1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include "bessel.hxx"
#include "analysishelper.hxx"
#include <rtl/math.hxx>
using ::com::sun::star::lang::IllegalArgumentException;
using ::com::sun::star::sheet::NoConvergenceException;
namespace sca {
namespace analysis {
// ============================================================================
const double f_PI = 3.1415926535897932385;
const double f_PI_DIV_2 = f_PI / 2.0;
const double f_PI_DIV_4 = f_PI / 4.0;
const double f_2_DIV_PI = 2.0 / f_PI;
// ============================================================================
// BESSEL J
// ============================================================================
/* The BESSEL function, first kind, unmodified:
The algorithm follows
http://www.reference-global.com/isbn/978-3-11-020354-7
Numerical Mathematics 1 / Numerische Mathematik 1,
An algorithm-based introduction / Eine algorithmisch orientierte Einfuehrung
Deuflhard, Peter; Hohmann, Andreas
Berlin, New York (Walter de Gruyter) 2008
4. ueberarb. u. erw. Aufl. 2008
eBook ISBN: 978-3-11-020355-4
Chapter 6.3.2 , algorithm 6.24
The source is in German.
The BesselJ-function is a special case of the adjoint summation with
a_k = 2*(k-1)/x for k=1,...
b_k = -1, for all k, directly substituted
m_0=1, m_k=2 for k even, and m_k=0 for k odd, calculated on the fly
alpha_k=1 for k=N and alpha_k=0 otherwise
*/
// ----------------------------------------------------------------------------
double BesselJ( double x, sal_Int32 N ) throw (IllegalArgumentException, NoConvergenceException)
{
if( N < 0 )
throw IllegalArgumentException();
if (x==0.0)
return (N==0) ? 1.0 : 0.0;
/* The algorithm works only for x>0, therefore remember sign. BesselJ
with integer order N is an even function for even N (means J(-x)=J(x))
and an odd function for odd N (means J(-x)=-J(x)).*/
double fSign = (N % 2 == 1 && x < 0) ? -1.0 : 1.0;
double fX = fabs(x);
const double fMaxIteration = 9000000.0; //experimental, for to return in < 3 seconds
double fEstimateIteration = fX * 1.5 + N;
bool bAsymptoticPossible = pow(fX,0.4) > N;
if (fEstimateIteration > fMaxIteration)
{
if (bAsymptoticPossible)
return fSign * sqrt(f_2_DIV_PI/fX)* cos(fX-N*f_PI_DIV_2-f_PI_DIV_4);
else
throw NoConvergenceException();
}
double epsilon = 1.0e-15; // relative error
bool bHasfound = false;
double k= 0.0;
// e_{-1} = 0; e_0 = alpha_0 / b_2
double u ; // u_0 = e_0/f_0 = alpha_0/m_0 = alpha_0
// first used with k=1
double m_bar; // m_bar_k = m_k * f_bar_{k-1}
double g_bar; // g_bar_k = m_bar_k - a_{k+1} + g_{k-1}
double g_bar_delta_u; // g_bar_delta_u_k = f_bar_{k-1} * alpha_k
// - g_{k-1} * delta_u_{k-1} - m_bar_k * u_{k-1}
// f_{-1} = 0.0; f_0 = m_0 / b_2 = 1/(-1) = -1
double g = 0.0; // g_0= f_{-1} / f_0 = 0/(-1) = 0
double delta_u = 0.0; // dummy initialize, first used with * 0
