1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
*/
#include <sfx2/dispatch.hxx>
#include <svl/zforlist.hxx>
#include <svl/undo.hxx>
#include <scitems.hxx>
#include <docsh.hxx>
#include <document.hxx>
#include <uiitems.hxx>
#include <reffact.hxx>
#include <docfunc.hxx>
#include <TableFillingAndNavigationTools.hxx>
#include <RegressionDialog.hxx>
#include <scresid.hxx>
#include <strings.hrc>
/*
Some regression basics
----------------------
1. Linear regression fits using data, a linear function between the dependent variable and the independent variable(s).
The basic form of this function is :-
y = b + m_1*x_1 + m_2*x_2 + ... + m_k*x_k
where y is the dependent variable
x_1, x_2, ..., x_k are the k independent variables
b is the intercept
m_1, m_2, ..., m_k are the slopes corresponding to the variables x_1, x_2, ..., x_k respectively.
This equation for n observations can be compactly written using matrices as :-
y = X*A
where y is the n dimensional column vector containing dependent variable observations.
where X is matrix of shape n*(k+1) where a row looks like [ 1 x_1 x_2 ... x_k ]
A is the k+1 dimensional column vector [ b m_1 m_2 ... m_k ]
Calc formula LINEST(Y_array ; X_array) can be used to compute all entries in "A" along with many other statistics.
2. Logarithmic regression is basically used to find a linear function between the dependent variable and
the natural logarithm of the independent variable(s).
So the basic form of this functions is :-
y = b + m_1*ln(x_1) + m_2*ln(x_2) + ... + m_k*ln(x_k)
This can be again written in a compact matrix form for n observations.
y = ln(X)*A
where y is the n dimensional column vector containing dependent variable observations.
where X is matrix of shape n*(k+1) where a row looks like [ e x_1 x_2 ... x_k ]
A is the k+1 dimensional column vector [ b m_1 m_2 ... m_k ]
To estimate A, we use the formula =LINEST(Y_array ; LN(X_array))
3. Power regression is used to fit the following model :-
y = b * (x_1 ^ m_1) * (x_2 ^ m_2) * ... * (x_k ^ m_k)
To reduce this to a linear function(so that we can still use LINEST()), we take natural logarithm on both sides
ln(y) = c + m_1*ln(x_1) + m_2*ln(x_2) + ... + m_k*ln(x_k) ; where c = ln(b)
This again can be written compactly in matrix form as :-
ln(y) = ln(X)*A
where y is the n dimensional column vector containing dependent variable observations.
where X is matrix of shape n*(k+1) where a row looks like [ e x_1 x_2 ... x_k ]
A is the k+1 dimensional column vector [ c m_1 m_2 ... m_k ]
To estimate A, we use the formula =LINEST(LN(Y_array) ; LN(X_array))
Once we get A, to get back y from x's we use the formula :-
y = exp( ln(X)*A )
Some references for computing confidence interval for the regression coefficients :-
[1] https://en.wikipedia.org/wiki/Student%27s_t-test#Slope_of_a_regression_line
[2] https://en.wikipedia.org/wiki/Simple_linear_regression#Normality_assumption
[3] https://onlinecourses.science.psu.edu/stat414/node/280
*/
namespace
{
enum class ScRegType {
LINEAR,
LOGARITHMIC,
POWER
};
const char* constRegressionModel[] =
{
STR_LABEL_LINEAR,
STR_LABEL_LOGARITHMIC,
STR_LABEL_POWER
};
OUString constTemplateLINEST[] =
{
"=LINEST(%VARIABLE2_RANGE% ; %VARIABLE1_RANGE% ; TRUE ; TRUE)",
"=LINEST(%VARIABLE2_RANGE% ; LN(%VARIABLE1_RANGE%) ; TRUE ; TRUE)",
"=LINEST(LN(%VARIABLE2_RANGE%) ; LN(%VARIABLE1_RANGE%) ; TRUE ; TRUE)"
};
OUString constRegressionFormula[] =
{
"=MMULT(%XDATAMATRIX_RANGE% ; %SLOPES_RANGE%) + %INTERCEPT_ADDR%",
"=MMULT(LN(%XDATAMATRIX_RANGE%) ; %SLOPES_RANGE%) + %INTERCEPT_ADDR%",
"=EXP(MMULT(LN(%XDATAMATRIX_RANGE%) ; %SLOPES_RANGE%) + %INTERCEPT_ADDR%)"
};
} // end anonymous namespace
static size_t lcl_GetNumRowsColsInRange(const ScRange& rRange, bool bRows)
{
if (bRows)
return rRange.aEnd.Row() - rRange.aStart.Row() + 1;
return rRange.aEnd.Col() - rRange.aStart.Col() + 1;
}
ScRegressionDialog::ScRegressionDialog(
SfxBindings* pSfxBindings, SfxChildWindow* pChildWindow,
vcl::Window* pParent, ScViewData* pViewData ) :
ScStatisticsTwoVariableDialog(
pSfxBindings, pChildWindow, pParent, pViewData,
"RegressionDialog", "modules/scalc/ui/regressiondialog.ui" ),
mbUnivariate(true),
mnNumIndependentVars(1),
mnNumObservations(0),
mbUse3DAddresses(false)
{
get(mpWithLabelsCheckBox, "withlabels-check");
get(mpLinearRadioButton, "linear-radio");
get(mpLogarithmicRadioButton, "logarithmic-radio");
get(mpPowerRadioButton, "power-radio");
get(mpConfidenceLevelField, "confidencelevel-spin");
get(mpCalcResidualsCheckBox, "calcresiduals-check");
get(mpErrorMessage, "error-message");
mpWithLabelsCheckBox->SetToggleHdl(LINK(this, ScRegressionDialog, CheckBoxHdl));
mpConfidenceLevelField->SetModifyHdl(LINK(this, ScRegressionDialog, NumericFieldHdl));
mpCalcResidualsCheckBox->SetToggleHdl(LINK(this, ScRegressionDialog, CheckBoxHdl));
}
ScRegressionDialog::~ScRegressionDialog()
{
disposeOnce();
}
bool ScRegressionDialog::Close()
{
return DoClose(ScRegressionDialogWrapper::GetChildWindowId());
}
void ScRegressionDialog::dispose()
{
mpWithLabelsCheckBox.disposeAndClear();
mpLinearRadioButton.disposeAndClear();
mpLogarithmicRadioButton.disposeAndClear();
mpPowerRadioButton.disposeAndClear();
mpConfidenceLevelField.disposeAndClear();
mpCalcResidualsCheckBox.disposeAndClear();
mpErrorMessage.disposeAndClear();
ScStatisticsTwoVariableDialog::dispose();
}
const char* ScRegressionDialog::GetUndoNameId()
{
return STR_REGRESSION_UNDO_NAME;
}
ScRange ScRegressionDialog::ApplyOutput(ScDocShell* pDocShell)
{
AddressWalkerWriter aOutput(mOutputAddress, pDocShell, mDocument,
formula::FormulaGrammar::mergeToGrammar( formula::FormulaGrammar::GRAM_ENGLISH, mAddressDetails.eConv));
FormulaTemplate aTemplate(mDocument);
aTemplate.autoReplaceUses3D(mbUse3DAddresses);
// max col of our output should account for
// 1. constant term column,
// 2. mnNumIndependentVars columns
