1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
|
/*************************************************************************
*
* $RCSfile: stgstrms.cxx,v $
*
* $Revision: 1.3 $
*
* last change: $Author: mba $ $Date: 2002-07-22 12:28:44 $
*
* The Contents of this file are made available subject to the terms of
* either of the following licenses
*
* - GNU Lesser General Public License Version 2.1
* - Sun Industry Standards Source License Version 1.1
*
* Sun Microsystems Inc., October, 2000
*
* GNU Lesser General Public License Version 2.1
* =============================================
* Copyright 2000 by Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, CA 94303, USA
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*
* Sun Industry Standards Source License Version 1.1
* =================================================
* The contents of this file are subject to the Sun Industry Standards
* Source License Version 1.1 (the "License"); You may not use this file
* except in compliance with the License. You may obtain a copy of the
* License at http://www.openoffice.org/license.html.
*
* Software provided under this License is provided on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
* WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS,
* MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING.
* See the License for the specific provisions governing your rights and
* obligations concerning the Software.
*
* The Initial Developer of the Original Code is: Sun Microsystems, Inc.
*
* Copyright: 2000 by Sun Microsystems, Inc.
*
* All Rights Reserved.
*
* Contributor(s): _______________________________________
*
*
************************************************************************/
#include <string.h> // memcpy()
#include <osl/file.hxx>
#include <tools/tempfile.hxx>
#include <tools/debug.hxx>
#include "stg.hxx"
#include "stgelem.hxx"
#include "stgcache.hxx"
#include "stgstrms.hxx"
#include "stgdir.hxx"
#include "stgio.hxx"
#pragma hdrstop
#if defined(W31)
#include <tools/svwin.h>
#define memcpy hmemcpy
#define __HUGE _huge
#else
#define __HUGE
#endif
///////////////////////////// class StgFAT ///////////////////////////////
// The FAT class performs FAT operations on an underlying storage stream.
// This stream is either the master FAT stream (m == TRUE ) or a normal
// storage stream, which then holds the FAT for small data allocations.
StgFAT::StgFAT( StgStrm& r, BOOL m ) : rStrm( r )
{
bPhys = m;
nPageSize = rStrm.GetIo().GetPhysPageSize();
nEntries = nPageSize >> 2;
nOffset = 0;
nMaxPage = 0;
nLimit = 0;
}
// Retrieve the physical page for a given byte offset.
StgPage* StgFAT::GetPhysPage( INT32 nByteOff )
{
StgPage* pPg = NULL;
// Position within the underlying stream
// use the Pos2Page() method of the stream
if( rStrm.Pos2Page( nByteOff ) )
{
nOffset = rStrm.GetOffset();
INT32 nPhysPage = rStrm.GetPage();
// get the physical page (must be present)
pPg = rStrm.GetIo().Get( nPhysPage, TRUE );
}
return pPg;
}
// Get the follow page for a certain FAT page.
INT32 StgFAT::GetNextPage( INT32 nPg )
{
if( nPg >= 0 )
{
StgPage* pPg = GetPhysPage( nPg << 2 );
nPg = pPg ? pPg->GetPage( nOffset >> 2 ) : STG_EOF;
}
return nPg;
}
// Find the best fit block for the given size. Return
// the starting block and its size or STG_EOF and 0.
// nLastPage is a stopper which tells the current
// underlying stream size. It is treated as a recommendation
// to abort the search to inhibit excessive file growth.
INT32 StgFAT::FindBlock( INT32& nPgs )
{
INT32 nMinStart = STG_EOF, nMinLen = 0;
INT32 nMaxStart = STG_EOF, nMaxLen = 0x7FFFFFFFL;
INT32 nTmpStart = STG_EOF, nTmpLen = 0;
INT32 nPages = rStrm.GetSize() >> 2;
BOOL bFound = FALSE;
StgPage* pPg;
short nEntry = 0;
for( INT32 i = 0; i < nPages; i++, nEntry++ )
{
if( !( nEntry % nEntries ) )
{
// load the next page for that stream
nEntry = 0;
pPg = GetPhysPage( i << 2 );
if( !pPg )
return STG_EOF;
}
INT32 nCur = pPg->GetPage( nEntry );
if( nCur == STG_FREE )
{
// count the size of this area
if( nTmpLen )
nTmpLen++;
else
nTmpStart = i,
nTmpLen = 1;
if( nTmpLen == nPgs
// If we already did find a block, stop when reaching the limit
|| ( bFound && ( nEntry >= nLimit ) ) )
break;
}
else if( nTmpLen )
{
if( nTmpLen > nPgs && nTmpLen < nMaxLen )
// block > requested size
nMaxLen = nTmpLen, nMaxStart = nTmpStart, bFound = TRUE;
else if( nTmpLen >= nMinLen )
{
// block < requested size
nMinLen = nTmpLen, nMinStart = nTmpStart;
bFound = TRUE;
if( nTmpLen == nPgs )
break;
}
nTmpStart = STG_EOF;
nTmpLen = 0;
}
}
// Determine which block to use.
if( nTmpLen )
{
if( nTmpLen > nPgs && nTmpLen < nMaxLen )
// block > requested size
nMaxLen = nTmpLen, nMaxStart = nTmpStart;
else if( nTmpLen >= nMinLen )
// block < requested size
nMinLen = nTmpLen, nMinStart = nTmpStart;
}
if( nMinStart != STG_EOF && nMaxStart != STG_EOF )
{
// two areas found; return the best fit area
INT32 nMinDiff = nPgs - nMinLen;
INT32 nMaxDiff = nMaxLen - nPgs;
if( nMinDiff > nMaxDiff )
nMinStart = STG_EOF;
}
if( nMinStart != STG_EOF )
{
nPgs = nMinLen; return nMinStart;
}
else
{
return nMaxStart;
}
}
// Set up the consecutive chain for a given block.
BOOL StgFAT::MakeChain( INT32 nStart, INT32 nPgs )
{
INT32 nPos = nStart << 2;
StgPage* pPg = GetPhysPage( nPos );
if( !pPg || !nPgs )
return FALSE;
while( --nPgs )
{
if( nOffset >= nPageSize )
{
pPg = GetPhysPage( nPos );
if( !pPg )
return FALSE;
}
pPg->SetPage( nOffset >> 2, ++nStart );
nOffset += 4;
nPos += 4;
}
if( nOffset >= nPageSize )
{
pPg = GetPhysPage( nPos );
if( !pPg )
return FALSE;
}
pPg->SetPage( nOffset >> 2, STG_EOF );
return TRUE;
}
// Allocate a block of data from the given page number on.
// It the page number is != STG_EOF, chain the block.
INT32 StgFAT::AllocPages( INT32 nBgn, INT32 nPgs )
{
INT32 nOrig = nBgn;
INT32 nLast = nBgn;
INT32 nBegin, nAlloc;
INT32 nPages = rStrm.GetSize() >> 2;
short nPasses = 0;
// allow for two passes
while( nPasses < 2 )
{
// try to satisfy the request from the pool of free pages
while( nPgs )
{
nAlloc = nPgs;
nBegin = FindBlock( nAlloc );
// no more blocks left in present alloc chain
if( nBegin == STG_EOF )
break;
if( ( nBegin + nAlloc ) > nMaxPage )
nMaxPage = nBegin + nAlloc;
if( !MakeChain( nBegin, nAlloc ) )
return STG_EOF;
if( nOrig == STG_EOF )
nOrig = nBegin;
else
{
// Patch the chain
StgPage* pPg = GetPhysPage( nLast << 2 );
if( !pPg )
return STG_EOF;
pPg->SetPage( nOffset >> 2, nBegin );
}
nLast = nBegin + nAlloc - 1;
nPgs -= nAlloc;
}
if( nPgs && !nPasses )
{
// we need new, fresh space, so allocate and retry
if( !rStrm.SetSize( ( nPages + nPgs ) << 2 ) )
return STG_EOF;
if( !bPhys && !InitNew( nPages ) )
return FALSE;
nPages = rStrm.GetSize() >> 2;
nPasses++;
}
else
break;
}
// now we should have a chain for the complete block
if( nBegin == STG_EOF || nPgs )
{
rStrm.GetIo().SetError( SVSTREAM_FILEFORMAT_ERROR );
return STG_EOF; // bad structure
}
return nOrig;
}
// Initialize newly allocated pages for a standard FAT stream
// It can be assumed that the stream size is always on
// a page boundary
BOOL StgFAT::InitNew( INT32 nPage1 )
{
INT32 n = ( ( rStrm.GetSize() >> 2 ) - nPage1 ) / nEntries;
while( n-- )
{
StgPage* pPg = NULL;
// Position within the underlying stream
// use the Pos2Page() method of the stream
rStrm.Pos2Page( nPage1 << 2 );
// Initialize the page
pPg = rStrm.GetIo().Copy( rStrm.GetPage(), STG_FREE );
for( short i = 0; i < nEntries; i++ )
pPg->SetPage( i, STG_FREE );
nPage1++;
}
return TRUE;
}
// Release a chain
BOOL StgFAT::FreePages( INT32 nStart, BOOL bAll )
{
while( nStart >= 0 )
{
StgPage* pPg = GetPhysPage( nStart << 2 );
if( !pPg )
return FALSE;
nStart = pPg->GetPage( nOffset >> 2 );
// The first released page is either set to EOF or FREE
pPg->SetPage( nOffset >> 2, bAll ? STG_FREE : STG_EOF );
bAll = TRUE;
}
return TRUE;
}
///////////////////////////// class StgStrm ////////////////////////////////
// The base stream class provides basic functionality for seeking
// and accessing the data on a physical basis. It uses the built-in
// FAT class for the page allocations.
StgStrm::StgStrm( StgIo& r ) : rIo( r )
{
pFat = NULL;
nStart = nPage = STG_EOF;
nOffset = 0;
pEntry = NULL;
nPos = nSize = 0;
nPageSize = rIo.GetPhysPageSize();
}
StgStrm::~StgStrm()
{
delete pFat;
}
// Attach the stream to the given entry.
void StgStrm::SetEntry( StgDirEntry& r )
{
r.aEntry.SetLeaf( STG_DATA, nStart );
r.aEntry.SetSize( nSize );
pEntry = &r;
r.SetDirty();
}
// Compute page number and offset for the given byte position.
// If the position is behind the size, set the stream right
// behind the EOF.
BOOL StgStrm::Pos2Page( INT32 nBytePos )
{
INT32 nRel, nBgn;
// Values < 0 seek to the end
if( nBytePos < 0 || nBytePos >= nSize )
nBytePos = nSize;
// Adjust the position back to offset 0
nPos -= nOffset;
INT32 nMask = ~( nPageSize - 1 );
INT32 nOld = nPos & nMask;
INT32 nNew = nBytePos & nMask;
nOffset = (short) ( nBytePos & ~nMask );
nPos = nBytePos;
if( nOld == nNew )
return TRUE;
if( nNew > nOld )
{
// the new position is behind the current, so an incremental
// positioning is OK. Set the page relative position
nRel = nNew - nOld;
nBgn = nPage;
}
else
{
// the new position is before the current, so we have to scan
// the entire chain.
nRel = nNew;
nBgn = nStart;
}
// now, traverse the FAT chain.
nRel /= nPageSize;
INT32 nLast = STG_EOF;
while( nRel && nBgn >= 0 )
{
nLast = nBgn;
nBgn = pFat->GetNextPage( nBgn );
nRel--;
}
// special case: seek to 1st byte of new, unallocated page
// (in case the file size is a multiple of the page size)
if( nBytePos == nSize && nBgn == STG_EOF && !nRel && !nOffset )
nBgn = nLast, nOffset = nPageSize;
if( nBgn < 0 && nBgn != STG_EOF )
{
rIo.SetError( SVSTREAM_FILEFORMAT_ERROR );
nBgn = STG_EOF;
nOffset = nPageSize;
}
nPage = nBgn;
return BOOL( nRel == 0 && nPage >= 0 );
}
// Retrieve the physical page for a given byte offset.
StgPage* StgStrm::GetPhysPage( INT32 nBytePos, BOOL bForce )
{
if( !Pos2Page( nBytePos ) )
return NULL;
return rIo.Get( nPage, bForce );
}
// Copy an entire stream. Both streams are allocated in the FAT.
// The target stream is this stream.
BOOL StgStrm::Copy( INT32 nFrom, INT32 nBytes )
{
INT32 nTo = nStart;
INT32 nPgs = ( nBytes + nPageSize - 1 ) / nPageSize;
while( nPgs-- )
{
if( nTo < 0 )
{
rIo.SetError( SVSTREAM_FILEFORMAT_ERROR );
return FALSE;
}
rIo.Copy( nTo, nFrom );
if( nFrom >= 0 )
{
nFrom = pFat->GetNextPage( nFrom );
if( nFrom < 0 )
{
rIo.SetError( SVSTREAM_FILEFORMAT_ERROR );
return FALSE;
}
}
nTo = pFat->GetNextPage( nTo );
}
return TRUE;
}
BOOL StgStrm::SetSize( INT32 nBytes )
{
// round up to page size
INT32 nOld = ( ( nSize + nPageSize - 1 ) / nPageSize ) * nPageSize;
INT32 nNew = ( ( nBytes + nPageSize - 1 ) / nPageSize ) * nPageSize;
if( nNew > nOld )
{
if( !Pos2Page( nSize ) )
return FALSE;
INT32 nBgn = pFat->AllocPages( nPage, ( nNew - nOld ) / nPageSize );
if( nBgn == STG_EOF )
return FALSE;
if( nStart == STG_EOF )
nStart = nPage = nBgn;
}
else if( nNew < nOld )
{
BOOL bAll = BOOL( nBytes == 0 );
if( !Pos2Page( nBytes ) || !pFat->FreePages( nPage, bAll ) )
return FALSE;
if( bAll )
nStart = nPage = STG_EOF;
}
if( pEntry )
{
// change the dir entry?
if( !nSize || !nBytes )
pEntry->aEntry.SetLeaf( STG_DATA, nStart );
pEntry->aEntry.SetSize( nBytes );
pEntry->SetDirty();
}
nSize = nBytes;
pFat->SetLimit( GetPages() );
return TRUE;
}
// Return the # of allocated pages
INT32 StgStrm::GetPages()
{
return ( nSize + nPageSize - 1 ) / nPageSize;
}
//////////////////////////// class StgFATStrm //////////////////////////////
// The FAT stream class provides physical access to the master FAT.
// Since this access is implemented as a StgStrm, we can use the
// FAT allocator.
StgFATStrm::StgFATStrm( StgIo& r ) : StgStrm( r )
{
pFat = new StgFAT( *this, TRUE );
nSize = rIo.aHdr.GetFATSize() * nPageSize;
}
BOOL StgFATStrm::Pos2Page( INT32 nBytePos )
{
// Values < 0 seek to the end
if( nBytePos < 0 || nBytePos >= nSize )
nBytePos = nSize ? nSize - 1 : 0;
nPage = nBytePos / nPageSize;
nOffset = (short) ( nBytePos % nPageSize );
nPos = nBytePos;
nPage = GetPage( (short) nPage, FALSE );
return BOOL( nPage >= 0 );
}
// Retrieve the physical page for a given byte offset.
// Since Pos2Page() already has computed the physical offset,
// use the byte offset directly.
StgPage* StgFATStrm::GetPhysPage( INT32 nBytePos, BOOL bForce )
{
return rIo.Get( nBytePos / ( nPageSize >> 2 ), bForce );
}
// Get the page number entry for the given page offset.
INT32 StgFATStrm::GetPage( short nOff, BOOL bMake, USHORT *pnMasterAlloc )
{
if( pnMasterAlloc ) *pnMasterAlloc = 0;
if( nOff < rIo.aHdr.GetFAT1Size() )
return rIo.aHdr.GetFATPage( nOff );
INT32 nMaxPage = nSize >> 2;
nOff -= rIo.aHdr.GetFAT1Size();
// Anzahl der Masterpages, durch die wir iterieren muessen
USHORT nMasterCount = ( nPageSize >> 2 ) - 1;
USHORT nBlocks = nOff / nMasterCount;
// Offset in letzter Masterpage
nOff = nOff % nMasterCount;
StgPage* pOldPage = 0;
StgPage* pMaster = 0;
INT32 nFAT = rIo.aHdr.GetFATChain();
for( USHORT nCount = 0; nCount <= nBlocks; nCount++ )
{
if( nFAT == STG_EOF || nFAT == STG_FREE )
{
if( bMake )
{
// create a new master page
nFAT = nMaxPage++;
pMaster = rIo.Copy( nFAT, STG_FREE );
for( short k = 0; k < ( nPageSize >> 2 ); k++ )
pMaster->SetPage( k, STG_FREE );
// Verkettung herstellen
if( !pOldPage )
rIo.aHdr.SetFATChain( nFAT );
else
pOldPage->SetPage( nMasterCount, nFAT );
if( nMaxPage >= rIo.GetPhysPages() )
if( !rIo.SetSize( nMaxPage ) )
return STG_EOF;
// mark the page as used
// Platz fuer Masterpage schaffen
if( !pnMasterAlloc ) // Selbst Platz schaffen
{
if( !Pos2Page( nFAT << 2 ) )
return STG_EOF;
StgPage* pPg = rIo.Get( nPage, TRUE );
if( !pPg )
return STG_EOF;
pPg->SetPage( nOffset >> 2, STG_MASTER );
}
else
(*pnMasterAlloc)++;
rIo.aHdr.SetMasters( nCount + 1 );
pOldPage = pMaster;
}
}
else
{
pMaster = rIo.Get( nFAT, TRUE );
nFAT = pMaster->GetPage( nMasterCount );
pOldPage = pMaster;
}
}
if( pMaster )
return pMaster->GetPage( nOff );
rIo.SetError( SVSTREAM_GENERALERROR );
return STG_EOF;
}
// Set the page number entry for the given page offset.
BOOL StgFATStrm::SetPage( short nOff, INT32 nNewPage )
{
BOOL bRes = TRUE;
if( nOff < rIo.aHdr.GetFAT1Size() )
rIo.aHdr.SetFATPage( nOff, nNewPage );
else
{
nOff -= rIo.aHdr.GetFAT1Size();
// Anzahl der Masterpages, durch die wir iterieren muessen
USHORT nMasterCount = ( nPageSize >> 2 ) - 1;
USHORT nBlocks = nOff / nMasterCount;
// Offset in letzter Masterpage
nOff = nOff % nMasterCount;
StgPage* pMaster = 0;
INT32 nFAT = rIo.aHdr.GetFATChain();
for( USHORT nCount = 0; nCount <= nBlocks; nCount++ )
{
if( nFAT == STG_EOF || nFAT == STG_FREE )
{
pMaster = 0;
break;
}
pMaster = rIo.Get( nFAT, TRUE );
nFAT = pMaster->GetPage( nMasterCount );
}
if( pMaster )
pMaster->SetPage( nOff, nNewPage );
else
{
rIo.SetError( SVSTREAM_GENERALERROR );
bRes = FALSE;
}
}
// lock the page against access
if( bRes )
{
Pos2Page( nNewPage << 2 );
StgPage* pPg = rIo.Get( nPage, TRUE );
if( pPg )
pPg->SetPage( nOffset >> 2, STG_FAT );
else
bRes = FALSE;
}
return bRes;
}
BOOL StgFATStrm::SetSize( INT32 nBytes )
{
// Set the number of entries to a multiple of the page size
short nOld = (short) ( ( nSize + ( nPageSize - 1 ) ) / nPageSize );
short nNew = (short) (
( nBytes + ( nPageSize - 1 ) ) / nPageSize ) ;
if( nNew < nOld )
{
// release master pages
for( short i = nNew; i < nOld; i++ )
SetPage( i, STG_FREE );
}
else
{
while( nOld < nNew )
{
// allocate master pages
// find a free master page slot
INT32 nPg = 0;
USHORT nMasterAlloc = 0;
nPg = GetPage( nOld, TRUE, &nMasterAlloc );
if( nPg == STG_EOF )
return FALSE;
// 4 Bytes have been used for Allocation of each MegaMasterPage
nBytes += nMasterAlloc << 2;
// find a free page using the FAT allocator
INT32 n = 1;
INT32 nNewPage = pFat->FindBlock( n );
if( nNewPage == STG_EOF )
{
// no free pages found; create a new page
// Since all pages are allocated, extend
// the file size for the next page!
nNewPage = nSize >> 2;
// if a MegaMasterPage was created avoid taking
// the same Page
nNewPage += nMasterAlloc;
// adjust the file size if necessary
if( nNewPage >= rIo.GetPhysPages() )
if( !rIo.SetSize( nNewPage + 1 ) )
return FALSE;
}
// Set up the page with empty entries
StgPage* pPg = rIo.Copy( nNewPage, STG_FREE );
for( short j = 0; j < ( nPageSize >> 2 ); j++ )
pPg->SetPage( j, STG_FREE );
// store the page number into the master FAT
// Set the size before so the correct FAT can be found
nSize = ( nOld + 1 ) * nPageSize;
SetPage( nOld, nNewPage );
// MegaMasterPages were created, mark it them as used
UINT32 nMax = rIo.aHdr.GetMasters( );
UINT32 nFAT = rIo.aHdr.GetFATChain();
if( nMasterAlloc )
for( USHORT nCount = 0; nCount < nMax; nCount++ )
{
if( !Pos2Page( nFAT << 2 ) )
return FALSE;
if( nMax - nCount <= nMasterAlloc )
{
StgPage* pPg = rIo.Get( nPage, TRUE );
if( !pPg )
return FALSE;
pPg->SetPage( nOffset >> 2, STG_MASTER );
}
StgPage* pPage = rIo.Get( nFAT, TRUE );
if( !pPage ) return FALSE;
nFAT = pPage->GetPage( (nPageSize >> 2 ) - 1 );
}
nOld++;
// We have used up 4 bytes for the STG_FAT entry
nBytes += 4;
nNew = (short) (
( nBytes + ( nPageSize - 1 ) ) / nPageSize );
}
}
nSize = nNew * nPageSize;
rIo.aHdr.SetFATSize( nNew );
return TRUE;
}
/////////////////////////// class StgDataStrm //////////////////////////////
// This class is a normal physical stream which can be initialized
// either with an existing dir entry or an existing FAT chain.
// The stream has a size increment which normally is 1, but which can be
// set to any value is you want the size to be incremented by certain values.
StgDataStrm::StgDataStrm( StgIo& r, INT32 nBgn, INT32 nLen ) : StgStrm( r )
{
Init( nBgn, nLen );
}
StgDataStrm::StgDataStrm( StgIo& r, StgDirEntry* p ) : StgStrm( r )
{
pEntry = p;
Init( p->aEntry.GetLeaf( STG_DATA ),
p->aEntry.GetSize() );
}
void StgDataStrm::Init( INT32 nBgn, INT32 nLen )
{
pFat = new StgFAT( *rIo.pFAT, TRUE );
nStart = nPage = nBgn;
nSize = nLen;
nIncr = 1;
nOffset = 0;
if( nLen < 0 )
{
// determine the actual size of the stream by scanning
// the FAT chain and counting the # of pages allocated
nSize = 0;
INT32 nOldBgn = -1;
while( nBgn >= 0 && nBgn != nOldBgn )
{
nOldBgn = nBgn;
nBgn = pFat->GetNextPage( nBgn );
if( nBgn == nOldBgn )
rIo.SetError( ERRCODE_IO_WRONGFORMAT );
nSize += nPageSize;
}
}
}
// Set the size of a physical stream.
BOOL StgDataStrm::SetSize( INT32 nBytes )
{
nBytes = ( ( nBytes + nIncr - 1 ) / nIncr ) * nIncr;
INT32 nOldSz = nSize;
if( ( nOldSz != nBytes ) )
{
if( !StgStrm::SetSize( nBytes ) )
return FALSE;
INT32 nMaxPage = pFat->GetMaxPage();
if( nMaxPage > rIo.GetPhysPages() )
if( !rIo.SetSize( nMaxPage ) )
return FALSE;
// If we only allocated one page or less, create this
// page in the cache for faster throughput. The current
// position is the former EOF point.
if( ( nSize - 1 ) / nPageSize - ( nOldSz - 1 ) / nPageSize == 1 )
{
Pos2Page( nBytes );
if( nPage >= 0 )
rIo.Copy( nPage, STG_FREE );
}
}
return TRUE;
}
// Get the address of the data byte at a specified offset.
// If bForce = TRUE, a read of non-existent data causes
// a read fault.
void* StgDataStrm::GetPtr( INT32 nPos, BOOL bForce, BOOL bDirty )
{
if( Pos2Page( nPos ) )
{
StgPage* pPg = rIo.Get( nPage, bForce );
if( pPg )
{
pPg->SetOwner( pEntry );
if( bDirty )
pPg->SetDirty();
return ((BYTE *)pPg->GetData()) + nOffset;
}
}
return NULL;
}
// This could easily be adapted to a better algorithm by determining
// the amount of consecutable blocks before doing a read. The result
// is the number of bytes read. No error is generated on EOF.
INT32 StgDataStrm::Read( void* pBuf, INT32 n )
{
if( ( nPos + n ) > nSize )
n = nSize - nPos;
INT32 nDone = 0;
while( n )
{
short nBytes = nPageSize - nOffset;
short nRes;
StgPage* pPg;
if( (INT32) nBytes > n )
nBytes = (short) n;
if( nBytes )
{
void *p = (BYTE *) pBuf + nDone;
if( nBytes == nPageSize )
{
pPg = rIo.Find( nPage );
if( pPg )
{
// data is present, so use the cached data
pPg->SetOwner( pEntry );
memcpy( p, pPg->GetData(), nBytes );
nRes = nBytes;
}
else
// do a direct (unbuffered) read
nRes = (short) rIo.Read( nPage, p, 1 ) * nPageSize;
}
else
{
// partial block read thru the cache.
pPg = rIo.Get( nPage, FALSE );
if( !pPg )
break;
pPg->SetOwner( pEntry );
memcpy( p, (BYTE*)pPg->GetData() + nOffset, nBytes );
nRes = nBytes;
}
nDone += nRes;
nPos += nRes;
n -= nRes;
nOffset += nRes;
if( nRes != nBytes )
break; // read error or EOF
}
// Switch to next page if necessary
if( nOffset >= nPageSize && !Pos2Page( nPos ) )
break;
}
return nDone;
}
INT32 StgDataStrm::Write( const void* pBuf, INT32 n )
{
INT32 nDone = 0;
if( ( nPos + n ) > nSize )
{
INT32 nOld = nPos;
if( !SetSize( nPos + n ) )
return FALSE;
Pos2Page( nOld );
}
while( n )
{
short nBytes = nPageSize - nOffset;
short nRes;
StgPage* pPg;
if( (INT32) nBytes > n )
nBytes = (short) n;
if( nBytes )
{
const void *p = (const BYTE *) pBuf + nDone;
if( nBytes == nPageSize )
{
pPg = rIo.Find( nPage );
if( pPg )
{
// data is present, so use the cached data
pPg->SetOwner( pEntry );
memcpy( pPg->GetData(), p, nBytes );
pPg->SetDirty();
nRes = nBytes;
}
else
// do a direct (unbuffered) write
nRes = (short) rIo.Write( nPage, (void*) p, 1 ) * nPageSize;
}
else
{
// partial block read thru the cache.
pPg = rIo.Get( nPage, FALSE );
if( !pPg )
break;
pPg->SetOwner( pEntry );
memcpy( (BYTE*)pPg->GetData() + nOffset, p, nBytes );
pPg->SetDirty();
nRes = nBytes;
}
nDone += nRes;
nPos += nRes;
n -= nRes;
nOffset += nRes;
if( nRes != nBytes )
break; // read error
}
// Switch to next page if necessary
if( nOffset >= nPageSize && !Pos2Page( nPos ) )
break;
}
return nDone;
}
//////////////////////////// class StgSmallStream ///////////////////////////
// The small stream class provides access to streams with a size < 4096 bytes.
// This stream is a StgStream containing small pages. The FAT for this stream
// is also a StgStream. The start of the FAT is in the header at DataRootPage,
// the stream itself is pointed to by the root entry (it holds start & size).
StgSmallStrm::StgSmallStrm( StgIo& r, INT32 nBgn, INT32 nLen ) : StgStrm( r )
{
Init( nBgn, nLen );
}
StgSmallStrm::StgSmallStrm( StgIo& r, StgDirEntry* p ) : StgStrm( r )
{
pEntry = p;
Init( p->aEntry.GetLeaf( STG_DATA ),
p->aEntry.GetSize() );
}
void StgSmallStrm::Init( INT32 nBgn, INT32 nLen )
{
pFat = new StgFAT( *rIo.pDataFAT, FALSE );
pData = rIo.pDataStrm;
nPageSize = rIo.GetDataPageSize();
nStart =
nPage = nBgn;
nSize = nLen;
}
// This could easily be adapted to a better algorithm by determining
// the amount of consecutable blocks before doing a read. The result
// is the number of bytes read. No error is generated on EOF.
INT32 StgSmallStrm::Read( void* pBuf, INT32 n )
{
// We can safely assume that reads are not huge, since the
// small stream is likely to be < 64 KBytes.
if( ( nPos + n ) > nSize )
n = nSize - nPos;
short nDone = 0;
while( n )
{
short nBytes = nPageSize - nOffset;
if( (INT32) nBytes > n )
nBytes = (short) n;
if( nBytes )
{
if( !pData->Pos2Page( nPage * nPageSize + nOffset ) )
break;
// all reading thru the stream
short nRes = (short) pData->Read( (BYTE*)pBuf + nDone, nBytes );
nDone += nRes;
nPos += nRes;
n -= nRes;
nOffset += nRes;
// read problem?
if( nRes != nBytes )
break;
}
// Switch to next page if necessary
if( nOffset >= nPageSize && !Pos2Page( nPos ) )
break;
}
return nDone;
}
INT32 StgSmallStrm::Write( const void* pBuf, INT32 n )
{
// you can safely assume that reads are not huge, since the
// small stream is likely to be < 64 KBytes.
short nDone = 0;
if( ( nPos + n ) > nSize )
{
INT32 nOld = nPos;
if( !SetSize( nPos + n ) )
return FALSE;
Pos2Page( nOld );
}
while( n )
{
short nBytes = nPageSize - nOffset;
if( (INT32) nBytes > n )
nBytes = (short) n;
if( nBytes )
{
// all writing goes thru the stream
INT32 nDataPos = nPage * nPageSize + nOffset;
if( pData->GetSize() < ( nDataPos + nBytes ) )
if( !pData->SetSize( nDataPos + nBytes ) )
break;
if( !pData->Pos2Page( nDataPos ) )
break;
short nRes = (short) pData->Write( (BYTE*)pBuf + nDone, nBytes );
nDone += nRes;
nPos += nRes;
n -= nRes;
nOffset += nRes;
// write problem?
if( nRes != nBytes )
break;
}
// Switch to next page if necessary
if( nOffset >= nPageSize && !Pos2Page( nPos ) )
break;
}
return nDone;
}
/////////////////////////// class StgTmpStrm /////////////////////////////
// The temporary stream uses a memory stream if < 32K, otherwise a
// temporary file.
#define THRESHOLD 32768L
StgTmpStrm::StgTmpStrm( ULONG nInitSize )
: SvMemoryStream( nInitSize > THRESHOLD
? 16
: ( nInitSize ? nInitSize : 16 ), 4096 )
{
pStrm = NULL;
// this calls FlushData, so all members should be set by this time
SetBufferSize( 0 );
if( nInitSize > THRESHOLD )
SetSize( nInitSize );
}
BOOL StgTmpStrm::Copy( StgTmpStrm& rSrc )
{
ULONG n = rSrc.GetSize();
ULONG nCur = rSrc.Tell();
SetSize( n );
if( GetError() == SVSTREAM_OK )
{
void* p = new BYTE[ 4096 ];
rSrc.Seek( 0L );
Seek( 0L );
while( n )
{
ULONG nn = n;
if( nn > 4096 )
nn = 4096;
if( rSrc.Read( p, nn ) != nn )
break;
if( Write( p, nn ) != nn )
break;
n -= nn;
}
delete [] p;
rSrc.Seek( nCur );
Seek( nCur );
return BOOL( n == 0 );
}
else
return FALSE;
}
StgTmpStrm::~StgTmpStrm()
{
if( pStrm )
{
pStrm->Close();
osl::File::remove( aName );
delete pStrm;
}
}
ULONG StgTmpStrm::GetSize()
{
ULONG n;
if( pStrm )
{
ULONG old = pStrm->Tell();
n = pStrm->Seek( STREAM_SEEK_TO_END );
pStrm->Seek( old );
}
else
n = nEndOfData;
return n;
}
void StgTmpStrm::SetSize( ULONG n )
{
if( pStrm )
pStrm->SetStreamSize( n );
else
{
if( n > THRESHOLD )
{
aName = TempFile::CreateTempName();
SvFileStream* s = new SvFileStream( aName, STREAM_READWRITE );
ULONG nCur = Tell();
ULONG i = nEndOfData;
if( i )
{
void* p = new BYTE[ 4096 ];
Seek( 0L );
while( i )
{
ULONG nb = ( i > 4096 ) ? 4096 : i;
if( Read( p, nb ) == nb
&& s->Write( p, nb ) == nb )
i -= nb;
else
break;
}
delete p;
}
if( !i && n > nEndOfData )
{
// We have to write one byte at the end of the file
// if the file is bigger than the memstream to see
// if it fits on disk
s->Seek( n - 1 );
s->Write( &i, 1 );
s->Flush();
if( s->GetError() != SVSTREAM_OK )
i = 1;
}
Seek( nCur );
s->Seek( nCur );
if( i )
{
SetError( s->GetError() );
delete s;
return;
}
pStrm = s;
// Shrink the memory to 16 bytes, which seems to be the minimum
ReAllocateMemory( - ( (long) nEndOfData - 16 ) );
}
else
{
if( n > nEndOfData )
{
ULONG nCur = Tell();
Seek( nEndOfData - 1 );
*this << (BYTE) 0;
Seek( nCur );
}
else
nEndOfData = n;
}
}
}
ULONG StgTmpStrm::GetData( void* pData, ULONG n )
{
if( pStrm )
{
n = pStrm->Read( pData, n );
SetError( pStrm->GetError() );
return n;
}
else
return SvMemoryStream::GetData( (sal_Char *)pData, n );
}
ULONG StgTmpStrm::PutData( const void* pData, ULONG n )
{
UINT32 nCur = Tell();
UINT32 nNew = nCur + n;
if( nNew > THRESHOLD && !pStrm )
{
SetSize( nNew );
if( GetError() != SVSTREAM_OK )
return 0;
}
if( pStrm )
{
nNew = pStrm->Write( pData, n );
SetError( pStrm->GetError() );
}
else
nNew = SvMemoryStream::PutData( (sal_Char*)pData, n );
return nNew;
}
ULONG StgTmpStrm::SeekPos( ULONG n )
{
if( n == STREAM_SEEK_TO_END )
n = GetSize();
if( n && n > THRESHOLD && !pStrm )
{
SetSize( n );
if( GetError() != SVSTREAM_OK )
return Tell();
else
return n;
}
else if( pStrm )
{
n = pStrm->Seek( n );
SetError( pStrm->GetError() );
return n;
}
else
return SvMemoryStream::SeekPos( n );
}
void StgTmpStrm::FlushData()
{
if( pStrm )
{
pStrm->Flush();
SetError( pStrm->GetError() );
}
else
SvMemoryStream::FlushData();
}
|