double f_bar = -1.0; // f_bar_k = 1/f_k, but only used for k=0
if (N==0)
{
//k=0; alpha_0 = 1.0
u = 1.0; // u_0 = alpha_0
// k = 1.0; at least one step is necessary
// m_bar_k = m_k * f_bar_{k-1} ==> m_bar_1 = 0.0
g_bar_delta_u = 0.0; // alpha_k = 0.0, m_bar = 0.0; g= 0.0
g_bar = - 2.0/fX; // k = 1.0, g = 0.0
delta_u = g_bar_delta_u / g_bar;
u = u + delta_u ; // u_k = u_{k-1} + delta_u_k
g = -1.0 / g_bar; // g_k=b_{k+2}/g_bar_k
f_bar = f_bar * g; // f_bar_k = f_bar_{k-1}* g_k
k = 2.0;
// From now on all alpha_k = 0.0 and k > N+1
}
else
{ // N >= 1 and alpha_k = 0.0 for k<N
u=0.0; // u_0 = alpha_0
for (k =1.0; k<= N-1; k = k + 1.0)
{
m_bar=2.0 * fmod(k-1.0, 2.0) * f_bar;
g_bar_delta_u = - g * delta_u - m_bar * u; // alpha_k = 0.0
g_bar = m_bar - 2.0*k/fX + g;
delta_u = g_bar_delta_u / g_bar;
u = u + delta_u;
g = -1.0/g_bar;
f_bar=f_bar * g;
}
// Step alpha_N = 1.0
m_bar=2.0 * fmod(k-1.0, 2.0) * f_bar;
g_bar_delta_u = f_bar - g * delta_u - m_bar * u; // alpha_k = 1.0
g_bar = m_bar - 2.0*k/fX + g;
delta_u = g_bar_delta_u / g_bar;
u = u + delta_u;
g = -1.0/g_bar;
f_bar = f_bar * g;
k = k + 1.0;
}
// Loop until desired accuracy, always alpha_k = 0.0
do
{
m_bar = 2.0 * fmod(k-1.0, 2.0) * f_bar;
g_bar_delta_u = - g * delta_u - m_bar * u;
g_bar = m_bar - 2.0*k/fX + g;
delta_u = g_bar_delta_u / g_bar;
u = u + delta_u;
g = -1.0/g_bar;
f_bar = f_bar * g;
bHasfound = (fabs(delta_u)<=fabs(u)*epsilon);
k = k + 1.0;
}
while (!bHasfound && k <= fMaxIteration);
if (bHasfound)
return u * fSign;
else
throw NoConvergenceException(); // unlikely to happen
}
// ============================================================================
// BESSEL I
// ============================================================================
/* The BESSEL function, first kind, modified:
inf (x/2)^(n+2k)
I_n(x) = SUM TERM(n,k) with TERM(n,k) := --------------
k=0 k! (n+k)!
No asymptotic approximation used, see issue 43040.
*/
// ----------------------------------------------------------------------------
double BesselI( double x, sal_Int32 n ) throw( IllegalArgumentException, NoConvergenceException )
{
const sal_Int32 nMaxIteration = 2000;
const double fXHalf = x / 2.0;
if( n < 0 )
throw IllegalArgumentException();
double fResult = 0.0;
/* Start the iteration without TERM(n,0), which is set here.
TERM(n,0) = (x/2)^n / n!
*/
sal_Int32 nK = 0;
double fTerm = 1.0;
// avoid overflow in Fak(n)
for( nK = 1; nK <= n; ++nK )
{
fTerm = fTerm / static_cast< double >( nK ) * fXHalf;
}
fResult = fTerm; // Start result with TERM(n,0).
if( fTerm != 0.0 )
{
nK = 1;
const double fEpsilon = 1.0E-15;
do
{
/* Calculation of TERM(n,k) from TERM(n,k-1):
(x/2)^(n+2k)
TERM(n,k) = --------------
k! (n+k)!
(x/2)^2 (x/2)^(n+2(k-1))
= --------------------------
k (k-1)! (n+k) (n+k-1)!