// 3. Actual Y column
// 4. Predicted Y column
// 5. Residual Column
SCCOL nOutputMaxCol = mOutputAddress.Col() + mnNumIndependentVars + 3;
ScRange aXDataRange(GetDataRange(mVariable1Range));
ScRange aYDataRange(GetDataRange(mVariable2Range));
aTemplate.autoReplaceRange("%VARIABLE1_RANGE%", aXDataRange);
aTemplate.autoReplaceRange("%VARIABLE2_RANGE%", aYDataRange);
size_t nRegressionIndex = GetRegressionTypeIndex();
ScRegType eRegType = static_cast<ScRegType>(nRegressionIndex);
bool bTakeLogX = eRegType == ScRegType::LOGARITHMIC || eRegType == ScRegType::POWER;
WriteRawRegressionResults(aOutput, aTemplate, nRegressionIndex);
WriteRegressionStatistics(aOutput, aTemplate);
WriteRegressionANOVAResults(aOutput, aTemplate);
WriteRegressionEstimatesWithCI(aOutput, aTemplate, bTakeLogX);
if (mpCalcResidualsCheckBox->IsChecked())
WritePredictionsWithResiduals(aOutput, aTemplate, nRegressionIndex);
ScAddress aMaxAddress(aOutput.mMaximumAddress);
aMaxAddress.SetCol(std::max(aMaxAddress.Col(), nOutputMaxCol));
return ScRange(aOutput.mMinimumAddress, aMaxAddress);
}
bool ScRegressionDialog::InputRangesValid()
{
if (!mVariable1Range.IsValid())
{
mpErrorMessage->SetText(ScResId(STR_MESSAGE_XINVALID_RANGE));
return false;
}
if (!mVariable2Range.IsValid())
{
mpErrorMessage->SetText(ScResId(STR_MESSAGE_YINVALID_RANGE));
return false;
}
if (!mOutputAddress.IsValid())
{
mpErrorMessage->SetText(ScResId(STR_MESSAGE_INVALID_OUTPUT_ADDR));
return false;
}
{
double fConfidenceLevel = mpConfidenceLevelField->GetValue();
if ( fConfidenceLevel <= 0.0 || fConfidenceLevel >= 100.0 )
{
mpErrorMessage->SetText(ScResId(STR_MESSAGE_INVALID_CONFIDENCE_LEVEL));
return false;
}
}
mVariable1Range.PutInOrder();
mVariable2Range.PutInOrder();
bool bGroupedByColumn = mGroupedBy == BY_COLUMN;
bool bYHasSingleDim = (
(bGroupedByColumn &&
mVariable2Range.aStart.Col() == mVariable2Range.aEnd.Col()) ||
(!bGroupedByColumn &&
mVariable2Range.aStart.Row() == mVariable2Range.aEnd.Row()));
if (!bYHasSingleDim)
{
if (bGroupedByColumn)
mpErrorMessage->SetText(ScResId(STR_MESSAGE_YVARIABLE_MULTI_COLUMN));
else
mpErrorMessage->SetText(ScResId(STR_MESSAGE_YVARIABLE_MULTI_ROW));
return false;
}
bool bWithLabels = mpWithLabelsCheckBox->IsChecked();
size_t nYObs = lcl_GetNumRowsColsInRange(mVariable2Range, bGroupedByColumn);
size_t nNumXVars = lcl_GetNumRowsColsInRange(mVariable1Range, !bGroupedByColumn);
mbUnivariate = nNumXVars == 1;
// Observation count mismatch check
if (lcl_GetNumRowsColsInRange(mVariable1Range, bGroupedByColumn) != nYObs)
{
if (mbUnivariate)
mpErrorMessage->SetText(ScResId(STR_MESSAGE_UNIVARIATE_NUMOBS_MISMATCH));
else
mpErrorMessage->SetText(ScResId(STR_MESSAGE_MULTIVARIATE_NUMOBS_MISMATCH));
return false;
}
mnNumIndependentVars = nNumXVars;
mnNumObservations = bWithLabels ? nYObs - 1 : nYObs;
mbUse3DAddresses = mVariable1Range.aStart.Tab() != mOutputAddress.Tab() ||
