summaryrefslogtreecommitdiff
path: root/sccomp/source/solver/LpsolveSolver.cxx
blob: cda134a3d3831d627c2eb4b90386561651b21e51 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*************************************************************************
 *
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * Copyright 2000, 2010 Oracle and/or its affiliates.
 *
 * OpenOffice.org - a multi-platform office productivity suite
 *
 * This file is part of OpenOffice.org.
 *
 * OpenOffice.org is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License version 3
 * only, as published by the Free Software Foundation.
 *
 * OpenOffice.org is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License version 3 for more details
 * (a copy is included in the LICENSE file that accompanied this code).
 *
 * You should have received a copy of the GNU Lesser General Public License
 * version 3 along with OpenOffice.org.  If not, see
 * <http://www.openoffice.org/license.html>
 * for a copy of the LGPLv3 License.
 *
 * This file incorporates work covered by the following license notice:
 *
 *   Licensed to the Apache Software Foundation (ASF) under one or more
 *   contributor license agreements. See the NOTICE file distributed
 *   with this work for additional information regarding copyright
 *   ownership. The ASF licenses this file to you under the Apache
 *   License, Version 2.0 (the "License"); you may not use this file
 *   except in compliance with the License. You may obtain a copy of
 *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
 *
 ************************************************************************/

#include <sal/config.h>
#include <sal/log.hxx>

#undef LANGUAGE_NONE
#if defined _WIN32
#define WINAPI __stdcall
#endif
#define LoadInverseLib FALSE
#define LoadLanguageLib FALSE
#ifdef SYSTEM_LPSOLVE
#include <lpsolve/lp_lib.h>
#else
#include <lp_lib.h>
#endif
#undef LANGUAGE_NONE

#include "SolverComponent.hxx"
#include <strings.hrc>

#include <com/sun/star/frame/XModel.hpp>
#include <com/sun/star/table/CellAddress.hpp>
#include <rtl/math.hxx>
#include <algorithm>
#include <memory>
#include <vector>

namespace com::sun::star::uno { class XComponentContext; }

using namespace com::sun::star;

namespace {

class LpsolveSolver : public SolverComponent
{
public:
    LpsolveSolver() {}

private:
    virtual void SAL_CALL solve() override;
    virtual OUString SAL_CALL getImplementationName() override
    {
        return u"com.sun.star.comp.Calc.LpsolveSolver"_ustr;
    }
    virtual OUString SAL_CALL getComponentDescription() override
    {
        return SolverComponent::GetResourceString( RID_SOLVER_COMPONENT );
    }
};

}

void SAL_CALL LpsolveSolver::solve()
{
    uno::Reference<frame::XModel> xModel( mxDoc, uno::UNO_QUERY_THROW );

    maStatus.clear();
    mbSuccess = false;

    if ( mnEpsilonLevel < EPS_TIGHT || mnEpsilonLevel > EPS_BAGGY )
    {
        maStatus = SolverComponent::GetResourceString( RID_ERROR_EPSILONLEVEL );
        return;
    }

    xModel->lockControllers();

    // collect variables in vector (?)

    const auto & aVariableCells = maVariables;
    size_t nVariables = aVariableCells.size();
    size_t nVar = 0;

    // Store all RHS values
    sal_uInt32 nConstraints = maConstraints.size();
    m_aConstrRHS.realloc(nConstraints);

    // collect all dependent cells

    ScSolverCellHashMap aCellsHash;
    aCellsHash[maObjective].reserve( nVariables + 1 );                  // objective function

    for (const auto& rConstr : maConstraints)
    {
        table::CellAddress aCellAddr = rConstr.Left;
        aCellsHash[aCellAddr].reserve( nVariables + 1 );                // constraints: left hand side

        if ( rConstr.Right >>= aCellAddr )
            aCellsHash[aCellAddr].reserve( nVariables + 1 );            // constraints: right hand side
    }

    // set all variables to zero
    //! store old values?
    //! use old values as initial values?
    for ( const auto& rVarCell : aVariableCells )
    {
        SolverComponent::SetValue( mxDoc, rVarCell, 0.0 );
    }

    // read initial values from all dependent cells
    for ( auto& rEntry : aCellsHash )
    {
        double fValue = SolverComponent::GetValue( mxDoc, rEntry.first );
        rEntry.second.push_back( fValue );                         // store as first element, as-is
    }