(x/2)^2 (x/2)^(n+2(k-1))
= --------- * ------------------
k(n+k) (k-1)! (n+k-1)!
x^2/4
= -------- TERM(n,k-1)
k(n+k)
*/
fTerm = fTerm * fXHalf / static_cast<double>(nK) * fXHalf / static_cast<double>(nK+n);
fResult += fTerm;
nK++;
}
while( (fabs( fTerm ) > fabs(fResult) * fEpsilon) && (nK < nMaxIteration) );
}
return fResult;
}
// ============================================================================
double Besselk0( double fNum ) throw( IllegalArgumentException, NoConvergenceException )
{
double fRet;
if( fNum <= 2.0 )
{
double fNum2 = fNum * 0.5;
double y = fNum2 * fNum2;
fRet = -log( fNum2 ) * BesselI( fNum, 0 ) +
( -0.57721566 + y * ( 0.42278420 + y * ( 0.23069756 + y * ( 0.3488590e-1 +
y * ( 0.262698e-2 + y * ( 0.10750e-3 + y * 0.74e-5 ) ) ) ) ) );
}
else
{
double y = 2.0 / fNum;
fRet = exp( -fNum ) / sqrt( fNum ) * ( 1.25331414 + y * ( -0.7832358e-1 +
y * ( 0.2189568e-1 + y * ( -0.1062446e-1 + y * ( 0.587872e-2 +
y * ( -0.251540e-2 + y * 0.53208e-3 ) ) ) ) ) );
}
return fRet;
}
double Besselk1( double fNum ) throw( IllegalArgumentException, NoConvergenceException )
{
double fRet;
if( fNum <= 2.0 )
{
double fNum2 = fNum * 0.5;
double y = fNum2 * fNum2;
fRet = log( fNum2 ) * BesselI( fNum, 1 ) +
( 1.0 + y * ( 0.15443144 + y * ( -0.67278579 + y * ( -0.18156897 + y * ( -0.1919402e-1 +
y * ( -0.110404e-2 + y * ( -0.4686e-4 ) ) ) ) ) ) )
/ fNum;
}
else
{
double y = 2.0 / fNum;
fRet = exp( -fNum ) / sqrt( fNum ) * ( 1.25331414 + y * ( 0.23498619 +
y * ( -0.3655620e-1 + y * ( 0.1504268e-1 + y * ( -0.780353e-2 +
y * ( 0.325614e-2 + y * ( -0.68245e-3 ) ) ) ) ) ) );
}
return fRet;
}
double BesselK( double fNum, sal_Int32 nOrder ) throw( IllegalArgumentException, NoConvergenceException )
{
switch( nOrder )
{
case 0: return Besselk0( fNum );
case 1: return Besselk1( fNum );
default:
{
double fBkp;
double fTox = 2.0 / fNum;
double fBkm = Besselk0( fNum );
double fBk = Besselk1( fNum );
for( sal_Int32 n = 1 ; n < nOrder ; n++ )
{
fBkp = fBkm + double( n ) * fTox * fBk;
fBkm = fBk;
fBk = fBkp;
}
return fBk;
}
}
}
// ============================================================================
// BESSEL Y
// ============================================================================
/* The BESSEL function, second kind, unmodified:
The algorithm for order 0 and for order 1 follows
http://www.reference-global.com/isbn/978-3-11-020354-7
Numerical Mathematics 1 / Numerische Mathematik 1,
An algorithm-based introduction / Eine algorithmisch orientierte Einfuehrung
Deuflhard, Peter; Hohmann, Andreas
Berlin, New York (Walter de Gruyter) 2008
4. ueberarb. u. erw. Aufl. 2008
eBook ISBN: 978-3-11-020355-4
Chapter 6.3.2 , algorithm 6.24
The source is in German.
