summaryrefslogtreecommitdiff
path: root/sc/inc/kahan.hxx
blob: 6c84f6eeef2ef7d6850eecce5f02e311e24be877 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; fill-column: 100 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 */

#pragma once

#include <rtl/math.hxx>
#include <cmath>

/**
  * This class provides LO with Kahan summation algorithm
  * About this algorithm: https://en.wikipedia.org/wiki/Kahan_summation_algorithm
  * For general purpose software we assume first order error is enough.
  *
  * Additionally queue and remember the last recent non-zero value and add it
  * similar to approxAdd() when obtaining the final result to further eliminate
  * accuracy errors. (e.g. for the dreaded 0.1 + 0.2 - 0.3 != 0.0)
  */

class KahanSum
{
public:
    constexpr KahanSum() = default;

    constexpr KahanSum(double x_0)
        : m_fSum(x_0)
    {
    }

    constexpr KahanSum(double x_0, double err_0)
        : m_fSum(x_0)
        , m_fError(err_0)
    {
    }

    constexpr KahanSum(const KahanSum& fSum) = default;

public:
    /**
      * Adds a value to the sum using Kahan summation.
      * @param x_i
      */
    void add(double x_i)
    {
        if (x_i == 0.0)
            return;

        if (!m_fMem)
        {
            m_fMem = x_i;
            return;
        }

        double t = m_fSum + m_fMem;
        if (std::abs(m_fSum) >= std::abs(m_fMem))
            m_fError += (m_fSum - t) + m_fMem;
        else
            m_fError += (m_fMem - t) + m_fSum;
        m_fSum = t;
        m_fMem = x_i;
    }

    /**
      * Adds a value to the sum using Kahan summation.
      * @param fSum
      */
    inline void add(const KahanSum& fSum)
    {
        add(fSum.m_fSum);
        add(fSum.m_fError);
        add(fSum.m_fMem);
    }

    /**
      * Substracts a value to the sum using Kahan summation.
      * @param fSum
      */
    inline void subtract(const KahanSum& fSum)
    {
        add(-fSum.m_fSum);
        add(-fSum.m_fError);
        add(-fSum.m_fMem);
    }

public:
    constexpr KahanSum operator-() const
    {
        KahanSum fKahanSum;
        fKahanSum.m_fSum = -m_fSum;
        fKahanSum.m_fError = -m_fError;
        fKahanSum.m_fMem = -m_fMem;
        return fKahanSum;
    }

    constexpr KahanSum& operator=(double fSum)
    {
        m_fSum = fSum;
        m_fError = 0;
        m_fMem = 0;
        return *this;
    }

    constexpr KahanSum& operator=(const KahanSum& fSum) = default;

    inline void operator+=(const KahanSum& fSum) { add(fSum); }

    inline void operator+=(double fSum) { add(fSum); }

    inline void operator-=(const KahanSum& fSum) { subtract(fSum); }

    inline void operator-=(double fSum) { add(-fSum); }

    inline KahanSum operator+(double fSum) const
    {
        KahanSum fNSum(*this);
        fNSum.add(fSum);
        return fNSum;
    }

    inline KahanSum operator+(const KahanSum& fSum) const
    {
        KahanSum fNSum(*this);
        fNSum += fSum;
        return fNSum;
    }

    inline KahanSum operator-(double fSum) const
    {
        KahanSum fNSum(*this);
        fNSum.add(-fSum);
        return fNSum;
    }

    inline KahanSum operator-(const KahanSum& fSum) const
    {
        KahanSum fNSum(*this);
        fNSum -= fSum;
        return fNSum;
    }

    /**
      * In some parts of the code of interpr_.cxx this may be used for
      * product instead of sum. This operator shall be used for that task.
      */
    constexpr void operator*=(double fTimes)
    {
        if (m_fMem)
        {
            m_fSum = get() * fTimes;
            m_fMem = 0.0;
        }
        else
        {
            m_fSum = (m_fSum + m_fError) * fTimes;
        }
        m_fError = 0.0;
    }

    constexpr void operator/=(double fDivides)
    {
        if (m_fMem)
        {
            m_fSum = get() / fDivides;
            m_fMem = 0.0;
        }
        else
        {
            m_fSum = (m_fSum + m_fError) / fDivides;
        }
        m_fError = 0.0;
    }

    inline KahanSum operator*(const KahanSum& fTimes) const { return get() * fTimes.get(); }

    inline KahanSum operator*(double fTimes) const { return get() * fTimes; }

    inline KahanSum operator/(const KahanSum& fDivides) const { return get() / fDivides.get(); }

    inline KahanSum operator/(double fDivides) const { return get() / fDivides; }

    inline bool operator<(const KahanSum& fSum) const { return get() < fSum.get(); }

    inline bool operator<(double fSum) const { return get() < fSum; }

    inline bool operator>(const KahanSum& fSum) const { return get() > fSum.get(); }

    inline bool operator>(double fSum) const { return get() > fSum; }

    inline bool operator<=(const KahanSum& fSum) const { return get() <= fSum.get(); }

    inline bool operator<=(double fSum) const { return get() <= fSum; }

    inline bool operator>=(const KahanSum& fSum) const { return get() >= fSum.get(); }

    inline bool operator>=(double fSum) const { return get() >= fSum; }

    inline bool operator==(const KahanSum& fSum) const { return get() == fSum.get(); }

    inline bool operator!=(const KahanSum& fSum) const { return get() != fSum.get(); }

public:
    /**
      * Returns the final sum.
      * @return final sum
      */
    double get() const
    {
        const double fTotal = m_fSum + m_fError;
        if (!m_fMem)
            return fTotal;

        // Check the same condition as rtl::math::approxAdd() and if true
        // return 0.0, if false use another Kahan summation adding m_fMem.
        if (((m_fMem < 0.0 && fTotal > 0.0) || (fTotal < 0.0 && m_fMem > 0.0))
            && rtl::math::approxEqual(m_fMem, -fTotal))
        {
            /* TODO: should we reset all values to zero here for further
             * summation, or is it better to keep them as they are? */
            return 0.0;
        }

        // The actual argument passed to add() here does not matter as long as
        // it is not 0, m_fMem is not 0 and will be added anyway, see add().
        const_cast<KahanSum*>(this)->add(m_fMem);
        const_cast<KahanSum*>(this)->m_fMem = 0.0;
        return m_fSum + m_fError;
    }

private:
    double m_fSum = 0;
    double m_fError = 0;
    double m_fMem = 0;
};

/* vim:set shiftwidth=4 softtabstop=4 expandtab cinoptions=b1,g0,N-s cinkeys+=0=break: */