mVariable2Range.aStart.Tab() != mOutputAddress.Tab();
mpErrorMessage->SetText("");
return true;
}
size_t ScRegressionDialog::GetRegressionTypeIndex()
{
if (mpLinearRadioButton->IsChecked())
return 0;
if (mpLogarithmicRadioButton->IsChecked())
return 1;
return 2;
}
ScRange ScRegressionDialog::GetDataRange(const ScRange& rRange)
{
if (!mpWithLabelsCheckBox->IsChecked())
return rRange;
ScRange aDataRange(rRange);
if (mGroupedBy == BY_COLUMN)
aDataRange.aStart.IncRow(1);
else
aDataRange.aStart.IncCol(1);
return aDataRange;
}
OUString ScRegressionDialog::GetVariableNameFormula(bool bXVar, size_t nIndex, bool bWithLog)
{
if (bXVar && nIndex == 0)
return "=\"" + ScResId(STR_LABEL_INTERCEPT) + "\"";
if (mpWithLabelsCheckBox->IsChecked())
{
ScAddress aAddr(bXVar ? mVariable1Range.aStart : mVariable2Range.aStart);
if (mGroupedBy == BY_COLUMN)
aAddr.IncCol(nIndex - 1);
else
aAddr.IncRow(nIndex - 1);
ScRefFlags eAddrFlag = mbUse3DAddresses ? ScRefFlags::ADDR_ABS_3D : ScRefFlags::ADDR_ABS;
return bWithLog ? OUString("=CONCAT(\"LN(\";" +
aAddr.Format(eAddrFlag, mDocument, mDocument->GetAddressConvention()) + ";\")\")") :
OUString("=" + aAddr.Format(eAddrFlag, mDocument, mDocument->GetAddressConvention()));
}
OUString aDefaultVarName;
if (bXVar)
aDefaultVarName = "X" + OUString::number(nIndex);
else
aDefaultVarName = "Y";
return bWithLog ? OUString("=\"LN(" + aDefaultVarName + ")\"") :
OUString("=\"" + aDefaultVarName + "\"");
}
OUString ScRegressionDialog::GetXVariableNameFormula(size_t nIndex, bool bWithLog)
{
assert(nIndex <= mnNumIndependentVars);
return GetVariableNameFormula(true, nIndex, bWithLog);
}
OUString ScRegressionDialog::GetYVariableNameFormula(bool bWithLog)
{
return GetVariableNameFormula(false, 1, bWithLog);
}
void ScRegressionDialog::WriteRawRegressionResults(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate,
size_t nRegressionIndex)
{
rOutput.writeBoldString(ScResId(STR_REGRESSION));
rOutput.newLine();
// REGRESSION MODEL
rOutput.writeString(ScResId(STR_LABEL_REGRESSION_MODEL));
rOutput.nextColumn();
rOutput.writeString(ScResId(constRegressionModel[nRegressionIndex]));
rOutput.newLine();
rOutput.newLine();
rOutput.writeString(ScResId(STR_LINEST_RAW_OUTPUT_TITLE));
rOutput.newLine();
rOutput.push();
rTemplate.setTemplate(constTemplateLINEST[nRegressionIndex]);
rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1 + mnNumIndependentVars, 5);
// Add LINEST result components to template
// 1. Add ranges for coefficients and standard errors for indep. vars and the intercept.
// Note that these two are in the reverse order(m_n, m_n-1, ..., m_1, b) w.r.t what we expect.
rTemplate.autoReplaceRange("%COEFFICIENTS_REV_RANGE%", ScRange(rOutput.current(), rOutput.current(mnNumIndependentVars)));
rTemplate.autoReplaceRange("%SERRORSX_REV_RANGE%", ScRange(rOutput.current(0, 1), rOutput.current(mnNumIndependentVars, 1)));
// 2. Add R-squared and standard error for y estimate.
rTemplate.autoReplaceAddress("%RSQUARED_ADDR%", rOutput.current(0, 2));
rTemplate.autoReplaceAddress("%SERRORY_ADDR%", rOutput.current(1, 2));
// 3. Add F statistic and degrees of freedom
rTemplate.autoReplaceAddress("%FSTATISTIC_ADDR%", rOutput.current(0, 3));
rTemplate.autoReplaceAddress("%DoFRESID_ADDR%", rOutput.current(1, 3));
// 4. Add regression sum of squares and residual sum of squares
rTemplate.autoReplaceAddress("%SSREG_ADDR%", rOutput.current(0, 4));
rTemplate.autoReplaceAddress("%SSRESID_ADDR%", rOutput.current(1, 4));
rOutput.push(0, 4);
rOutput.newLine();
}
void ScRegressionDialog::WriteRegressionStatistics(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate)
{
rOutput.newLine();
rOutput.writeString(ScResId(STR_LABEL_REGRESSION_STATISTICS));
rOutput.newLine();
const char* aMeasureNames[] =
{
STR_LABEL_RSQUARED,
STRID_CALC_STD_ERROR,
STR_LABEL_XVARIABLES_COUNT,
STR_OBSERVATIONS_LABEL,
STR_LABEL_ADJUSTED_RSQUARED
};
OUString aMeasureFormulas[] =
{
"=%RSQUARED_ADDR%",
"=%SERRORY_ADDR%",
"=" + OUString::number(mnNumIndependentVars),
"=" + OUString::number(mnNumObservations),
"=1 - (1 - %RSQUARED_ADDR%)*(%NUMOBS_ADDR% - 1)/(%NUMOBS_ADDR% - %NUMXVARS_ADDR% - 1)"
};
rTemplate.autoReplaceAddress("%NUMXVARS_ADDR%", rOutput.current(1, 2));
rTemplate.autoReplaceAddress("%NUMOBS_ADDR%", rOutput.current(1, 3));
for (size_t nIdx = 0; nIdx < SAL_N_ELEMENTS(aMeasureNames); ++nIdx)
{
rOutput.writeString(ScResId(aMeasureNames[nIdx]));
rOutput.nextColumn();
rTemplate.setTemplate(aMeasureFormulas[nIdx]);
rOutput.writeFormula(rTemplate.getTemplate());
rOutput.newLine();
}
}
void ScRegressionDialog::WriteRegressionANOVAResults(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate)
{
rOutput.newLine();
rOutput.writeString(ScResId(STR_LABEL_ANOVA));
rOutput.newLine();
const size_t nColsInTable = 6;
const size_t nRowsInTable = 4;
OUString aTable[nRowsInTable][nColsInTable] =
{
{
"",
ScResId(STR_ANOVA_LABEL_DF),
ScResId(STR_ANOVA_LABEL_SS),
ScResId(STR_ANOVA_LABEL_MS),
ScResId(STR_ANOVA_LABEL_F),
ScResId(STR_ANOVA_LABEL_SIGNIFICANCE_F)
},
{
ScResId(STR_REGRESSION),
"=%NUMXVARS_ADDR%",
"=%SSREG_ADDR%",
"=%SSREG_ADDR% / %DoFREG_ADDR%",
"=%FSTATISTIC_ADDR%",
"=FDIST(%FSTATISTIC_ADDR% ; %DoFREG_ADDR% ; %DoFRESID_ADDR%)"
},
{
ScResId(STR_LABEL_RESIDUAL),
"=%DoFRESID_ADDR%",
"=%SSRESID_ADDR%",
"=%SSRESID_ADDR% / %DoFRESID_ADDR%",
"",
""
},
{
ScResId(STR_ANOVA_LABEL_TOTAL),
"=%DoFREG_ADDR% + %DoFRESID_ADDR%",
"=%SSREG_ADDR% + %SSRESID_ADDR%",
"",
"",
""
}
};
rTemplate.autoReplaceAddress("%DoFREG_ADDR%", rOutput.current(1, 1));
// Cell getter lambda
std::function<CellValueGetter> aCellGetterFunc = [&aTable](size_t nRowIdx, size_t nColIdx) -> const OUString&
{
return aTable[nRowIdx][nColIdx];
};
// Cell writer lambda
std::function<CellWriter> aCellWriterFunc = [&rOutput, &rTemplate]
(const OUString& rContent, size_t /*nRowIdx*/, size_t /*nColIdx*/)
{
if (!rContent.isEmpty())
{
if (rContent.startsWith("="))
{
rTemplate.setTemplate(rContent);
rOutput.writeFormula(rTemplate.getTemplate());
}
else
rOutput.writeString(rContent);
}
};
WriteTable(aCellGetterFunc, nRowsInTable, nColsInTable, rOutput, aCellWriterFunc);
// User given confidence level
rOutput.newLine();
rOutput.writeString(ScResId(STR_LABEL_CONFIDENCE_LEVEL));
rOutput.nextColumn();
rOutput.writeString(OUString::number(mpConfidenceLevelField->GetValue() / 100.0));
rTemplate.autoReplaceAddress("%CONFIDENCE_LEVEL_ADDR%", rOutput.current());
rOutput.newLine();
}
// Write slopes, intercept, their standard errors, t-statistics, p-value, confidence intervals
void ScRegressionDialog::WriteRegressionEstimatesWithCI(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate,
bool bTakeLogX)
{
rOutput.newLine();
SCROW nLastRow = rOutput.current(0, 1 + mnNumIndependentVars).Row();
// Coefficients & Std.Errors ranges (column vectors) in this table (yet to populate).
rTemplate.autoReplaceRange("%COEFFICIENTS_RANGE%",
ScRange(rOutput.current(1, 1),
rOutput.current(1, 1 + mnNumIndependentVars)));
rTemplate.autoReplaceRange("%SLOPES_RANGE%", // Excludes the intercept
ScRange(rOutput.current(1, 2),
rOutput.current(1, 1 + mnNumIndependentVars)));
rTemplate.autoReplaceAddress("%INTERCEPT_ADDR%", rOutput.current(1, 1));
rTemplate.autoReplaceRange("%SERRORSX_RANGE%",
ScRange(rOutput.current(2, 1),
rOutput.current(2, 1 + mnNumIndependentVars)));
// t-Statistics range in this table (yet to populate)
rTemplate.autoReplaceRange("%TSTAT_RANGE%",
ScRange(rOutput.current(3, 1),
rOutput.current(3, 1 + mnNumIndependentVars)));
const size_t nColsInTable = 7;
const size_t nRowsInTable = 2;
OUString aTable[nRowsInTable][nColsInTable] =
{
{
"",
ScResId(STR_LABEL_COEFFICIENTS),
ScResId(STRID_CALC_STD_ERROR),
ScResId(STR_LABEL_TSTATISTIC),
ScResId(STR_P_VALUE_LABEL),
"=CONCAT(\"" + ScResId(STR_LABEL_LOWER) +
" \" ; INT(%CONFIDENCE_LEVEL_ADDR% * 100) ; \"%\")",
"=CONCAT(\"" + ScResId(STR_LABEL_UPPER) +
" \" ; INT(%CONFIDENCE_LEVEL_ADDR% * 100) ; \"%\")",
},
// Following are matrix formulas of size numcols = 1, numrows = (mnNumIndependentVars + 1)
{
"",
// This puts the coefficients in the reverse order compared to that in LINEST output.
"=INDEX(%COEFFICIENTS_REV_RANGE%; 1 ; " + OUString::number(nLastRow + 2) + " - ROW())",
// This puts the standard errors in the reverse order compared to that in LINEST output.
"=INDEX(%SERRORSX_REV_RANGE%; 1 ; " + OUString::number(nLastRow + 2) + " - ROW())",
// t-Statistic
"=%COEFFICIENTS_RANGE% / %SERRORSX_RANGE%",
// p-Value
"=TDIST(ABS(%TSTAT_RANGE%) ; %DoFRESID_ADDR% ; 2 )",
// Lower limit of confidence interval
"=%COEFFICIENTS_RANGE% - %SERRORSX_RANGE% * "
"TINV(1 - %CONFIDENCE_LEVEL_ADDR% ; %DoFRESID_ADDR%)",
// Upper limit of confidence interval
"=%COEFFICIENTS_RANGE% + %SERRORSX_RANGE% * "
"TINV(1 - %CONFIDENCE_LEVEL_ADDR% ; %DoFRESID_ADDR%)"
}
};
// Cell getter lambda
std::function<CellValueGetter> aCellGetterFunc = [&aTable](size_t nRowIdx, size_t nColIdx) -> const OUString&
{
return aTable[nRowIdx][nColIdx];
};
// Cell writer lambda
size_t nNumIndependentVars = mnNumIndependentVars;
std::function<CellWriter> aCellWriterFunc = [&rOutput, &rTemplate, nNumIndependentVars]
(const OUString& rContent, size_t nRowIdx, size_t /*nColIdx*/)
{
if (!rContent.isEmpty())
{
if (rContent.startsWith("="))
{
rTemplate.setTemplate(rContent);
if (nRowIdx == 0)
rOutput.writeFormula(rTemplate.getTemplate());
else
rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1, 1 + nNumIndependentVars);
}
else
rOutput.writeString(rContent);
}
};
WriteTable(aCellGetterFunc, nRowsInTable, nColsInTable, rOutput, aCellWriterFunc);
// Go back to the second row and first column of the table to
// fill the names of variables + intercept
rOutput.push(0, -1);
for (size_t nXvarIdx = 0; nXvarIdx <= mnNumIndependentVars; ++nXvarIdx)
{
rOutput.writeFormula(GetXVariableNameFormula(nXvarIdx, bTakeLogX));
rOutput.newLine();
}
}
// Re-write all observations in group-by column mode with predictions and residuals
void ScRegressionDialog::WritePredictionsWithResiduals(AddressWalkerWriter& rOutput, FormulaTemplate& rTemplate,
size_t nRegressionIndex)
{
bool bGroupedByColumn = mGroupedBy == BY_COLUMN;
rOutput.newLine();
rOutput.push();
// Range of X variables with rows as observations and columns as variables.
ScRange aDataMatrixRange(rOutput.current(0, 1), rOutput.current(mnNumIndependentVars - 1, mnNumObservations));
rTemplate.autoReplaceRange("%XDATAMATRIX_RANGE%", aDataMatrixRange);
// Write X variable names
for (size_t nXvarIdx = 1; nXvarIdx <= mnNumIndependentVars; ++nXvarIdx)
{
// Here we write the X variables without any transformation(LN)
rOutput.writeFormula(GetXVariableNameFormula(nXvarIdx, false));
rOutput.nextColumn();
}
rOutput.reset();
// Write the X data matrix
rOutput.nextRow();
OUString aDataMatrixFormula = bGroupedByColumn ? OUString("=%VARIABLE1_RANGE%") : OUString("=TRANSPOSE(%VARIABLE1_RANGE%)");
rTemplate.setTemplate(aDataMatrixFormula);
rOutput.writeMatrixFormula(rTemplate.getTemplate(), mnNumIndependentVars, mnNumObservations);
// Write predicted values
rOutput.push(mnNumIndependentVars, -1);
rOutput.writeString(ScResId(STR_LABEL_PREDICTEDY));
rOutput.nextRow();
rTemplate.setTemplate(constRegressionFormula[nRegressionIndex]);
rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1, mnNumObservations);
rTemplate.autoReplaceRange("%PREDICTEDY_RANGE%", ScRange(rOutput.current(), rOutput.current(0, mnNumObservations - 1)));
// Write actual Y
rOutput.push(1, -1);
rOutput.writeFormula(GetYVariableNameFormula(false));
rOutput.nextRow();
OUString aYVectorFormula = bGroupedByColumn ? OUString("=%VARIABLE2_RANGE%") : OUString("=TRANSPOSE(%VARIABLE2_RANGE%)");
rTemplate.setTemplate(aYVectorFormula);
rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1, mnNumObservations);
rTemplate.autoReplaceRange("%ACTUALY_RANGE%", ScRange(rOutput.current(), rOutput.current(0, mnNumObservations - 1)));
// Write residual
rOutput.push(1, -1);
rOutput.writeString(ScResId(STR_LABEL_RESIDUAL));
rOutput.nextRow();
rTemplate.setTemplate("=%ACTUALY_RANGE% - %PREDICTEDY_RANGE%");
rOutput.writeMatrixFormula(rTemplate.getTemplate(), 1, mnNumObservations);
}
// Generic table writer
void ScRegressionDialog::WriteTable(std::function<CellValueGetter>& rCellGetter,
size_t nRowsInTable, size_t nColsInTable,
AddressWalkerWriter& rOutput,
std::function<CellWriter>& rFunc)
{
for (size_t nRowIdx = 0; nRowIdx < nRowsInTable; ++nRowIdx)
{
for (size_t nColIdx = 0; nColIdx < nColsInTable; ++nColIdx)
{
rFunc(rCellGetter(nRowIdx, nColIdx), nRowIdx, nColIdx);
rOutput.nextColumn();
}
rOutput.newLine();
}
}
IMPL_LINK_NOARG(ScRegressionDialog, CheckBoxHdl, CheckBox&, void)
{
ValidateDialogInput();
}
IMPL_LINK_NOARG(ScRegressionDialog, NumericFieldHdl, Edit&, void)
{
ValidateDialogInput();
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|