3 != 0.0)
  */

class KahanSum
{
public:
    constexpr KahanSum() = default;

    constexpr KahanSum(double x_0)
        : m_fSum(x_0)
    {
    }

    constexpr KahanSum(double x_0, double err_0)
        : m_fSum(x_0)
        , m_fError(err_0)
    {
    }

    constexpr KahanSum(const KahanSum& fSum) = default;

public:
    /**
      * Performs one step of the Neumaier sum of doubles.
      * Overwrites the summand and error.
      * T could be double or long double.
      */
    template <typename T> static inline void sumNeumaierNormal(T& sum, T& err, const double& value)
    {
        T t = sum + value;
        if (std::abs(sum) >= std::abs(value))
            err += (sum - t) + value;
        else
            err += (value - t) + sum;
        sum = t;
    }

    /**
      * Adds a value to the sum using Kahan summation.
      * @param x_i
      */
    void add(double x_i)
    {
        if (x_i == 0.0)
            return;

        if (!m_fMem)
        {
            m_fMem = x_i;
            return;
        }

        sumNeumaierNormal(m_fSum, m_fError, m_fMem);
        m_fMem = x_i;
    }

    /**
      * Adds a value to the sum using Kahan summation.
      * @param fSum
      */
    inline void add(const KahanSum& fSum)
    {
#if SC_USE_SSE2
        add(fSum.m_fSum + fSum.m_fError);
        add(fSum.m_fMem);
#else
        // Without SSE2 the sum+compensation value fails badly. Continue
        // keeping the old though slightly off (see tdf#156985) explicit
        // addition of the compensation value.
        double sum = fSum.m_fSum;
        double err = fSum.m_fError;
        if (fSum.m_fMem != 0.0)
            sumNeumaierNormal(sum, err, fSum.m_fMem);
        add(sum);
        add(err);
#endif
    }

    /**
      * Substracts a value to the sum using Kahan summation.
      * @param fSum
      */
    inline void subtract(const KahanSum& fSum) { add(-fSum); }

public:
    constexpr KahanSum operator-() const
    {
        KahanSum fKahanSum;
        fKahanSum.m_fSum = -m_fSum;
        fKahanSum.m_fError = -m_fError;
        fKahanSum.m_fMem = -m_fMem;
        return fKahanSum;
    }

    constexpr KahanSum& operator=(double fSum)
    {
        m_fSum = fSum;
        m_fError = 0;
        m_fMem = 0;
        return *this;
    }

    constexpr KahanSum& operator=(const KahanSum& fSum) = default;

    inline void operator+=(const KahanSum& fSum) { add(fSum); }

    inline void operator+=(double fSum) { add(fSum); }

    inline void operator-=(const KahanSum& fSum) { subtract(fSum); }

    inline void operator-=(double fSum) { add(-fSum); }

    inline KahanSum operator+(double fSum) const
    {
        KahanSum fNSum(*this);
        fNSum.add(fSum);
        return fNSum;
    }

    inline KahanSum operator+(const KahanSum& fSum) const
    {
        KahanSum fNSum(*this);
        fNSum += fSum;
        return fNSum;
    }

    inline KahanSum operator-(double fSum) const
    {
        KahanSum fNSum(*this);
        fNSum.add(-fSum);
        return fNSum;
    }

    inline KahanSum operator-(const KahanSum& fSum) const
    {
        KahanSum fNSum(*this);
        fNSum -= fSum;
        return fNSum;
    }

    /**
      * In some parts of the code of interpr_.cxx this may be used for
      * product instead of sum. This operator shall be used for that task.
      */
    constexpr void operator*=(double fTimes)
    {
        if (m_fMem)
        {
            m_fSum = get() * fTimes;
            m_fMem = 0.0;
        }
        else
        {
            m_fSum = (m_fSum + m_fError) * fTimes;
        }
        m_fError = 0.0;
    }

    constexpr void operator/=(double fDivides)
    {
        if (m_fMem)
        {
            m_fSum = get() / fDivides;
            m_fMem = 0.0;
        }
        else
        {
            m_fSum = (m_fSum + m_fError) / fDivides;
        }
        m_fError = 0.0;
    }

    inline KahanSum operator*(const KahanSum& fTimes) const { return get() * fTimes.get(); }

    inline KahanSum operator*(double fTimes) const { return get() * fTimes; }

    inline KahanSum operator/(const KahanSum& fDivides) const { return get() / fDivides.get(); }

    inline KahanSum operator/(double fDivides) const { return get() / fDivides; }

    inline bool operator<(const KahanSum& fSum) const { return get() < fSum.get(); }

    inline bool operator<(double fSum) const { return get() < fSum; }

    inline bool operator>(const KahanSum& fSum) const { return get() > fSum.get(); }

    inline bool operator>(double fSum) const { return get() > fSum; }

    inline bool operator<=(const KahanSum& fSum) const { return get() <= fSum.get(); }

    inline bool operator<=(double fSum) const { return get() <= fSum; }

    inline bool operator>=(const KahanSum& fSum) const { return get() >= fSum.get(); }

    inline bool operator>=(double fSum) const { return get() >= fSum; }

    inline bool operator==(const KahanSum& fSum) const { return get() == fSum.get(); }

    inline bool operator!=(const KahanSum& fSum) const { return get() != fSum.get(); }

public:
    /**
      * Returns the final sum.
      * @return final sum
      */
    double get() const
    {
        const double fTotal = m_fSum + m_fError;
        if (!m_fMem)
            return fTotal;

        // Check the same condition as rtl::math::approxAdd() and if true
        // return 0.0, if false use another Kahan summation adding m_fMem.
        if (((m_fMem < 0.0 && fTotal > 0.0) || (fTotal < 0.0 && m_fMem > 0.0))
            && rtl::math::approxEqual(m_fMem, -fTotal))
        {
            /* TODO: should we reset all values to zero here for further
             * summation, or is it better to keep them as they are? */
            return 0.0;
        }

        // The actual argument passed to add() here does not matter as long as
        // it is not 0, m_fMem is not 0 and will be added anyway, see add().
        const_cast<KahanSum*>(this)->add(m_fMem);
        const_cast<KahanSum*>(this)->m_fMem = 0.0;
        return m_fSum + m_fError;
    }

private:
    double m_fSum = 0;
    double m_fError = 0;
    double m_fMem = 0;
};

/* vim:set shiftwidth=4 softtabstop=4 expandtab cinoptions=b1,g0,N-s cinkeys+=0=break: */