1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2000, 2010 Oracle and/or its affiliates.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
#undef LANGUAGE_NONE
#define WINAPI __stdcall
#define LoadInverseLib FALSE
#define LoadLanguageLib FALSE
#include <lpsolve/lp_lib.h>
#undef LANGUAGE_NONE
#include "solver.hxx"
#include "solver.hrc"
#include <com/sun/star/beans/XPropertySet.hpp>
#include <com/sun/star/container/XIndexAccess.hpp>
#include <com/sun/star/frame/XModel.hpp>
#include <com/sun/star/lang/XMultiServiceFactory.hpp>
#include <com/sun/star/sheet/XSpreadsheetDocument.hpp>
#include <com/sun/star/sheet/XSpreadsheet.hpp>
#include <com/sun/star/table/CellAddress.hpp>
#include <com/sun/star/table/CellRangeAddress.hpp>
#include <com/sun/star/text/XTextRange.hpp>
#include <rtl/math.hxx>
#include <rtl/ustrbuf.hxx>
#include <cppuhelper/factory.hxx>
#include <vector>
#include <boost/unordered_map.hpp>
#include <tools/resmgr.hxx>
using namespace com::sun::star;
using ::rtl::OUString;
#define C2U(constAsciiStr) (::rtl::OUString( constAsciiStr ))
#define STR_NONNEGATIVE "NonNegative"
#define STR_INTEGER "Integer"
#define STR_TIMEOUT "Timeout"
#define STR_EPSILONLEVEL "EpsilonLevel"
#define STR_LIMITBBDEPTH "LimitBBDepth"
// -----------------------------------------------------------------------
// Resources from tools are used for translated strings
static ResMgr* pSolverResMgr = NULL;
static OUString lcl_GetResourceString( sal_uInt32 nId )
{
if (!pSolverResMgr)
pSolverResMgr = ResMgr::CreateResMgr("solver");
return String( ResId( nId, *pSolverResMgr ) );
}
// -----------------------------------------------------------------------
namespace
{
enum
{
PROP_NONNEGATIVE,
PROP_INTEGER,
PROP_TIMEOUT,
PROP_EPSILONLEVEL,
PROP_LIMITBBDEPTH
};
}
// -----------------------------------------------------------------------
// hash map for the coefficients of a dependent cell (objective or constraint)
// The size of each vector is the number of columns (variable cells) plus one, first entry is initial value.
struct ScSolverCellHash
{
size_t operator()( const table::CellAddress& rAddress ) const
{
return ( rAddress.Sheet << 24 ) | ( rAddress.Column << 16 ) | rAddress.Row;
}
};
inline bool AddressEqual( const table::CellAddress& rAddr1, const table::CellAddress& rAddr2 )
{
return rAddr1.Sheet == rAddr2.Sheet && rAddr1.Column == rAddr2.Column && rAddr1.Row == rAddr2.Row;
}
struct ScSolverCellEqual
{
bool operator()( const table::CellAddress& rAddr1, const table::CellAddress& rAddr2 ) const
{
return AddressEqual( rAddr1, rAddr2 );
}
};
typedef boost::unordered_map< table::CellAddress, std::vector<double>, ScSolverCellHash, ScSolverCellEqual > ScSolverCellHashMap;
// -----------------------------------------------------------------------
static uno::Reference<table::XCell> lcl_GetCell( const uno::Reference<sheet::XSpreadsheetDocument>& xDoc,
const table::CellAddress& rPos )
{
uno::Reference<container::XIndexAccess> xSheets( xDoc->getSheets(), uno::UNO_QUERY );
uno::Reference<sheet::XSpreadsheet> xSheet( xSheets->getByIndex( rPos.Sheet ), uno::UNO_QUERY );
