summaryrefslogtreecommitdiff
path: root/solenv/bin/concat-deps.c
blob: 5180f46a6a786789e1228b01dc0c7f226b33409b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 *    Copyright (C) 2011 Norbert Thiebaud
 *    License: GPLv3
 */

/* define to activate stats reporting on hash usage*/
/* #define HASH_STAT */

/* ===============================================
 * Set-up: defines to identify the system and system related properties
 * ===============================================
 */

#ifdef __APPLE__
#ifdef __x86_64__
#define CORE_BIG_ENDIAN 0
#define CORE_LITTLE_ENDIAN 1
#define USE_MEMORY_ALIGNMENT 64 /* big value -> no alignment */
#else
#define CORE_BIG_ENDIAN 1
#define CORE_LITTLE_ENDIAN 0
#define USE_MEMORY_ALIGNMENT 4
#endif

#endif
#ifdef _AIX
#define CORE_BIG_ENDIAN 1
#define CORE_LITTLE_ENDIAN 0
#define USE_MEMORY_ALIGNMENT 4
#endif /* Def _AIX */

#ifdef __CYGWIN__
#define __windows
#define CORE_BIG_ENDIAN 0
#define CORE_LITTLE_ENDIAN 1
#define USE_MEMORY_ALIGNMENT 64 /* big value -> no alignment */
#endif /* Def __CYGWIN__ */

#if defined(__linux) || defined(__OpenBSD__) || \
    defined(__FreeBSD__) || defined(__NetBSD__) || \
    defined(__DragonFly__) || defined(__FreeBSD_kernel__)
#if __BYTE_ORDER == __LITTLE_ENDIAN
#define CORE_BIG_ENDIAN 0
#define CORE_LITTLE_ENDIAN 1
#if defined(__x86_64) || defined(__i386)
#define USE_MEMORY_ALIGNMENT 64
#else
#define USE_MEMORY_ALIGNMENT 4
#endif
#else /* !(__BYTE_ORDER == __LITTLE_ENDIAN) */
#if __BYTE_ORDER == __BIG_ENDIAN
#define CORE_BIG_ENDIAN 1
#define CORE_LITTLE_ENDIAN 0
#define USE_MEMORY_ALIGNMENT 4
#endif /* __BYTE_ORDER == __BIG_ENDIAN */
#endif /* !(__BYTE_ORDER == __LITTLE_ENDIAN) */
#endif /* Def __linux || Def *BSD */

#ifdef __sun
#ifdef __sparc
#define CORE_BIG_ENDIAN 1
#define CORE_LITTLE_ENDIAN 0
#define USE_MEMORY_ALIGNMENT 4
#else  /* Ndef __sparc */
#define CORE_BIG_ENDIAN 0
#define CORE_LITTLE_ENDIAN 1
#define USE_MEMORY_ALIGNMENT 4
#endif /* Ndef __sparc */
#endif /* Def __sun */

/* Note USE_MEMORY_ALIGNMENT is 4 for platform that allow short non-aligned but required int access to be aligned (e.g sparc, ppc, zos..)
 *      USE_MEMORY_ALIGNMENT is 2 for platform that require short and int access to be aligned (e.g hppa )
 * if the platform does not have alignment requirement (x86/amd64) use a big value (i.e > 16)
 */
#ifndef USE_MEMORY_ALIGNMENT
#error "USE_MEMORY_ALIGNMENT must be defined to the proper alignment value for the platform"
#endif

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <fcntl.h>
#include <string.h>
#include <ctype.h>

#ifdef __windows
#include <io.h>
#else
#include <unistd.h>
#endif

/* modes */
#ifdef __windows
#define FILE_O_RDONLY     _O_RDONLY
#define FILE_O_BINARY     _O_BINARY
#else /* not windaube */
#define FILE_O_RDONLY     O_RDONLY
#define FILE_O_BINARY     0
#endif /* not windaube */

#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif

static char* base_dir_var = "$(SRCDIR)";
#define kBASE_DIR_VAR_LENGTH 9
static char* base_dir;

#ifdef __GNUC__
#define clz __builtin_clz
#else
static inline int clz(unsigned int value)
{
int result = 32;

    while(value)
    {
        value >>= 1;
        result -= 1;
    }
    return result;
}
#endif

#if (USE_MEMORY_ALIGNMENT > 4)
#define get_unaligned_uint(str)           (*(unsigned int*)(str))
#else
static inline unsigned int get_unaligned_uint(const unsigned char* cursor)
{
unsigned int   result;

    memcpy(&result, cursor, sizeof(unsigned int));
    return result;
}
#endif

/* ===============================================
 * memory pool for fast fix-size allocation (non-tread-safe)
 * ===============================================
 */
struct pool
{
    void*    head_free;  /**< head of a linked list of freed element */
    char*    fresh;      /**< top of a memory block to dig new element */
    char*    tail;       /**< to detect end of extent... when fresh pass tail */
    void*    extent;     /**< pointer to the primary extent block */
    int      size_elem;  /**< size of an element. */
    int      primary;    /**< primary allocation in bytes */
    int      secondary;  /**< secondary allocation in bytes */
};
#define POOL_ALIGN_INCREMENT 8 /**< Alignement, must be a power of 2 and of size > to sizeof(void*) */


static void* pool_take_extent(struct pool* pool, int allocate)
{
unsigned int size = 0;
void* extent;
void* data = NULL;

    if(pool->extent)
    {
        /* we already have an extent, so this is a secondary */
        if(pool->secondary)
        {
            size = pool->secondary;
        }
    }
    else
    {
        assert(pool->primary);
        size = pool->primary;
    }
    if(size)
    {
        extent = malloc(size);
        if(extent)
        {
            *(void**)extent = pool->extent;
            pool->extent = extent;
            if(allocate)
            {
                data = ((char*)extent) + POOL_ALIGN_INCREMENT;
                pool->fresh = ((char*)data) + pool->size_elem;
                pool->tail = pool->fresh + (size - pool->size_elem);
            }
            else
            {
                pool->fresh = ((char*)extent) + POOL_ALIGN_INCREMENT;
                pool->tail = pool->fresh + (size - pool->size_elem);
            }
        }
    }
    return data;
}

/* Create a memory pool for fix size objects
 * this is a simplified implementation that
 * is _not_ thread safe.
 */
struct pool* pool_create(int size_elem, int flags, int primary, int secondary)
{
struct pool* pool;

    assert(primary > 0);
    assert(secondary >= 0);
    assert(size_elem > 0);

    pool = (struct pool*)calloc(1, sizeof(struct pool));
    if(!pool) return NULL;
    /* Adjust the element size so that it be aligned, and so that an element could
     * at least contain a void*
     */
    pool->size_elem = size_elem = (size_elem + POOL_ALIGN_INCREMENT - 1) & ~(POOL_ALIGN_INCREMENT - 1);

    pool->primary = (size_elem * primary) + POOL_ALIGN_INCREMENT;
    pool->secondary = secondary > 0 ? (size_elem * secondary) + POOL_ALIGN_INCREMENT : 0;
    pool_take_extent(pool, FALSE);

    return pool;

}

void pool_destroy(struct pool* pool)
{
void* extent;
void* next;

    if(pool != NULL)
    {
        extent = pool->extent;
        while(extent)
        {
            next = *(void**)extent;
            free(extent);
            extent = next;
        }
        free(pool);
    }
}

static inline void* pool_alloc(struct pool* pool)
{
void* data;

    data = pool->head_free;
    if(data == NULL)
    {
        /* we have no old-freed elem */
        if(pool->fresh <= pool->tail)
        {
            /* pick a slice of the current extent */
            data = (void*)pool->fresh;
            pool->fresh += pool->size_elem;
        }
        else
        {
            /* allocate a new extent */
            data = pool_take_extent(pool, TRUE);
        }
    }
    else
    {
        /* re-used old freed element by chopipng the head of the free list */
        pool->head_free = *(void**)data;
    }

    return data;
}


static inline void pool_free(struct pool* pool, void* data)
{
    assert(pool && data);

    /* stack on top of the free list */
    *(void**)data = pool->head_free;
    pool->head_free = data;
}


/* ===============================================
 * Hash implementation custumized to be just tracking
 * a unique list of string (i.e no data associated
 * with the key, no need for retrieval, etc..
 *
 * This is tuned for the particular use-case we have here
 * measures in tail_build showed that
 * we can get north of 4000 distinct values stored in a hash
 * the collision rate is at worse around 2%
 * the collision needing an expensive memcmp to resolve
 * have a rate typically at 1 per 1000
 * for tail_build we register 37229 unique key
 * with a total of 377 extra memcmp needed
 * which is completely negligible compared to the
 * number of memcmp required to eliminate duplicate
 * entry (north of 2.5 millions for tail_build)
 * ===============================================
 */

struct hash_elem
{
    struct hash_elem* next;
    const char*    key;
    int      key_len;
};

struct hash
{
    struct hash_elem** array;
    struct pool* elems_pool;
    int flags;
    unsigned int used;
    unsigned int size;
    unsigned int load_limit;
#ifdef HASH_STAT
    int stored;
    int collisions;
    int cost;
    int memcmp;
#endif
};
#define HASH_F_NO_RESIZE (1<<0)

/* The following hash_compute function was adapted from :
 * lookup3.c, by Bob Jenkins, May 2006, Public Domain.
 *
 * The changes from the original are mostly cosmetic
 */
#define hashsize(n) (1<<(n))
#define hashmask(n) (hashsize(n)-1)
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))


#if CORE_BIG_ENDIAN
#define MASK_C1 0xFFFFFF00
#define MASK_C2 0xFFFF0000
#define MASK_C3 0xFF000000
#else
#if CORE_LITTLE_ENDIAN
#define MASK_C1 0xFFFFFF
#define MASK_C2 0xFFFF
#define MASK_C3 0xFF
#else
#error "Missing Endianness definition"
#endif
#endif


#define mix(a,b,c) \
{ \
  a -= c;  a ^= rot(c, 4);  c += b; \
  b -= a;  b ^= rot(a, 6);  a += c; \
  c -= b;  c ^= rot(b, 8);  b += a; \
  a -= c;  a ^= rot(c,16);  c += b; \
  b -= a;  b ^= rot(a,19);  a += c; \
  c -= b;  c ^= rot(b, 4);  b += a; \
}
#define final(a,b,c) \
{ \
  c ^= b; c -= rot(b,14); \
  a ^= c; a -= rot(c,11); \
  b ^= a; b -= rot(a,25); \
  c ^= b; c -= rot(b,16); \
  a ^= c; a -= rot(c,4);  \
  b ^= a; b -= rot(a,14); \
  c ^= b; c -= rot(b,24); \
}

static unsigned int hash_compute( struct hash* hash, const char* key, int length)
{
    unsigned int a;
    unsigned int b;
    unsigned int c;                                          /* internal state */
    const unsigned char* uk = (const unsigned char*)key;

    /* Set up the internal state */
    a = b = c = 0xdeadbeef + (length << 2);

    /* we use this to 'hash' full path with mostly a common root
     * let's now waste too much cycles hashing mostly constant stuff
     */
    if(length > 36)
    {
        uk += length - 36;
        length = 36;
    }
    /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
    while (length > 12)
    {
        a += get_unaligned_uint(uk);
        b += get_unaligned_uint(uk+4);
        c += get_unaligned_uint(uk+8);
        mix(a,b,c);
        length -= 12;
        uk += 12;
    }

    /*----------------------------- handle the last (probably partial) block */
    /* Note: we possibly over-read, which would trigger complaint from VALGRIND
     * but we mask the undefined stuff if any, so we are still good, thanks
     * to alignment of memory allocation and tail-memory managment overhead
     * we always can read 3 bytes past the official end without triggering
     * a segfault -- if you find a platform/compiler couple for which that postulat
     * is false, then you just need to over-allocate by 2 more bytes in file_load()
     * file_load already over-allocate by 1 to sitck a \0 at the end of the buffer.
     */
    switch(length)
    {
    case 12: c+=get_unaligned_uint(uk+8); b+=get_unaligned_uint(uk+4); a+=get_unaligned_uint(uk); break;
    case 11: c+=get_unaligned_uint(uk+8) & MASK_C1; b+=get_unaligned_uint(uk+4); a+=get_unaligned_uint(uk); break;
    case 10: c+=get_unaligned_uint(uk+8) & MASK_C2; b+=get_unaligned_uint(uk+4); a+=get_unaligned_uint(uk); break;
    case 9 : c+=get_unaligned_uint(uk+8) & MASK_C3; b+=get_unaligned_uint(uk+4); a+=get_unaligned_uint(uk); break;
    case 8 : b+=get_unaligned_uint(uk+4); a+=get_unaligned_uint(uk); break;
    case 7 : b+=get_unaligned_uint(uk+4) & MASK_C1; a+=get_unaligned_uint(uk); break;
    case 6 : b+=get_unaligned_uint(uk+4) & MASK_C2; a+=get_unaligned_uint(uk); break;
    case 5 : b+=get_unaligned_uint(uk+4) & MASK_C3; a+=get_unaligned_uint(uk); break;
    case 4 : a+=get_unaligned_uint(uk); break;
    case 3 : a+=get_unaligned_uint(uk) & MASK_C1; break;
    case 2 : a+=get_unaligned_uint(uk) & MASK_C2; break;
    case 1 : a+=get_unaligned_uint(uk) & MASK_C3; break;
    case 0 : return c & hash->size;              /* zero length strings require no mixing */
    }

    final(a,b,c);
    return c & hash->size;
}

static void hash_destroy(struct hash* hash)
{
    if(hash)
    {
        if(hash->array)
        {
            free(hash->array);
        }
        if(hash->elems_pool)
        {
            pool_destroy(hash->elems_pool);
        }
        free(hash);
    }
}

static struct hash* hash_create(unsigned int size)
{
struct hash* hash;

    assert(size > 0);
    hash = calloc(1, sizeof(struct hash));
    if(hash)
    {
        size += (size >> 2) + 1; /* ~ 75% load factor */
        if(size >= 15)
        {
            hash->size = (((unsigned int)0xFFFFFFFF) >> clz((unsigned int)size));
        }
        else
        {
            hash->size = size = 15;
        }
        hash->load_limit = hash->size - (hash->size >> 2);
        hash->used = 0;
        hash->array = (struct hash_elem**)calloc(hash->size + 1, sizeof(struct hash_elem*));
        if(hash->array == NULL)
        {
            hash_destroy(hash);
            hash = NULL;
        }
    }
    if(hash)
    {
        hash->elems_pool = pool_create(sizeof(struct hash_elem),
                                       0, size, size << 1);
        if(!hash->elems_pool)
        {
            hash_destroy(hash);
            hash = NULL;
        }
    }
    return hash;
}

static void hash_resize(struct hash* hash)
{
unsigned int old_size = hash->size;
unsigned int hashed;
struct hash_elem* hash_elem;
struct hash_elem* next;
struct hash_elem** array;
int i;

    hash->size = (old_size << 1) + 1;
    /* we really should avoid to get there... so print a message to alert of the condition */
    fprintf(stderr, "resize hash %d -> %d\n", old_size, hash->size);
    if(hash->size == old_size)
    {
        hash->flags |= HASH_F_NO_RESIZE;
        return;
    }
    array = calloc(hash->size + 1, sizeof(struct hash_elem*));
    if(array)
    {
        hash->load_limit = hash->size - (hash->size >> 2);
        for(i=0; i <= old_size; i++)
        {
            hash_elem = (struct hash_elem*)hash->array[i];
            while(hash_elem)
            {
                next = hash_elem->next;

                hashed = hash_compute(hash, hash_elem->key, hash_elem->key_len);
                hash_elem->next = array[hashed];
                array[hashed] = hash_elem;
                hash_elem = next;
            }
        }
        free(hash->array);
        hash->array = (struct hash_elem**)array;
    }
    else
    {
        hash->size = old_size;
        hash->flags |= HASH_F_NO_RESIZE;
    }
}

#ifdef HASH_STAT
static inline int compare_key(struct hash* hash, const char* a, const char* b, int len, int* cost)
{
    *cost += 1;
    hash->memcmp += 1;
    return memcmp(a,b, len);
}
#else
#define compare_key(h,a,b,l,c) memcmp(a,b,l)
#endif

/* a customized hash_store function that just store the key and return
 * TRUE if the key was effectively stored, or FALSE if the key was already there
 */
static int hash_store(struct hash* hash, const char* key, int key_len)
{
unsigned int hashed;
struct hash_elem* hash_elem;
int cost = 0;

    hashed = hash_compute(hash, key, key_len);
#ifdef HASH_STAT
    hash->stored += 1;
#endif
    hash_elem = (struct hash_elem*)hash->array[hashed];
    while(hash_elem && (hash_elem->key_len != key_len || compare_key(hash, hash_elem->key, key, key_len, &cost)))
    {
        hash_elem = hash_elem->next;
    }

    if(!hash_elem)
    {
        hash_elem = pool_alloc(hash->elems_pool);
        if(hash_elem)
        {
            hash_elem->key = key;
            hash_elem->key_len = key_len;
            hash_elem->next = hash->array[hashed];

#ifdef HASH_STAT
            if(hash_elem->next)
            {
                hash->collisions += 1;
                hash->cost += cost;
            }
#endif
            hash->array[hashed] = hash_elem;
            hash->used += 1;
            if(hash->used > hash->load_limit)
            {
                hash_resize(hash);
            }
        }
        return TRUE;
    }
    return FALSE;
}

static int file_stat(const char* name, struct stat* buffer_stat, int* rc)
{
int rc_local = 0;

    rc_local = stat(name, buffer_stat);
    if (rc_local  < 0)
    {
        *rc = errno;
    }
    return rc_local;
}

static off_t file_get_size(const char* name, int* rc)
{
struct stat buffer_stat;
off_t       size = -1;

    if (!file_stat(name, &buffer_stat, rc))
    {
        if(S_ISREG(buffer_stat.st_mode))
        {
            size = buffer_stat.st_size;
        }
        else
        {
            *rc = EINVAL;
        }
    }
    return size;
}

static char* file_load(const char* name, off_t* size, int* return_rc)
{
off_t local_size = 0;
int rc = 0;
char* buffer = NULL;
int fd;

    assert(name != NULL);

    if(!size)
    {
        size = &local_size;
    }
    *size = file_get_size(name, &rc);
    if (!rc)
    {
        fd = open(name, FILE_O_RDONLY | FILE_O_BINARY);
        if (!(fd == -1))
        {
            buffer = malloc((size_t)(*size + 1));
            if (buffer == NULL)
            {
                rc = ENOMEM;
            }
            else
            {
            ssize_t i;

              REDO:
                i = read(fd, buffer, (size_t)(*size));
                if(i == -1)
                {
                    if(errno == EINTR)
                    {
                        goto REDO;
                    }
                    else
                    {
                        rc = errno;
                    }
                }
                else
                {
                    if (i != *size)
                    {
                        rc = EIO;
                    }
                }
                close(fd);
                buffer[*size] = 0;
            }
        }
    }

    if(rc && buffer)
    {
        free(buffer);
        buffer = NULL;
    }
    if(return_rc)
    {
        *return_rc = rc;
    }
    return buffer;
}

static void _cancel_relative(char* base, char** ref_cursor, char** ref_cursor_out, char* end)
{
    char* cursor = *ref_cursor;
    char* cursor_out = *ref_cursor_out;

    do
    {
        cursor += 3;
        while(cursor_out > base && cursor_out[-1] == '/')
            cursor_out--;
        while(cursor_out > base && *--cursor_out != '/');
    }
    while(cursor + 3 < end && !memcmp(cursor, "/../", 4));
    *ref_cursor = cursor;
    *ref_cursor_out = cursor_out;
}

static inline void eat_space(char ** token)
{
    while ((' ' == **token) || ('\t' == **token)) {
        ++(*token);
    }
}

/* prefix paths to absolute */
static inline void print_fullpaths(char* line)
{
char* token;
char* end;

    token = line;
    eat_space(&token);
    while (*token)
    {
        end = token;
        while (*end && (' ' != *end) && ('\t' != *end)) {
            ++end;
        }
        if(*token == ':' || *token == '\\' || *token == '/' || *token == '$'
            || ':' == token[1])
        {
            fwrite(token, end - token, 1, stdout);
        }
        else
        {
            fputs(base_dir_var, stdout);
            fputc('/', stdout);
            fwrite(token, end - token, 1, stdout);
        }
        fputc(' ', stdout);
        token = end;
        eat_space(&token);
    }
}

static int _process(struct hash* dep_hash, char* fn)
{
int rc;
char* buffer;
char* end;
char* cursor;
char* cursor_out;
char* base;
int continuation = 0;
char last_ns = 0;
off_t size;

    buffer = file_load(fn, &size, &rc);
    /* Note: yes we are going to leak 'buffer'
     * this is on purpose, to avoid cloning the 'key' out of it
     * and our special 'hash' just store the pointer to the key
     * inside of buffer, hence it need to remain allocated
     */
    if(!rc)
    {
        base = cursor_out = cursor = end = buffer;
        end += size;
        while(cursor < end)
        {
            if(*cursor == '\\')
            {
                continuation = 1;
                *cursor_out++ = *cursor++;
            }
            else if(*cursor == '/')
            {
                if(cursor + 3 < end)
                {
                    if(!memcmp(cursor, "/../", 4))
                    {
                        _cancel_relative(base, &cursor, &cursor_out, end);
                    }
                }
                *cursor_out++ = *cursor++;
            }
            else if(*cursor == '\n')
            {
                if(!continuation)
                {
                    *cursor_out = 0;
                    if(base < cursor)
                    {
                        /* here we have a complete rule */
                        if(last_ns == ':')
                        {
                            /* if the rule ended in ':' that is a no-dep rule
                             * these are the one for which we want to filter
                             * duplicate out
                             */
                            if(hash_store(dep_hash, base, (int)(cursor_out - base)))
                            {
                                /* DO NOT modify base after it has been added
                                   as key by hash_store */
                                print_fullpaths(base);
                                putc('\n', stdout);
                            }
                        }
                        else
                        {
                            /* rule with dep, just write it */
                            print_fullpaths(base);
                            putc('\n', stdout);
                        }
                    }
                    cursor += 1;
                    base = cursor_out = cursor;
                }
                else
                {
                    /* here we have a '\' followed by \n this is a continuation
                     * i.e not a complete rule yet
                     */
                    *cursor_out++ = *cursor++;
                }
            }
            else
            {
                continuation = 0;
                /* not using isspace() here save 25% of I refs and 75% of D refs based on cachegrind */
                if(*cursor != ' ' && *cursor != '\n' && *cursor != '\t' )
                {
                    last_ns = *cursor;
                }
                *cursor_out++ = *cursor++;
            }
        }
        /* just in case the file did not end with a \n, there may be a pending rule */
        if(base < cursor_out)
        {
            if(last_ns == ':')
            {
                if(hash_store(dep_hash, base, (int)(cursor_out - base)))
                {
                    puts(base);
                    putc('\n', stdout);
                }
            }
            else
            {
                puts(base);
                putc('\n', stdout);
            }
        }
    }
    return rc;
}

static void _usage(void)
{
    fputs("Usage: concat-deps <file that contains dep_files>\n", stderr);
}

#define kDEFAULT_HASH_SIZE 4096

int main(int argc, char** argv)
{
int rc = 0;
off_t in_list_size = 0;
char* in_list;
char* in_list_cursor;
char* in_list_base;
struct hash* dep_hash;

    if(argc < 2)
    {
        _usage();
        return 1;
    }
    base_dir = getenv("SRCDIR");
    if(!base_dir)
    {
        fputs("Error: SRCDIR is missing in the environement\n", stderr);
        return 1;
    }

    in_list = file_load(argv[1], &in_list_size, &rc);
    if(!rc)
    {
        dep_hash = hash_create( kDEFAULT_HASH_SIZE);
        in_list_base = in_list_cursor = in_list;

        /* extract filename of dep file from a 'space' separated list */
        while(*in_list_cursor)
        {
            if(*in_list_cursor == ' ' || *in_list_cursor == '\n')
            {
                *in_list_cursor = 0;
                if(in_list_base < in_list_cursor)
                {
                    rc = _process(dep_hash, in_list_base);
                    if(rc)
                    {
                        break;
                    }
                }
                in_list_cursor += 1;
                in_list_base = in_list_cursor;
            }
            else
            {
                in_list_cursor += 1;
            }
        }
        if(!rc)
        {
            /* catch the last entry in case the input did not terminate with a 'space' */
            if(in_list_base < in_list_cursor)
            {
                rc = _process(dep_hash, in_list_base);
            }
        }
#ifdef HASH_STAT
        fprintf(stderr, "stats: u:%d s:%d l:%d t:%d c:%d m:%d $:%d\n",
                dep_hash->used, dep_hash->size, dep_hash->load_limit, dep_hash->stored,
                dep_hash->collisions, dep_hash->memcmp, dep_hash->cost);
#endif
    }
    return rc;
}

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */