1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
Visual Components Library is responsible for the widgets (windowing, buttons, controls, file-pickers etc.) operating system abstraction, including basic rendering (e.g. the output device).
VCL provides a graphical toolkit similar to gtk+, Qt, SWING etc.
source/
+ the main cross-platform chunk of source
inc/
+ cross-platform abstraction headers
generic/
+ shared helper code for *some* of the backends, actually built into vcl.
headless/
+ a backend renderer that draws to bitmaps
android/
+ Android backend
osx/
+ OS X backend
ios/
+ iOS backend
quartz/
+ code common to OS X and iOS
win/
+ Windows backend
unx/
+ X11 backend and its sub-platforms
plugadapt/
+ pluggable framework to select correct unx backend
gtk/
+ GTK2 support
gtk3/
+ GTK3.2+ support
kde/
+ KDE3 support
kde4/
+ KDE4 support
generic/
+ raw X11 support
dtrans/
+ "data transfer" - clipboard handling
+ http://stackoverflow.com/questions/3261379/getting-html-source-or-rich-text-from-the-x-clipboard
for tips how to show the current content of the
clipboard
How the platform abstraction works
+ InitVCL calls 'CreateSalInstance'
+ ths is implemented by the compiled-in platform backend
+ it stores various bits of global state in the
'SalData' (inc/saldatabasic.hxx) structure but:
+ the SalInstance vtable is the primary outward facing gateway
API for platform backends
+ It is a factory for:
SalFrames, SalVirtualDevices, SalPrinters,
Timers, the SolarMutexe, Drag&Drop and other
objects, as well as the primary event loop wrapper.
Note: references to "SV" in the code mean StarView, which was a
portable C++ class library for GUIs, with very old roots, that was
developed by StarDivision. Nowadays it is not used by anything except
LibreOffice (and OpenOffice).
== COM threading ==
The way COM is used in LO generally:
- vcl InitSalData() puts main thread into Single-threaded Apartment (STA)
- oslWorkerWrapperFunction() puts every thread spawned via oslCreateThread()
into MTA (free-threaded)
== EMF+ ==
emf+ is vector file format used by MSO and is successor of wmf and
emf formats. see
http://msdn.microsoft.com/en-us/library/cc230724.aspx for
documentation. note that we didn't have this documentation from
start, so part of the code predates to the time when we had guessed
some parts and can be enhanced today. there also still many thing not
complete
emf+ is handled a bit differently compared to original emf/wmf files,
because GDIMetafile is missing features we need (mostly related to
transparency, argb colors, etc.)
emf/wmf is translated to GDIMetafile in import filter
vcl/source/filter/wmf and so special handling ends here
emf+ is encapsulated into GDIMetafile inside comment records and
parsed/rendered later, when it reaches cppcanvas. it is parsed and
rendered in cppcanvas/source/mtfrenderer. also note that there are
emf+-only and emf+-dual files. dual files contains both types of
records (emf and emf+) for rendering the images. these can used also
in applications which don't know emf+. in that case we must ignore
emf records and use emf+ for rendering. for more details see
documentation
parsing:
wmf/emf filter --> GDI metafile with emf+ in comments --> cppcanvas metafile renderer
lately the GDIMetafile rendering path changed which also influenced
emf+ rendering. now many things happen in drawing layer, where
GDIMetafile is translated into drawing layer primitives. for
metafiles with emf+ we let the mtfrenderer render them into bitmap
(with transparency) and use this bitmap in drawinlayer. cleaner
solution for current state would be to extend the drawing layer for
missing features and move parsing into drawing layer (might be quite
a lot of work). intermediary enhancement would be to know better the
needed size/resolution of the bitmap, before we render emf+ into
bitmap in drawing layer. Thorsten is working on the same problem with
svg rendering, so hopefully his approach could be extended for emf+ as
well. the places in drawing layer where we use canvas mtfrenderer to
render into bitmaps can be found when you grep for GetUseCanvas. also
look at vcl/source/gdi/gdimetafile.cxx where you can look for
UseCanvas again. moving the parsing into drawinglayer might also have
nice side effect for emf+-dual metafiles. in case the emf+ records
are broken, it would be easier to use the duplicit emf
rendering. fortunately we didn't run into such a broken emf+ file
yet. but there were already few cases where we first though that the
problem might be because of broken emf+ part. so far it always turned
out to be another problem.
rendering:
before
vcl --> cppcanvas metafile renderer --> vcl
now
drawing layer --> vcl --> cppcanvas metafile renderer --> vcl --> drawing layer
another interesting part is actual rendering into canvas bitmap and
using that bitmap later in code using vcl API.
EMF+ implementation has some extensive logging, best if you do a dbgutil
build, and then
export SAL_LOG=+INFO.cppcanvas.emf+INFO.vcl.emf
before running LibreOffice; it will give you lots of useful hints.
You can also fallback to EMF (from EMF+) rendering via
export EMF_PLUS_DISABLE=1
|