    // loop through variables
    for ( const auto& rVarCell : aVariableCells )
    {
        SolverComponent::SetValue( mxDoc, rVarCell, 1.0 );      // set to 1 to examine influence

        // read value change from all dependent cells
        for ( auto& rEntry : aCellsHash )
        {
            double fChanged = SolverComponent::GetValue( mxDoc, rEntry.first );
            double fInitial = rEntry.second.front();
            rEntry.second.push_back( fChanged - fInitial );
        }

        SolverComponent::SetValue( mxDoc, rVarCell, 2.0 );      // minimal test for linearity

        for ( const auto& rEntry : aCellsHash )
        {
            double fInitial = rEntry.second.front();
            double fCoeff   = rEntry.second.back();       // last appended: coefficient for this variable
            double fTwo     = SolverComponent::GetValue( mxDoc, rEntry.first );

            bool bLinear = rtl::math::approxEqual( fTwo, fInitial + 2.0 * fCoeff ) ||
                           rtl::math::approxEqual( fInitial, fTwo - 2.0 * fCoeff );
            // second comparison is needed in case fTwo is zero
            if ( !bLinear )
                maStatus = SolverComponent::GetResourceString( RID_ERROR_NONLINEAR );
        }

        SolverComponent::SetValue( mxDoc, rVarCell, 0.0 );      // set back to zero for examining next variable
    }

    xModel->unlockControllers();

    if ( !maStatus.isEmpty() )
        return;


    // build lp_solve model


    lprec* lp = make_lp( 0, nVariables );
    if ( !lp )
        return;

    set_outputfile( lp, const_cast<char*>( "" ) );  // no output

    // set objective function

    const std::vector<double>& rObjCoeff = aCellsHash[maObjective];
    std::unique_ptr<REAL[]> pObjVal(new REAL[nVariables+1]);
    pObjVal[0] = 0.0;                           // ignored
    for (nVar=0; nVar<nVariables; nVar++)
        pObjVal[nVar+1] = rObjCoeff[nVar+1];
    set_obj_fn( lp, pObjVal.get() );
    pObjVal.reset();
    set_rh( lp, 0, rObjCoeff[0] );              // constant term of objective

    // add rows

    set_add_rowmode(lp, TRUE);

    sal_uInt32 nConstrCount(0);
    double* pConstrRHS = m_aConstrRHS.getArray();

    for (const auto& rConstr : maConstraints)
    {
        // integer constraints are set later
        sheet::SolverConstraintOperator eOp = rConstr.Operator;
        if ( eOp == sheet::SolverConstraintOperator_LESS_EQUAL ||
             eOp == sheet::SolverConstraintOperator_GREATER_EQUAL ||
             eOp == sheet::SolverConstraintOperator_EQUAL )
        {
            double fDirectValue = 0.0;
            bool bRightCell = false;
            table::CellAddress aRightAddr;
            const uno::Any& rRightAny = rConstr.Right;
            if ( rRightAny >>= aRightAddr )
                bRightCell = true;                  // cell specified as right-hand side
            else
                rRightAny >>= fDirectValue;         // constant value

            table::CellAddress aLeftAddr = rConstr.Left;

            const std::vector<double>& rLeftCoeff = aCellsHash[aLeftAddr];
            std::unique_ptr<REAL[]> pValues(new REAL[nVariables+1] );
            pValues[0] = 0.0;                               // ignored?
            for (nVar=0; nVar<nVariables; nVar++)
                pValues[nVar+1] = rLeftCoeff[nVar+1];

            // if left hand cell has a constant term, put into rhs value
            double fRightValue = -rLeftCoeff[0];

            if ( bRightCell )
            {
                const std::vector<double>& rRightCoeff = aCellsHash[aRightAddr];
                // modify pValues with rhs coefficients
                for (nVar=0; nVar<nVariables; nVar++)
                    pValues[nVar+1] -= rRightCoeff[nVar+1];

                fRightValue += rRightCoeff[0];      // constant term
            }
            else
                fRightValue += fDirectValue;

            // Remember the RHS value used for sensitivity analysis later
            pConstrRHS[nConstrCount] = fRightValue;

            int nConstrType = LE;
            switch ( eOp )
            {
                case sheet::SolverConstraintOperator_LESS_EQUAL:    nConstrType = LE; break;
                case sheet::SolverConstraintOperator_GREATER_EQUAL: nConstrType = GE; break;
                case sheet::SolverConstraintOperator_EQUAL:         nConstrType = EQ; break;
                default:
                    OSL_FAIL( "unexpected enum type" );
            }
            add_constraint( lp, pValues.get(), nConstrType, fRightValue );
            nConstrCount++;
        }
    }

    set_add_rowmode(lp, FALSE);

    // apply settings to all variables

    for (nVar=0; nVar<nVariables; nVar++)
    {
        if ( !mbNonNegative )
            set_unbounded(lp, nVar+1);          // allow negative (default is non-negative)
                                                //! collect bounds from constraints?
        if ( mbInteger )
            set_int(lp, nVar+1, TRUE);
    }

    // apply single-var integer constraints

    for (const auto& rConstr : maConstraints)
    {
        sheet::SolverConstraintOperator eOp = rConstr.Operator;
        if ( eOp == sheet::SolverConstraintOperator_INTEGER ||
             eOp == sheet::SolverConstraintOperator_BINARY )
        {
            table::CellAddress aLeftAddr = rConstr.Left;
            // find variable index for cell
            for (nVar=0; nVar<nVariables; nVar++)
                if ( AddressEqual( aVariableCells[nVar], aLeftAddr ) )
                {
                    if ( eOp == sheet::SolverConstraintOperator_INTEGER )
                        set_int(lp, nVar+1, TRUE);
                    else
                        set_binary(lp, nVar+1, TRUE);
                }
        }
    }

    if ( mbMaximize )
        set_maxim(lp);
    else
        set_minim(lp);

    if ( !mbLimitBBDepth )
        set_bb_depthlimit( lp, 0 );

    set_epslevel( lp, mnEpsilonLevel );
    set_timeout( lp, mnTimeout );

    // solve model

    int nResult = ::solve( lp );

    mbSuccess = ( nResult == OPTIMAL );
    if ( mbSuccess )
    {
        // get solution

        maSolution.realloc( nVariables );

        REAL* pResultVar = nullptr;
        get_ptr_variables( lp, &pResultVar );
        std::copy_n(pResultVar, nVariables, maSolution.getArray());

        mfResultValue = get_objective( lp );

        // Initially set to false because getting the report might fail
        m_aSensitivityReport.HasReport = false;

        // Get sensitivity report if the user set SensitivityReport parameter to true
        if (mbGenSensitivity)
        {
            // Get sensitivity data about the objective function
            // LpSolve returns an interval for the coefficients of the objective function
            // instead of returning an allowable increase/decrease (which is what we want to show
            // in the sensitivity report; so we these from/till values are converted into increase
            // and decrease values later)
            REAL* pObjFrom = nullptr;
            REAL* pObjTill = nullptr;
            bool bHasObjReport = false;
            bHasObjReport = get_ptr_sensitivity_obj(lp, &pObjFrom, &pObjTill);

            // Get sensitivity data about constraints
            // Similarly to the objective function, the sensitivity values returned for the
            // constraints are in the form from/till and are later converted to increase and
            // decrease values later
            REAL* pConstrValue = nullptr;
            REAL* pConstrDual = nullptr;
            REAL* pConstrFrom = nullptr;
            REAL* pConstrTill = nullptr;
            bool bHasConstrReport = false;
            bHasConstrReport = get_ptr_sensitivity_rhs(lp, &pConstrDual, &pConstrFrom, &pConstrTill);

            // When successful, store sensitivity data in the solver component
            if (bHasObjReport && bHasConstrReport)
            {
                m_aSensitivityReport.HasReport = true;
                m_aObjDecrease.realloc(nVariables);
                m_aObjIncrease.realloc(nVariables);
                double* pObjDecrease = m_aObjDecrease.getArray();
                double* pObjIncrease = m_aObjIncrease.getArray();
                for (size_t i = 0; i < nVariables; i++)
                {
                    // Allowed decrease. Note that the indices of rObjCoeff are offset by 1
                    // because of the objective function
                    if (static_cast<bool>(is_infinite(lp, pObjFrom[i])))
                        pObjDecrease[i] = get_infinite(lp);
                    else
                        pObjDecrease[i] = rObjCoeff[i + 1] - pObjFrom[i];

                    // Allowed increase
                    if (static_cast<bool>(is_infinite(lp, pObjTill[i])))
                        pObjIncrease[i] = get_infinite(lp);
                    else
                        pObjIncrease[i] = pObjTill[i] - rObjCoeff[i + 1];
                }

                // Save objective coefficients for the sensitivity report
                double* pObjCoefficients(new double[nVariables]);
                for (size_t i = 0; i < nVariables; i++)
                    pObjCoefficients[i] = rObjCoeff[i + 1];
                m_aObjCoefficients.realloc(nVariables);
                std::copy_n(pObjCoefficients, nVariables, m_aObjCoefficients.getArray());

                // The reduced costs are in pConstrDual after the constraints
                double* pObjRedCost(new double[nVariables]);
                for (size_t i = 0; i < nVariables; i++)
                    pObjRedCost[i] = pConstrDual[nConstraints + i];
                m_aObjRedCost.realloc(nVariables);
                std::copy_n(pObjRedCost, nVariables, m_aObjRedCost.getArray());

                // Final value of constraints
                get_ptr_constraints(lp, &pConstrValue);
                m_aConstrValue.realloc(nConstraints);
                std::copy_n(pConstrValue, nConstraints, m_aConstrValue.getArray());

                // The RHS contains information for each constraint
                m_aConstrDual.realloc(nConstraints);
                m_aConstrDecrease.realloc(nConstraints);
                m_aConstrIncrease.realloc(nConstraints);
                std::copy_n(pConstrDual, nConstraints, m_aConstrDual.getArray());
                double* pConstrDecrease = m_aConstrDecrease.getArray();
                double* pConstrIncrease = m_aConstrIncrease.getArray();

                for (sal_uInt32 i = 0; i < nConstraints; i++)
                {
                    // Allowed decrease
                    pConstrDecrease[i] = m_aConstrRHS[i] - pConstrFrom[i];
                    if (static_cast<bool>(is_infinite(lp, pConstrFrom[i]))
                        && maConstraints[i].Operator == sheet::SolverConstraintOperator_LESS_EQUAL)
                        pConstrDecrease[i] = m_aConstrRHS[i] - m_aConstrValue[i];

                    // Allowed increase
                    pConstrIncrease[i] = pConstrTill[i] - m_aConstrRHS[i];
                    if (static_cast<bool>(is_infinite(lp, pConstrTill[i]))
                        && maConstraints[i].Operator == sheet::SolverConstraintOperator_GREATER_EQUAL)
                        pConstrIncrease[i] = m_aConstrValue[i] - m_aConstrRHS[i];
                }

                // Set all values of the SensitivityReport object
                m_aSensitivityReport.ObjCoefficients = m_aObjCoefficients;
                m_aSensitivityReport.ObjReducedCosts = m_aObjRedCost;
                m_aSensitivityReport.ObjAllowableDecreases = m_aObjDecrease;
                m_aSensitivityReport.ObjAllowableIncreases = m_aObjIncrease;
                m_aSensitivityReport.ConstrValues = m_aConstrValue;
                m_aSensitivityReport.ConstrRHS = m_aConstrRHS;
                m_aSensitivityReport.ConstrShadowPrices = m_aConstrDual;
                m_aSensitivityReport.ConstrAllowableDecreases = m_aConstrDecrease;
                m_aSensitivityReport.ConstrAllowableIncreases = m_aConstrIncrease;
            }
        }
    }
    else if ( nResult == INFEASIBLE )
        maStatus = SolverComponent::GetResourceString( RID_ERROR_INFEASIBLE );
    else if ( nResult == UNBOUNDED )
        maStatus = SolverComponent::GetResourceString( RID_ERROR_UNBOUNDED );
    else if ( nResult == TIMEOUT || nResult == SUBOPTIMAL )
        maStatus = SolverComponent::GetResourceString( RID_ERROR_TIMEOUT );
    // SUBOPTIMAL is assumed to be caused by a timeout, and reported as an error

    delete_lp( lp );
}

extern "C" SAL_DLLPUBLIC_EXPORT css::uno::XInterface *
com_sun_star_comp_Calc_LpsolveSolver_get_implementation(
    css::uno::XComponentContext *,
    css::uno::Sequence<css::uno::Any> const &)
{
    return cppu::acquire(new LpsolveSolver());
}

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */