1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <algorithm>
#include <limits.h>
#include <rtl/ustring.hxx>
#include <tools/debug.hxx>
#include <tools/fract.hxx>
#include <tools/lineend.hxx>
#include <tools/stream.hxx>
#include <tools/bigint.hxx>
/** Compute greates common divisor using Euclidian algorithm
As the algorithm works on positive values only, the absolute value
of each parameter is used.
@param nVal1
@param nVal2
@note: If one parameter is {0,1}, GetGGT returns 1.
*/
static long GetGGT( long nVal1, long nVal2 )
{
nVal1 = std::abs( nVal1 );
nVal2 = std::abs( nVal2 );
if ( nVal1 <= 1 || nVal2 <= 1 )
return 1;
while ( nVal1 != nVal2 )
{
if ( nVal1 > nVal2 )
{
nVal1 %= nVal2;
if ( nVal1 == 0 )
return nVal2;
}
else
{
nVal2 %= nVal1;
if ( nVal2 == 0 )
return nVal1;
}
}
return nVal1;
}
static void Reduce( BigInt &rVal1, BigInt &rVal2 )
{
BigInt nA( rVal1 );
BigInt nB( rVal2 );
nA.Abs();
nB.Abs();
if ( nA.IsOne() || nB.IsOne() || nA.IsZero() || nB.IsZero() )
return;
while ( nA != nB )
{
if ( nA > nB )
{
nA %= nB;
if ( nA.IsZero() )
{
rVal1 /= nB;
rVal2 /= nB;
return;
}
}
else
{
nB %= nA;
if ( nB.IsZero() )
{
rVal1 /= nA;
rVal2 /= nA;
return;
}
}
}
rVal1 /= nA;
rVal2 /= nB;
}
// Initialized by setting nNum as nominator and nDen as denominator
// Negative values in the denominator are invalid and cause the
// inversion of both nominator and denominator signs
// in order to return the correct value.
Fraction::Fraction( long nNum, long nDen )
{
nNumerator = nNum;
nDenominator = nDen;
if ( nDenominator < 0 )
{
nDenominator = -nDenominator;
nNumerator = -nNumerator;
}
// Reduce through GCD
long n = GetGGT( nNumerator, nDenominator );
nNumerator /= n;
nDenominator /= n;
}
// If dVal > LONG_MAX, the fraction is set as invalid.
// Otherwise, dVal and denominator are multiplied with 10, until one of them
// is larger than (LONG_MAX / 10) and the fraction is reduced with GCD
Fraction::Fraction( double dVal )
{
long nDen = 1;
long nMAX = LONG_MAX / 10;
if ( dVal > LONG_MAX || dVal < LONG_MIN )
{
nNumerator = 0;
nDenominator = -1;
return;
}
while ( std::abs( (long)dVal ) < nMAX && nDen < nMAX )
{
dVal *= 10;
nDen *= 10;
}
nNumerator = (long)dVal;
nDenominator = nDen;
// Reduce through GCD
long n = GetGGT( nNumerator, nDenominator );
nNumerator /= n;
nDenominator /= n;
}
Fraction::operator double() const
{
if ( nDenominator > 0 )
return (double)nNumerator / (double)nDenominator;
else
return (double)0;
}
// This methods first validates both values.
// If one of the arguments is invalid, the whole operation is invalid.
// For addition both fractions are extended to match the denominator,
// then nominators are added and reduced (through GCD).
// Internal datatype for computation is SLong to detect overflows,
// which cause the operation to be marked as invalid
Fraction& Fraction::operator += ( const Fraction& rVal )
{
if ( !rVal.IsValid() )
{
nNumerator = 0;
nDenominator = -1;
}
if ( !IsValid() )
return *this;
// (a/b) + (c/d) = ( (a*d) + (c*b) ) / (b*d)
BigInt nN( nNumerator );
nN *= BigInt( rVal.nDenominator );
BigInt nW1Temp( nDenominator );
nW1Temp *= BigInt( rVal.nNumerator );
nN += nW1Temp;
BigInt nD( nDenominator );
nD *= BigInt( rVal.nDenominator );
Reduce( nN, nD );
if ( nN.bIsBig || nD.bIsBig )
{
nNumerator = 0;
nDenominator = -1;
}
else
{
nNumerator = (long)nN,
nDenominator = (long)nD;
}
return *this;
}
// This methods first validates both values.
// If one of the arguments is invalid, the whole operation is invalid.
// For substraction, both fractions are extended to match the denominator,
// then nominators are substracted and reduced (through GCD).
// Internal datatype for computation is SLong to detect overflows,
// which cause the operation to be marked as invalid
Fraction& Fraction::operator -= ( const Fraction& rVal )
{
if ( !rVal.IsValid() )
{
nNumerator = 0;
nDenominator = -1;
}
if ( !IsValid() )
return *this;
// (a/b) - (c/d) = ( (a*d) - (c*b) ) / (b*d)
BigInt nN( nNumerator );
nN *= BigInt( rVal.nDenominator );
BigInt nW1Temp( nDenominator );
nW1Temp *= BigInt( rVal.nNumerator );
nN -= nW1Temp;
BigInt nD( nDenominator );
nD *= BigInt( rVal.nDenominator );
Reduce( nN, nD );
if ( nN.bIsBig || nD.bIsBig )
{
nNumerator = 0;
nDenominator = -1;
}
else
{
nNumerator = (long)nN,
nDenominator = (long)nD;
}
return *this;
}
// This methods first validates both values.
// If one of the arguments is invalid, the whole operation is invalid.
// For mutliplication, nominator and denominators are first reduced
// (through GCD), and then multiplied.
// Internal datatype for computation is BigInt to detect overflows,
// which cause the operation to be marked as invalid
Fraction& Fraction::operator *= ( const Fraction& rVal )
{
if ( !rVal.IsValid() )
{
nNumerator = 0;
nDenominator = -1;
}
if ( !IsValid() )
return *this;
long nGGT1 = GetGGT( nNumerator, rVal.nDenominator );
long nGGT2 = GetGGT( rVal.nNumerator, nDenominator );
BigInt nN( nNumerator / nGGT1 );
nN *= BigInt( rVal.nNumerator / nGGT2 );
BigInt nD( nDenominator / nGGT2 );
nD *= BigInt( rVal.nDenominator / nGGT1 );
if ( nN.bIsBig || nD.bIsBig )
{
nNumerator = 0;
nDenominator = -1;
}
else
{
nNumerator = (long)nN,
nDenominator = (long)nD;
}
return *this;
}
// This methods first validates both values.
// If one of the arguments is invalid, the whole operation is invalid.
// For dividing a/b, we multiply a with the inverse of b.
// To avoid overflows, we first reduce both fractions with GCD.
// Internal datatype for computation is BigInt to detect overflows,
// which cause the operation to be marked as invalid
Fraction& Fraction::operator /= ( const Fraction& rVal )
{
if ( !rVal.IsValid() )
{
nNumerator = 0;
nDenominator = -1;
}
if ( !IsValid() )
return *this;
long nGGT1 = GetGGT( nNumerator, rVal.nNumerator );
long nGGT2 = GetGGT( rVal.nDenominator, nDenominator );
BigInt nN( nNumerator / nGGT1 );
nN *= BigInt( rVal.nDenominator / nGGT2 );
BigInt nD( nDenominator / nGGT2 );
nD *= BigInt( rVal.nNumerator / nGGT1 );
if ( nN.bIsBig || nD.bIsBig )
{
nNumerator = 0;
nDenominator = -1;
}
else
{
nNumerator = (long)nN,
nDenominator = (long)nD;
if ( nDenominator < 0 )
{
nDenominator = -nDenominator;
nNumerator = -nNumerator;
}
}
return *this;
}
// Similar to clz_table that can be googled
const char nbits_table[32] =
{
32, 1, 23, 2, 29, 24, 14, 3,
30, 27, 25, 18, 20, 15, 10, 4,
31, 22, 28, 13, 26, 17, 19, 9,
21, 12, 16, 8, 11, 7, 6, 5
};
static int impl_NumberOfBits( unsigned long nNum )
{
// http://en.wikipedia.org/wiki/De_Bruijn_sequence
// background paper: Using de Bruijn Sequences to Index a 1 in a
// Computer Word (1998) Charles E. Leiserson,
// Harald Prokop, Keith H. Randall
// (e.g. http://citeseer.ist.psu.edu/leiserson98using.html)
const sal_uInt32 nDeBruijn = 0x7DCD629;
if ( nNum == 0 )
return 0;
// Get it to form like 0000001111111111b
nNum |= ( nNum >> 1 );
nNum |= ( nNum >> 2 );
nNum |= ( nNum >> 4 );
nNum |= ( nNum >> 8 );
nNum |= ( nNum >> 16 );
sal_uInt32 nNumber;
int nBonus = 0;
#if SAL_TYPES_SIZEOFLONG == 4
nNumber = nNum;
#elif SAL_TYPES_SIZEOFLONG == 8
nNum |= ( nNum >> 32 );
if ( nNum & 0x80000000 )
{
nNumber = sal_uInt32( nNum >> 32 );
nBonus = 32;
if ( nNumber == 0 )
return 32;
}
else
nNumber = sal_uInt32( nNum & 0xFFFFFFFF );
#else
#error "Unknown size of long!"
#endif
// De facto shift left of nDeBruijn using multiplication (nNumber
// is all ones from topmost bit, thus nDeBruijn + (nDeBruijn *
// nNumber) => nDeBruijn * (nNumber+1) clears all those bits to
// zero, sets the next bit to one, and thus effectively shift-left
// nDeBruijn by lg2(nNumber+1). This generates a distinct 5bit
// sequence in the msb for each distinct position of the last
// leading 0 bit - that's the property of a de Bruijn number.
nNumber = nDeBruijn + ( nDeBruijn * nNumber );
// 5-bit window indexes the result
return ( nbits_table[nNumber >> 27] ) + nBonus;
}
/** Inaccurate cancellation for a fraction.
Clip both nominator and denominator to said number of bits. If
either of those already have equal or less number of bits used,
this method does nothing.
@param nSignificantBits denotes, how many significant binary
digits to maintain, in both nominator and denominator.
@example ReduceInaccurate(8) has an error <1% [1/2^(8-1)] - the
largest error occurs with the following pair of values:
binary 1000000011111111111111111111111b/1000000000000000000000000000000b
= 1082130431/1073741824
= approx. 1.007812499
A ReduceInaccurate(8) yields 1/1.
*/
void Fraction::ReduceInaccurate( unsigned nSignificantBits )
{
if ( !nNumerator || !nDenominator )
return;
// Count with unsigned longs only
const bool bNeg = ( nNumerator < 0 );
unsigned long nMul = (unsigned long)( bNeg? -nNumerator: nNumerator );
unsigned long nDiv = (unsigned long)( nDenominator );
DBG_ASSERT(nSignificantBits<65, "More than 64 bit of significance is overkill!");
// How much bits can we lose?
const int nMulBitsToLose = std::max( ( impl_NumberOfBits( nMul ) - int( nSignificantBits ) ), 0 );
const int nDivBitsToLose = std::max( ( impl_NumberOfBits( nDiv ) - int( nSignificantBits ) ), 0 );
const int nToLose = std::min( nMulBitsToLose, nDivBitsToLose );
// Remove the bits
nMul >>= nToLose;
nDiv >>= nToLose;
if ( !nMul || !nDiv )
{
// Return without reduction
OSL_FAIL( "Oops, we reduced too much..." );
return;
}
// Reduce
long n1 = GetGGT( nMul, nDiv );
if ( n1 != 1 )
{
nMul /= n1;
nDiv /= n1;
}
nNumerator = bNeg? -long( nMul ): long( nMul );
nDenominator = nDiv;
}
bool operator == ( const Fraction& rVal1, const Fraction& rVal2 )
{
if ( !rVal1.IsValid() || !rVal2.IsValid() )
return false;
return rVal1.nNumerator == rVal2.nNumerator
&& rVal1.nDenominator == rVal2.nDenominator;
}
// This methods first validates and reduces both values.
// To compare (a/b) with (c/d), extend denominators (b*d), then return
// the result of comparing the nominators (a < c)
bool operator < ( const Fraction& rVal1, const Fraction& rVal2 )
{
if ( !rVal1.IsValid() || !rVal2.IsValid() )
return false;
BigInt nN( rVal1.nNumerator );
nN *= BigInt( rVal2.nDenominator );
BigInt nD( rVal1.nDenominator );
nD *= BigInt( rVal2.nNumerator );
return nN < nD;
}
// This methods first validates and reduces both values.
// To compare (a/b) with (c/d), extend denominators (b*d), then return
// the result of comparing nominators (a > c)
bool operator > ( const Fraction& rVal1, const Fraction& rVal2 )
{
if ( !rVal1.IsValid() || !rVal2.IsValid() )
return false;
BigInt nN( rVal1.nNumerator );
nN *= BigInt( rVal2.nDenominator );
BigInt nD( rVal1.nDenominator);
nD *= BigInt( rVal2.nNumerator );
return nN > nD;
}
SvStream& ReadFraction( SvStream& rIStream, Fraction& rFract )
{
sal_Int32 nTmp(0);
rIStream.ReadInt32( nTmp );
rFract.nNumerator = nTmp;
rIStream.ReadInt32( nTmp );
rFract.nDenominator = nTmp;
return rIStream;
}
SvStream& WriteFraction( SvStream& rOStream, const Fraction& rFract )
{
rOStream.WriteInt32( rFract.nNumerator );
rOStream.WriteInt32( rFract.nDenominator );
return rOStream;
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|