See #i31656# for a commented version of the implementation, attachment #desc6
http://www.openoffice.org/nonav/issues/showattachment.cgi/63609/Comments%20to%20the%20implementation%20of%20the%20Bessel%20functions.odt
*/
double Bessely0( double fX ) throw( IllegalArgumentException, NoConvergenceException )
{
if (fX <= 0)
throw IllegalArgumentException();
const double fMaxIteration = 9000000.0; // should not be reached
if (fX > 5.0e+6) // iteration is not considerable better then approximation
return sqrt(1/f_PI/fX)
*(rtl::math::sin(fX)-rtl::math::cos(fX));
const double epsilon = 1.0e-15;
const double EulerGamma = 0.57721566490153286060;
double alpha = log(fX/2.0)+EulerGamma;
double u = alpha;
double k = 1.0;
double m_bar = 0.0;
double g_bar_delta_u = 0.0;
double g_bar = -2.0 / fX;
double delta_u = g_bar_delta_u / g_bar;
double g = -1.0/g_bar;
double f_bar = -1 * g;
double sign_alpha = 1.0;
double km1mod2;
bool bHasFound = false;
k = k + 1;
do
{
km1mod2 = fmod(k-1.0,2.0);
m_bar=(2.0*km1mod2) * f_bar;
if (km1mod2 == 0.0)
alpha = 0.0;
else
{
alpha = sign_alpha * (4.0/k);
sign_alpha = -sign_alpha;
}
g_bar_delta_u = f_bar * alpha - g * delta_u - m_bar * u;
g_bar = m_bar - (2.0*k)/fX + g;
delta_u = g_bar_delta_u / g_bar;
u = u+delta_u;
g = -1.0 / g_bar;
f_bar = f_bar*g;
bHasFound = (fabs(delta_u)<=fabs(u)*epsilon);
k=k+1;
}
while (!bHasFound && k<fMaxIteration);
if (bHasFound)
return u*f_2_DIV_PI;
else
throw NoConvergenceException(); // not likely to happen
}
// See #i31656# for a commented version of this implementation, attachment #desc6
// http://www.openoffice.org/nonav/issues/showattachment.cgi/63609/Comments%20to%20the%20implementation%20of%20the%20Bessel%20functions.odt
double Bessely1( double fX ) throw( IllegalArgumentException, NoConvergenceException )
{
if (fX <= 0)
throw IllegalArgumentException();
const double fMaxIteration = 9000000.0; // should not be reached
if (fX > 5.0e+6) // iteration is not considerable better then approximation
return - sqrt(1/f_PI/fX)
*(rtl::math::sin(fX)+rtl::math::cos(fX));
const double epsilon = 1.0e-15;
const double EulerGamma = 0.57721566490153286060;
double alpha = 1.0/fX;
double f_bar = -1.0;
double u = alpha;
double k = 1.0;
double m_bar = 0.0;
alpha = 1.0 - EulerGamma - log(fX/2.0);
double g_bar_delta_u = -alpha;
double g_bar = -2.0 / fX;
double delta_u = g_bar_delta_u / g_bar;
u = u + delta_u;
double g = -1.0/g_bar;
f_bar = f_bar * g;
double sign_alpha = -1.0;
double km1mod2; //will be (k-1) mod 2
double q; // will be (k-1) div 2
bool bHasFound = false;
k = k + 1.0;
do
{
km1mod2 = fmod(k-1.0,2.0);
m_bar=(2.0*km1mod2) * f_bar;
q = (k-1.0)/2.0;
if (km1mod2 == 0.0) // k is odd
{
alpha = sign_alpha * (1.0/q + 1.0/(q+1.0));
sign_alpha = -sign_alpha;
}
else
alpha = 0.0;
g_bar_delta_u = f_bar * alpha - g * delta_u - m_bar * u;
g_bar = m_bar - (2.0*k)/fX + g;
delta_u = g_bar_delta_u / g_bar;
u = u+delta_u;
g = -1.0 / g_bar;
f_bar = f_bar*g;
bHasFound = (fabs(delta_u)<=fabs(u)*epsilon);
k=k+1;
}
while (!bHasFound && k<fMaxIteration);
if (bHasFound)
return -u*2.0/f_PI;
else
throw NoConvergenceException();
}
double BesselY( double fNum, sal_Int32 nOrder ) throw( IllegalArgumentException, NoConvergenceException )
{
switch( nOrder )
{
case 0: return Bessely0( fNum );
case 1: return Bessely1( fNum );
default:
{
double fByp;
double fTox = 2.0 / fNum;
double fBym = Bessely0( fNum );
double fBy = Bessely1( fNum );
for( sal_Int32 n = 1 ; n < nOrder ; n++ )
{
fByp = double( n ) * fTox * fBy - fBym;
fBym = fBy;
fBy = fByp;
}
return fBy;
}
}
}
// ============================================================================
} // namespace analysis
} // namespace sca
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|