return xSheet->getCellByPosition( rPos.Column, rPos.Row );
}
static void lcl_SetValue( const uno::Reference<sheet::XSpreadsheetDocument>& xDoc,
const table::CellAddress& rPos, double fValue )
{
lcl_GetCell( xDoc, rPos )->setValue( fValue );
}
static double lcl_GetValue( const uno::Reference<sheet::XSpreadsheetDocument>& xDoc,
const table::CellAddress& rPos )
{
return lcl_GetCell( xDoc, rPos )->getValue();
}
// -------------------------------------------------------------------------
SolverComponent::SolverComponent( const uno::Reference<uno::XComponentContext>& /* rSMgr */ ) :
OPropertyContainer( GetBroadcastHelper() ),
mbMaximize( sal_True ),
mbNonNegative( sal_False ),
mbInteger( sal_False ),
mnTimeout( 100 ),
mnEpsilonLevel( 0 ),
mbLimitBBDepth( sal_True ),
mbSuccess( sal_False ),
mfResultValue( 0.0 )
{
// for XPropertySet implementation:
registerProperty( C2U(STR_NONNEGATIVE), PROP_NONNEGATIVE, 0, &mbNonNegative, getCppuType( &mbNonNegative ) );
registerProperty( C2U(STR_INTEGER), PROP_INTEGER, 0, &mbInteger, getCppuType( &mbInteger ) );
registerProperty( C2U(STR_TIMEOUT), PROP_TIMEOUT, 0, &mnTimeout, getCppuType( &mnTimeout ) );
registerProperty( C2U(STR_EPSILONLEVEL), PROP_EPSILONLEVEL, 0, &mnEpsilonLevel, getCppuType( &mnEpsilonLevel ) );
registerProperty( C2U(STR_LIMITBBDEPTH), PROP_LIMITBBDEPTH, 0, &mbLimitBBDepth, getCppuType( &mbLimitBBDepth ) );
}
SolverComponent::~SolverComponent()
{
}
IMPLEMENT_FORWARD_XINTERFACE2( SolverComponent, SolverComponent_Base, OPropertyContainer )
IMPLEMENT_FORWARD_XTYPEPROVIDER2( SolverComponent, SolverComponent_Base, OPropertyContainer )
cppu::IPropertyArrayHelper* SolverComponent::createArrayHelper() const
{
uno::Sequence<beans::Property> aProps;
describeProperties( aProps );
return new cppu::OPropertyArrayHelper( aProps );
}
cppu::IPropertyArrayHelper& SAL_CALL SolverComponent::getInfoHelper()
{
return *getArrayHelper();
}
uno::Reference<beans::XPropertySetInfo> SAL_CALL SolverComponent::getPropertySetInfo() throw(uno::RuntimeException)
{
return createPropertySetInfo( getInfoHelper() );
}
// XSolverDescription
OUString SAL_CALL SolverComponent::getComponentDescription() throw (uno::RuntimeException)
{
return lcl_GetResourceString( RID_SOLVER_COMPONENT );
}
OUString SAL_CALL SolverComponent::getStatusDescription() throw (uno::RuntimeException)
{
return maStatus;
}
OUString SAL_CALL SolverComponent::getPropertyDescription( const OUString& rPropertyName ) throw (uno::RuntimeException)
{
sal_uInt32 nResId = 0;
sal_Int32 nHandle = getInfoHelper().getHandleByName( rPropertyName );
switch (nHandle)
{
case PROP_NONNEGATIVE:
nResId = RID_PROPERTY_NONNEGATIVE;
break;
case PROP_INTEGER:
nResId = RID_PROPERTY_INTEGER;
break;
case PROP_TIMEOUT:
nResId = RID_PROPERTY_TIMEOUT;
break;
case PROP_EPSILONLEVEL:
nResId = RID_PROPERTY_EPSILONLEVEL;
break;
case PROP_LIMITBBDEPTH:
nResId = RID_PROPERTY_LIMITBBDEPTH;
break;
default:
{
// unknown - leave empty
}
}
OUString aRet;
if ( nResId )
aRet = lcl_GetResourceString( nResId );
return aRet;
}
// XSolver: settings
uno::Reference<sheet::XSpreadsheetDocument> SAL_CALL SolverComponent::getDocument() throw(uno::RuntimeException)
{
return mxDoc;
}
void SAL_CALL SolverComponent::setDocument( const uno::Reference<sheet::XSpreadsheetDocument>& _document )
throw(uno::RuntimeException)
{
mxDoc = _document;
}
table::CellAddress SAL_CALL SolverComponent::getObjective() throw(uno::RuntimeException)
{
return maObjective;
}
void SAL_CALL SolverComponent::setObjective( const table::CellAddress& _objective ) throw(uno::RuntimeException)
{
maObjective = _objective;
}
uno::Sequence<table::CellAddress> SAL_CALL SolverComponent::getVariables() throw(uno::RuntimeException)
{
return maVariables;
}
void SAL_CALL SolverComponent::setVariables( const uno::Sequence<table::CellAddress>& _variables )
throw(uno::RuntimeException)
{
maVariables = _variables;
}
uno::Sequence<sheet::SolverConstraint> SAL_CALL SolverComponent::getConstraints() throw(uno::RuntimeException)
{
return maConstraints;
}
void SAL_CALL SolverComponent::setConstraints( const uno::Sequence<sheet::SolverConstraint>& _constraints )
throw(uno::RuntimeException)
{
maConstraints = _constraints;
}
sal_Bool SAL_CALL SolverComponent::getMaximize() throw(uno::RuntimeException)
{
return mbMaximize;
}
void SAL_CALL SolverComponent::setMaximize( sal_Bool _maximize ) throw(uno::RuntimeException)
{
mbMaximize = _maximize;
}
// XSolver: get results
sal_Bool SAL_CALL SolverComponent::getSuccess() throw(uno::RuntimeException)
{
return mbSuccess;
}
double SAL_CALL SolverComponent::getResultValue() throw(uno::RuntimeException)
{
return mfResultValue;
}
uno::Sequence<double> SAL_CALL SolverComponent::getSolution() throw(uno::RuntimeException)
{
return maSolution;
}
// -------------------------------------------------------------------------
void SAL_CALL SolverComponent::solve() throw(uno::RuntimeException)
{
uno::Reference<frame::XModel> xModel( mxDoc, uno::UNO_QUERY );
if ( !xModel.is() )
throw uno::RuntimeException();
maStatus = OUString();
mbSuccess = false;
if ( mnEpsilonLevel < EPS_TIGHT || mnEpsilonLevel > EPS_BAGGY )
{
maStatus = lcl_GetResourceString( RID_ERROR_EPSILONLEVEL );
return;
}
xModel->lockControllers();
// collect variables in vector (?)
std::vector<table::CellAddress> aVariableCells;
for (sal_Int32 nPos=0; nPos<maVariables.getLength(); nPos++)
aVariableCells.push_back( maVariables[nPos] );
size_t nVariables = aVariableCells.size();
size_t nVar = 0;
// collect all dependent cells
ScSolverCellHashMap aCellsHash;
aCellsHash[maObjective].reserve( nVariables + 1 ); // objective function
for (sal_Int32 nConstrPos = 0; nConstrPos < maConstraints.getLength(); ++nConstrPos)
{
table::CellAddress aCellAddr = maConstraints[nConstrPos].Left;
aCellsHash[aCellAddr].reserve( nVariables + 1 ); // constraints: left hand side
if ( maConstraints[nConstrPos].Right >>= aCellAddr )
aCellsHash[aCellAddr].reserve( nVariables + 1 ); // constraints: right hand side
}
// set all variables to zero
//! store old values?
//! use old values as initial values?
std::vector<table::CellAddress>::const_iterator aVarIter;
for ( aVarIter = aVariableCells.begin(); aVarIter != aVariableCells.end(); ++aVarIter )
{
lcl_SetValue( mxDoc, *aVarIter, 0.0 );
}
// read initial values from all dependent cells
ScSolverCellHashMap::iterator aCellsIter;
for ( aCellsIter = aCellsHash.begin(); aCellsIter != aCellsHash.end(); ++aCellsIter )
{
double fValue = lcl_GetValue( mxDoc, aCellsIter->first );
aCellsIter->second.push_back( fValue ); // store as first element, as-is
}
// loop through variables
for ( aVarIter = aVariableCells.begin(); aVarIter != aVariableCells.end(); ++aVarIter )
{
lcl_SetValue( mxDoc, *aVarIter, 1.0 ); // set to 1 to examine influence
// read value change from all dependent cells
for ( aCellsIter = aCellsHash.begin(); aCellsIter != aCellsHash.end(); ++aCellsIter )
{
double fChanged = lcl_GetValue( mxDoc, aCellsIter->first );
double fInitial = aCellsIter->second.front();
aCellsIter->second.push_back( fChanged - fInitial );
}
lcl_SetValue( mxDoc, *aVarIter, 2.0 ); // minimal test for linearity
for ( aCellsIter = aCellsHash.begin(); aCellsIter != aCellsHash.end(); ++aCellsIter )
{
double fInitial = aCellsIter->second.front();
double fCoeff = aCellsIter->second.back(); // last appended: coefficient for this variable
double fTwo = lcl_GetValue( mxDoc, aCellsIter->first );
bool bLinear = rtl::math::approxEqual( fTwo, fInitial + 2.0 * fCoeff ) ||
rtl::math::approxEqual( fInitial, fTwo - 2.0 * fCoeff );
// second comparison is needed in case fTwo is zero
if ( !bLinear )
maStatus = lcl_GetResourceString( RID_ERROR_NONLINEAR );
}
lcl_SetValue( mxDoc, *aVarIter, 0.0 ); // set back to zero for examining next variable
}
xModel->unlockControllers();
if ( !maStatus.isEmpty() )
return;
//
// build lp_solve model
//
lprec* lp = make_lp( 0, nVariables );
if ( !lp )
return;
set_outputfile( lp, const_cast<char*>( "" ) ); // no output
// set objective function
const std::vector<double>& rObjCoeff = aCellsHash[maObjective];
REAL* pObjVal = new REAL[nVariables+1];
pObjVal[0] = 0.0; // ignored
for (nVar=0; nVar<nVariables; nVar++)
pObjVal[nVar+1] = rObjCoeff[nVar+1];
set_obj_fn( lp, pObjVal );
delete[] pObjVal;
set_rh( lp, 0, rObjCoeff[0] ); // constant term of objective
// add rows
set_add_rowmode(lp, TRUE);
for (sal_Int32 nConstrPos = 0; nConstrPos < maConstraints.getLength(); ++nConstrPos)
{
// integer constraints are set later
sheet::SolverConstraintOperator eOp = maConstraints[nConstrPos].Operator;
if ( eOp == sheet::SolverConstraintOperator_LESS_EQUAL ||
eOp == sheet::SolverConstraintOperator_GREATER_EQUAL ||
eOp == sheet::SolverConstraintOperator_EQUAL )
{
double fDirectValue = 0.0;
bool bRightCell = false;
table::CellAddress aRightAddr;
const uno::Any& rRightAny = maConstraints[nConstrPos].Right;
if ( rRightAny >>= aRightAddr )
bRightCell = true; // cell specified as right-hand side
else
rRightAny >>= fDirectValue; // constant value
table::CellAddress aLeftAddr = maConstraints[nConstrPos].Left;
const std::vector<double>& rLeftCoeff = aCellsHash[aLeftAddr];
REAL* pValues = new REAL[nVariables+1];
pValues[0] = 0.0; // ignored?
for (nVar=0; nVar<nVariables; nVar++)
pValues[nVar+1] = rLeftCoeff[nVar+1];
// if left hand cell has a constant term, put into rhs value
double fRightValue = -rLeftCoeff[0];
if ( bRightCell )
{
const std::vector<double>& rRightCoeff = aCellsHash[aRightAddr];
// modify pValues with rhs coefficients
for (nVar=0; nVar<nVariables; nVar++)
pValues[nVar+1] -= rRightCoeff[nVar+1];
fRightValue += rRightCoeff[0]; // constant term
}
else
fRightValue += fDirectValue;
int nConstrType = LE;
switch ( eOp )
{
case sheet::SolverConstraintOperator_LESS_EQUAL: nConstrType = LE; break;
case sheet::SolverConstraintOperator_GREATER_EQUAL: nConstrType = GE; break;
case sheet::SolverConstraintOperator_EQUAL: nConstrType = EQ; break;
default:
OSL_FAIL( "unexpected enum type" );
}
add_constraint( lp, pValues, nConstrType, fRightValue );
delete[] pValues;
}
}
set_add_rowmode(lp, FALSE);
// apply settings to all variables
for (nVar=0; nVar<nVariables; nVar++)
{
if ( !mbNonNegative )
set_unbounded(lp, nVar+1); // allow negative (default is non-negative)
//! collect bounds from constraints?
if ( mbInteger )
set_int(lp, nVar+1, TRUE);
}
// apply single-var integer constraints
for (sal_Int32 nConstrPos = 0; nConstrPos < maConstraints.getLength(); ++nConstrPos)
{
sheet::SolverConstraintOperator eOp = maConstraints[nConstrPos].Operator;
if ( eOp == sheet::SolverConstraintOperator_INTEGER ||
eOp == sheet::SolverConstraintOperator_BINARY )
{
table::CellAddress aLeftAddr = maConstraints[nConstrPos].Left;
// find variable index for cell
for (nVar=0; nVar<nVariables; nVar++)
if ( AddressEqual( aVariableCells[nVar], aLeftAddr ) )
{
if ( eOp == sheet::SolverConstraintOperator_INTEGER )
set_int(lp, nVar+1, TRUE);
else
set_binary(lp, nVar+1, TRUE);
}
}
}
if ( mbMaximize )
set_maxim(lp);
else
set_minim(lp);
if ( !mbLimitBBDepth )
set_bb_depthlimit( lp, 0 );
set_epslevel( lp, mnEpsilonLevel );
set_timeout( lp, mnTimeout );
// solve model
int nResult = ::solve( lp );
mbSuccess = ( nResult == OPTIMAL );
if ( mbSuccess )
{
// get solution
maSolution.realloc( nVariables );
REAL* pResultVar = NULL;
get_ptr_variables( lp, &pResultVar );
for (nVar=0; nVar<nVariables; nVar++)
maSolution[nVar] = pResultVar[nVar];
mfResultValue = get_objective( lp );
}
else if ( nResult == INFEASIBLE )
maStatus = lcl_GetResourceString( RID_ERROR_INFEASIBLE );
else if ( nResult == UNBOUNDED )
maStatus = lcl_GetResourceString( RID_ERROR_UNBOUNDED );
else if ( nResult == TIMEOUT || nResult == SUBOPTIMAL )
maStatus = lcl_GetResourceString( RID_ERROR_TIMEOUT );
// SUBOPTIMAL is assumed to be caused by a timeout, and reported as an error
delete_lp( lp );
}
// -------------------------------------------------------------------------
// XServiceInfo
uno::Sequence< OUString > SolverComponent_getSupportedServiceNames()
{
uno::Sequence< OUString > aServiceNames( 1 );
aServiceNames[ 0 ] = OUString("com.sun.star.sheet.Solver" );
return aServiceNames;
}
OUString SolverComponent_getImplementationName()
{
return OUString("com.sun.star.comp.Calc.Solver" );
}
OUString SAL_CALL SolverComponent::getImplementationName() throw(uno::RuntimeException)
{
return SolverComponent_getImplementationName();
}
sal_Bool SAL_CALL SolverComponent::supportsService( const OUString& rServiceName ) throw(uno::RuntimeException)
{
const uno::Sequence< OUString > aServices = SolverComponent_getSupportedServiceNames();
const OUString* pArray = aServices.getConstArray();
const OUString* pArrayEnd = pArray + aServices.getLength();
return ::std::find( pArray, pArrayEnd, rServiceName ) != pArrayEnd;
}
uno::Sequence<OUString> SAL_CALL SolverComponent::getSupportedServiceNames() throw(uno::RuntimeException)
{
return SolverComponent_getSupportedServiceNames();
}
uno::Reference<uno::XInterface> SolverComponent_createInstance( const uno::Reference<uno::XComponentContext>& rSMgr )
throw(uno::Exception)
{
return (cppu::OWeakObject*) new SolverComponent( rSMgr );
}
// -------------------------------------------------------------------------
extern "C"
{
SAL_DLLPUBLIC_EXPORT void* SAL_CALL solver_component_getFactory( const sal_Char * pImplName, void * pServiceManager, void * /*pRegistryKey*/ )
{
OUString aImplName( OUString::createFromAscii( pImplName ) );
void* pRet = 0;
if( pServiceManager )
{
uno::Reference< lang::XSingleComponentFactory > xFactory;
if( aImplName.equals( SolverComponent_getImplementationName() ) )
xFactory = cppu::createSingleComponentFactory(
SolverComponent_createInstance,
OUString::createFromAscii( pImplName ),
SolverComponent_getSupportedServiceNames() );
if( xFactory.is() )
{
xFactory->acquire();
pRet = xFactory.get();
}
}
return pRet;
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|