1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
|
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <vcl/fontcharmap.hxx>
#include <impfontcharmap.hxx>
#include <rtl/textcvt.h>
#include <rtl/textenc.h>
#include <sal/log.hxx>
#include <vector>
#include <set>
CmapResult::CmapResult( bool bSymbolic,
const sal_UCS4* pRangeCodes, int nRangeCount )
: mpRangeCodes( pRangeCodes)
, mpStartGlyphs( nullptr)
, mpGlyphIds( nullptr)
, mnRangeCount( nRangeCount)
, mbSymbolic( bSymbolic)
, mbRecoded( false)
{}
static ImplFontCharMapRef g_pDefaultImplFontCharMap;
static const sal_UCS4 aDefaultUnicodeRanges[] = {0x0020,0xD800, 0xE000,0xFFF0};
static const sal_UCS4 aDefaultSymbolRanges[] = {0x0020,0x0100, 0xF020,0xF100};
ImplFontCharMap::~ImplFontCharMap()
{
if( !isDefaultMap() )
{
delete[] mpRangeCodes;
delete[] mpStartGlyphs;
delete[] mpGlyphIds;
}
}
ImplFontCharMap::ImplFontCharMap( const CmapResult& rCR )
: mpRangeCodes( rCR.mpRangeCodes )
, mpStartGlyphs( rCR.mpStartGlyphs )
, mpGlyphIds( rCR.mpGlyphIds )
, mnRangeCount( rCR.mnRangeCount )
, mnCharCount( 0 )
{
const sal_UCS4* pRangePtr = mpRangeCodes;
for( int i = mnRangeCount; --i >= 0; pRangePtr += 2 )
{
sal_UCS4 cFirst = pRangePtr[0];
sal_UCS4 cLast = pRangePtr[1];
mnCharCount += cLast - cFirst;
}
}
ImplFontCharMapRef const & ImplFontCharMap::getDefaultMap( bool bSymbols )
{
const sal_UCS4* pRangeCodes = aDefaultUnicodeRanges;
int nCodesCount = SAL_N_ELEMENTS(aDefaultUnicodeRanges);
if( bSymbols )
{
pRangeCodes = aDefaultSymbolRanges;
nCodesCount = SAL_N_ELEMENTS(aDefaultSymbolRanges);
}
CmapResult aDefaultCR( bSymbols, pRangeCodes, nCodesCount/2 );
g_pDefaultImplFontCharMap = ImplFontCharMapRef(new ImplFontCharMap(aDefaultCR));
return g_pDefaultImplFontCharMap;
}
bool ImplFontCharMap::isDefaultMap() const
{
const bool bIsDefault = (mpRangeCodes == aDefaultUnicodeRanges) || (mpRangeCodes == aDefaultSymbolRanges);
return bIsDefault;
}
static unsigned GetUInt( const unsigned char* p ) { return((p[0]<<24)+(p[1]<<16)+(p[2]<<8)+p[3]);}
static unsigned GetUShort( const unsigned char* p ){ return((p[0]<<8) | p[1]);}
static int GetSShort( const unsigned char* p ){ return static_cast<sal_Int16>((p[0]<<8)|p[1]);}
// TODO: move CMAP parsing directly into the ImplFontCharMap class
bool ParseCMAP( const unsigned char* pCmap, int nLength, CmapResult& rResult )
{
rResult.mpRangeCodes = nullptr;
rResult.mpStartGlyphs= nullptr;
rResult.mpGlyphIds = nullptr;
rResult.mnRangeCount = 0;
rResult.mbRecoded = false;
rResult.mbSymbolic = false;
// parse the table header and check for validity
if( !pCmap || (nLength < 24) )
return false;
if( GetUShort( pCmap ) != 0x0000 ) // simple check for CMAP corruption
return false;
int nSubTables = GetUShort( pCmap + 2 );
if( (nSubTables <= 0) || (nLength < (24 + 8*nSubTables)) )
return false;
const unsigned char* pEndValidArea = pCmap + nLength;
// find the most interesting subtable in the CMAP
rtl_TextEncoding eRecodeFrom = RTL_TEXTENCODING_UNICODE;
int nOffset = 0;
int nFormat = -1;
int nBestVal = 0;
for( const unsigned char* p = pCmap + 4; --nSubTables >= 0; p += 8 )
{
int nPlatform = GetUShort( p );
int nEncoding = GetUShort( p+2 );
int nPlatformEncoding = (nPlatform << 8) + nEncoding;
int nValue;
rtl_TextEncoding eTmpEncoding = RTL_TEXTENCODING_UNICODE;
switch( nPlatformEncoding )
{
case 0x000: nValue = 20; break; // Unicode 1.0
case 0x001: nValue = 21; break; // Unicode 1.1
case 0x002: nValue = 22; break; // iso10646_1993
case 0x003: nValue = 23; break; // UCS-2
case 0x004: nValue = 24; break; // UCS-4
case 0x100: nValue = 22; break; // Mac Unicode<2.0
case 0x103: nValue = 23; break; // Mac Unicode>2.0
case 0x300: nValue = 5; rResult.mbSymbolic = true; break; // Win Symbol
case 0x301: nValue = 28; break; // Win UCS-2
case 0x30A: nValue = 29; break; // Win-UCS-4
case 0x302: nValue = 11; eTmpEncoding = RTL_TEXTENCODING_SHIFT_JIS; break;
case 0x303: nValue = 12; eTmpEncoding = RTL_TEXTENCODING_GB_18030; break;
case 0x304: nValue = 11; eTmpEncoding = RTL_TEXTENCODING_BIG5; break;
case 0x305: nValue = 11; eTmpEncoding = RTL_TEXTENCODING_MS_949; break;
case 0x306: nValue = 11; eTmpEncoding = RTL_TEXTENCODING_MS_1361; break;
default: nValue = 0; break;
}
if( nValue <= 0 ) // ignore unknown encodings
continue;
int nTmpOffset = GetUInt( p+4 );
int nTmpFormat = GetUShort( pCmap + nTmpOffset );
if( nTmpFormat == 12 ) // 32bit code -> glyph map format
nValue += 3;
else if( nTmpFormat != 4 ) // 16bit code -> glyph map format
continue; // ignore other formats
if( nBestVal < nValue )
{
nBestVal = nValue;
nOffset = nTmpOffset;
nFormat = nTmpFormat;
eRecodeFrom = eTmpEncoding;
}
}
// parse the best CMAP subtable
int nRangeCount = 0;
sal_UCS4* pCodePairs = nullptr;
int* pStartGlyphs = nullptr;
std::vector<sal_uInt16> aGlyphIdArray;
aGlyphIdArray.reserve( 0x1000 );
aGlyphIdArray.push_back( 0 );
// format 4, the most common 16bit char mapping table
if( (nFormat == 4) && ((nOffset+16) < nLength) )
{
int nSegCountX2 = GetUShort( pCmap + nOffset + 6 );
nRangeCount = nSegCountX2/2 - 1;
pCodePairs = new sal_UCS4[ nRangeCount * 2 ];
pStartGlyphs = new int[ nRangeCount ];
const unsigned char* pLimitBase = pCmap + nOffset + 14;
const unsigned char* pBeginBase = pLimitBase + nSegCountX2 + 2;
const unsigned char* pDeltaBase = pBeginBase + nSegCountX2;
const unsigned char* pOffsetBase = pDeltaBase + nSegCountX2;
sal_UCS4* pCP = pCodePairs;
for( int i = 0; i < nRangeCount; ++i )
{
const sal_UCS4 cMinChar = GetUShort( pBeginBase + 2*i );
const sal_UCS4 cMaxChar = GetUShort( pLimitBase + 2*i );
const int nGlyphDelta = GetSShort( pDeltaBase + 2*i );
const int nRangeOffset = GetUShort( pOffsetBase + 2*i );
if( cMinChar > cMaxChar ) { // no sane font should trigger this
SAL_WARN("vcl.gdi", "Min char should never be more than the max char!");
break;
}
if( cMaxChar == 0xFFFF ) {
SAL_WARN("vcl.gdi", "Format 4 char should not be 0xFFFF");
break;
}
if( !nRangeOffset ) {
// glyphid can be calculated directly
pStartGlyphs[i] = (cMinChar + nGlyphDelta) & 0xFFFF;
} else {
// update the glyphid-array with the glyphs in this range
pStartGlyphs[i] = -static_cast<int>(aGlyphIdArray.size());
const unsigned char* pGlyphIdPtr = pOffsetBase + 2*i + nRangeOffset;
const size_t nRemainingSize = pEndValidArea - pGlyphIdPtr;
const size_t nMaxPossibleRecords = nRemainingSize/2;
if (nMaxPossibleRecords == 0) { // no sane font should trigger this
SAL_WARN("vcl.gdi", "More indexes claimed that space available in font!");
break;
}
const size_t nMaxLegalChar = cMinChar + nMaxPossibleRecords-1;
if (cMaxChar > nMaxLegalChar) { // no sane font should trigger this
SAL_WARN("vcl.gdi", "More indexes claimed that space available in font!");
break;
}
for( sal_UCS4 c = cMinChar; c <= cMaxChar; ++c, pGlyphIdPtr+=2 ) {
const int nGlyphIndex = GetUShort( pGlyphIdPtr ) + nGlyphDelta;
aGlyphIdArray.push_back( static_cast<sal_uInt16>(nGlyphIndex) );
}
}
*(pCP++) = cMinChar;
*(pCP++) = cMaxChar + 1;
}
nRangeCount = (pCP - pCodePairs) / 2;
}
// format 12, the most common 32bit char mapping table
else if( (nFormat == 12) && ((nOffset+16) < nLength) )
{
nRangeCount = GetUInt( pCmap + nOffset + 12 );
if (nRangeCount < 0)
{
SAL_WARN("vcl.gdi", "negative RangeCount");
nRangeCount = 0;
}
const int nGroupOffset = nOffset + 16;
const int nRemainingLen = nLength - nGroupOffset;
const int nMaxPossiblePairs = nRemainingLen / 12;
if (nRangeCount > nMaxPossiblePairs)
{
SAL_WARN("vcl.gdi", "more code pairs requested then space available");
nRangeCount = nMaxPossiblePairs;
}
pCodePairs = new sal_UCS4[ nRangeCount * 2 ];
pStartGlyphs = new int[ nRangeCount ];
const unsigned char* pGroup = pCmap + nGroupOffset;
sal_UCS4* pCP = pCodePairs;
for( int i = 0; i < nRangeCount; ++i )
{
sal_UCS4 cMinChar = GetUInt( pGroup + 0 );
sal_UCS4 cMaxChar = GetUInt( pGroup + 4 );
int nGlyphId = GetUInt( pGroup + 8 );
pGroup += 12;
if( cMinChar > cMaxChar ) { // no sane font should trigger this
SAL_WARN("vcl.gdi", "Min char should never be more than the max char!");
break;
}
*(pCP++) = cMinChar;
*(pCP++) = cMaxChar + 1;
pStartGlyphs[i] = nGlyphId;
}
nRangeCount = (pCP - pCodePairs) / 2;
}
// check if any subtable resulted in something usable
if( nRangeCount <= 0 )
{
delete[] pCodePairs;
delete[] pStartGlyphs;
// even when no CMAP is available we know it for symbol fonts
if( rResult.mbSymbolic )
{
pCodePairs = new sal_UCS4[4];
pCodePairs[0] = 0x0020; // aliased symbols
pCodePairs[1] = 0x0100;
pCodePairs[2] = 0xF020; // original symbols
pCodePairs[3] = 0xF100;
rResult.mpRangeCodes = pCodePairs;
rResult.mnRangeCount = 2;
return true;
}
return false;
}
// recode the code ranges to their unicode encoded ranges if needed
rtl_TextToUnicodeConverter aConverter = nullptr;
rtl_UnicodeToTextContext aCvtContext = nullptr;
rResult.mbRecoded = ( eRecodeFrom != RTL_TEXTENCODING_UNICODE );
if( rResult.mbRecoded )
{
aConverter = rtl_createTextToUnicodeConverter( eRecodeFrom );
aCvtContext = rtl_createTextToUnicodeContext( aConverter );
}
if( aConverter && aCvtContext )
{
// determine the set of supported code points from encoded ranges
std::set<sal_UCS4> aSupportedCodePoints;
static const int NINSIZE = 64;
static const int NOUTSIZE = 64;
sal_Char cCharsInp[ NINSIZE ];
sal_Unicode cCharsOut[ NOUTSIZE ];
sal_UCS4* pCP = pCodePairs;
for( int i = 0; i < nRangeCount; ++i )
{
sal_UCS4 cMin = *(pCP++);
sal_UCS4 cEnd = *(pCP++);
while( cMin < cEnd )
{
int j = 0;
for(; (cMin < cEnd) && (j < NINSIZE); ++cMin )
{
if( cMin >= 0x0100 )
cCharsInp[ j++ ] = static_cast<sal_Char>(cMin >> 8);
if( (cMin >= 0x0100) || (cMin < 0x00A0) )
cCharsInp[ j++ ] = static_cast<sal_Char>(cMin);
}
sal_uInt32 nCvtInfo;
sal_Size nSrcCvtBytes;
int nOutLen = rtl_convertTextToUnicode(
aConverter, aCvtContext,
cCharsInp, j, cCharsOut, NOUTSIZE,
RTL_TEXTTOUNICODE_FLAGS_INVALID_IGNORE
| RTL_TEXTTOUNICODE_FLAGS_UNDEFINED_IGNORE,
&nCvtInfo, &nSrcCvtBytes );
for( j = 0; j < nOutLen; ++j )
aSupportedCodePoints.insert( cCharsOut[j] );
}
}
rtl_destroyTextToUnicodeConverter( aCvtContext );
rtl_destroyTextToUnicodeConverter( aConverter );
// convert the set of supported code points to ranges
std::vector<sal_UCS4> aSupportedRanges;
for (auto const& supportedPoint : aSupportedCodePoints)
{
if( aSupportedRanges.empty()
|| (aSupportedRanges.back() != supportedPoint) )
{
// add new range beginning with current unicode
aSupportedRanges.push_back(supportedPoint);
aSupportedRanges.push_back( 0 );
}
// extend existing range to include current unicode
aSupportedRanges.back() = supportedPoint + 1;
}
// glyph mapping for non-unicode fonts not implemented
delete[] pStartGlyphs;
pStartGlyphs = nullptr;
aGlyphIdArray.clear();
// make a pCodePairs array using the vector from above
delete[] pCodePairs;
nRangeCount = aSupportedRanges.size() / 2;
if( nRangeCount <= 0 )
return false;
pCodePairs = new sal_UCS4[ nRangeCount * 2 ];
pCP = pCodePairs;
for (auto const& supportedRange : aSupportedRanges)
*(pCP++) = supportedRange;
}
// prepare the glyphid-array if needed
// TODO: merge ranges if they are close enough?
sal_uInt16* pGlyphIds = nullptr;
if( !aGlyphIdArray.empty())
{
pGlyphIds = new sal_uInt16[ aGlyphIdArray.size() ];
sal_uInt16* pOut = pGlyphIds;
for (auto const& glyphId : aGlyphIdArray)
*(pOut++) = glyphId;
}
// update the result struct
rResult.mpRangeCodes = pCodePairs;
rResult.mpStartGlyphs = pStartGlyphs;
rResult.mnRangeCount = nRangeCount;
rResult.mpGlyphIds = pGlyphIds;
return true;
}
FontCharMap::FontCharMap()
: mpImplFontCharMap( ImplFontCharMap::getDefaultMap() )
{
}
FontCharMap::FontCharMap( ImplFontCharMapRef const & pIFCMap )
: mpImplFontCharMap( pIFCMap )
{
}
FontCharMap::FontCharMap( const CmapResult& rCR )
: mpImplFontCharMap(new ImplFontCharMap(rCR))
{
}
FontCharMap::~FontCharMap()
{
mpImplFontCharMap = nullptr;
}
FontCharMapRef FontCharMap::GetDefaultMap( bool bSymbol )
{
FontCharMapRef xFontCharMap( new FontCharMap( ImplFontCharMap::getDefaultMap( bSymbol ) ) );
return xFontCharMap;
}
bool FontCharMap::IsDefaultMap() const
{
return mpImplFontCharMap->isDefaultMap();
}
int FontCharMap::GetCharCount() const
{
return mpImplFontCharMap->mnCharCount;
}
int FontCharMap::CountCharsInRange( sal_UCS4 cMin, sal_UCS4 cMax ) const
{
int nCount = 0;
// find and adjust range and char count for cMin
int nRangeMin = findRangeIndex( cMin );
if( nRangeMin & 1 )
++nRangeMin;
else if( cMin > mpImplFontCharMap->mpRangeCodes[ nRangeMin ] )
nCount -= cMin - mpImplFontCharMap->mpRangeCodes[ nRangeMin ];
// find and adjust range and char count for cMax
int nRangeMax = findRangeIndex( cMax );
if( nRangeMax & 1 )
--nRangeMax;
else
nCount -= mpImplFontCharMap->mpRangeCodes[ nRangeMax+1 ] - cMax - 1;
// count chars in complete ranges between cMin and cMax
for( int i = nRangeMin; i <= nRangeMax; i+=2 )
nCount += mpImplFontCharMap->mpRangeCodes[i+1] - mpImplFontCharMap->mpRangeCodes[i];
return nCount;
}
bool FontCharMap::HasChar( sal_UCS4 cChar ) const
{
bool bHasChar = false;
if( mpImplFontCharMap->mpStartGlyphs == nullptr ) { // only the char-ranges are known
const int nRange = findRangeIndex( cChar );
if( nRange==0 && cChar < mpImplFontCharMap->mpRangeCodes[0] )
return false;
bHasChar = ((nRange & 1) == 0); // inside a range
} else { // glyph mapping is available
const int nGlyphIndex = GetGlyphIndex( cChar );
bHasChar = (nGlyphIndex != 0); // not the notdef-glyph
}
return bHasChar;
}
sal_UCS4 FontCharMap::GetFirstChar() const
{
return mpImplFontCharMap->mpRangeCodes[0];
}
sal_UCS4 FontCharMap::GetLastChar() const
{
return (mpImplFontCharMap->mpRangeCodes[ 2*mpImplFontCharMap->mnRangeCount-1 ] - 1);
}
sal_UCS4 FontCharMap::GetNextChar( sal_UCS4 cChar ) const
{
if( cChar < GetFirstChar() )
return GetFirstChar();
if( cChar >= GetLastChar() )
return GetLastChar();
int nRange = findRangeIndex( cChar + 1 );
if( nRange & 1 ) // outside of range?
return mpImplFontCharMap->mpRangeCodes[ nRange + 1 ]; // => first in next range
return (cChar + 1);
}
sal_UCS4 FontCharMap::GetPrevChar( sal_UCS4 cChar ) const
{
if( cChar <= GetFirstChar() )
return GetFirstChar();
if( cChar > GetLastChar() )
return GetLastChar();
int nRange = findRangeIndex( cChar - 1 );
if( nRange & 1 ) // outside a range?
return (mpImplFontCharMap->mpRangeCodes[ nRange ] - 1); // => last in prev range
return (cChar - 1);
}
int FontCharMap::GetIndexFromChar( sal_UCS4 cChar ) const
{
// TODO: improve linear walk?
int nCharIndex = 0;
const sal_UCS4* pRange = &mpImplFontCharMap->mpRangeCodes[0];
for( int i = 0; i < mpImplFontCharMap->mnRangeCount; ++i )
{
sal_UCS4 cFirst = *(pRange++);
sal_UCS4 cLast = *(pRange++);
if( cChar >= cLast )
nCharIndex += cLast - cFirst;
else if( cChar >= cFirst )
return nCharIndex + (cChar - cFirst);
else
break;
}
return -1;
}
sal_UCS4 FontCharMap::GetCharFromIndex( int nIndex ) const
{
// TODO: improve linear walk?
const sal_UCS4* pRange = &mpImplFontCharMap->mpRangeCodes[0];
for( int i = 0; i < mpImplFontCharMap->mnRangeCount; ++i )
{
sal_UCS4 cFirst = *(pRange++);
sal_UCS4 cLast = *(pRange++);
nIndex -= cLast - cFirst;
if( nIndex < 0 )
return (cLast + nIndex);
}
// we can only get here with an out-of-bounds charindex
return mpImplFontCharMap->mpRangeCodes[0];
}
int FontCharMap::findRangeIndex( sal_UCS4 cChar ) const
{
int nLower = 0;
int nMid = mpImplFontCharMap->mnRangeCount;
int nUpper = 2 * mpImplFontCharMap->mnRangeCount - 1;
while( nLower < nUpper )
{
if( cChar >= mpImplFontCharMap->mpRangeCodes[ nMid ] )
nLower = nMid;
else
nUpper = nMid - 1;
nMid = (nLower + nUpper + 1) / 2;
}
return nMid;
}
int FontCharMap::GetGlyphIndex( sal_UCS4 cChar ) const
{
// return -1 if the object doesn't know the glyph ids
if( !mpImplFontCharMap->mpStartGlyphs )
return -1;
// return 0 if the unicode doesn't have a matching glyph
int nRange = findRangeIndex( cChar );
// check that we are inside any range
if( (nRange == 0) && (cChar < mpImplFontCharMap->mpRangeCodes[0]) ) {
// symbol aliasing gives symbol fonts a second chance
const bool bSymbolic = cChar <= 0xFF && (mpImplFontCharMap->mpRangeCodes[0]>=0xF000) &&
(mpImplFontCharMap->mpRangeCodes[1]<=0xF0FF);
if( !bSymbolic )
return 0;
// check for symbol aliasing (U+F0xx -> U+00xx)
cChar |= 0xF000;
nRange = findRangeIndex( cChar );
if( (nRange == 0) && (cChar < mpImplFontCharMap->mpRangeCodes[0]) ) {
return 0;
}
}
// check that we are inside a range
if( (nRange & 1) != 0 )
return 0;
// get glyph index directly or indirectly
int nGlyphIndex = cChar - mpImplFontCharMap->mpRangeCodes[ nRange ];
const int nStartIndex = mpImplFontCharMap->mpStartGlyphs[ nRange/2 ];
if( nStartIndex >= 0 ) {
// the glyph index can be calculated
nGlyphIndex += nStartIndex;
} else {
// the glyphid array has the glyph index
nGlyphIndex = mpImplFontCharMap->mpGlyphIds[ nGlyphIndex - nStartIndex];
}
return nGlyphIndex;
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|