blob: 7b225c3a68b40e691c51741d617017f017ec82d7 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
*/
#include <pdf/Matrix3.hxx>
#include <cmath>
namespace vcl::pdf
{
Matrix3::Matrix3()
{
// initialize to unity
f[0] = 1.0;
f[1] = 0.0;
f[2] = 0.0;
f[3] = 1.0;
f[4] = 0.0;
f[5] = 0.0;
}
Point Matrix3::transform(const Point& rOrig) const
{
double x = static_cast<double>(rOrig.X()), y = static_cast<double>(rOrig.Y());
return Point(x * f[0] + y * f[2] + f[4], x * f[1] + y * f[3] + f[5]);
}
DevicePoint Matrix3::transform(const DevicePoint& rOrig) const
{
double x = rOrig.getX(), y = rOrig.getY();
return DevicePoint(x * f[0] + y * f[2] + f[4], x * f[1] + y * f[3] + f[5]);
}
void Matrix3::skew(double alpha, double beta)
{
double fn[6];
double tb = tan(beta);
fn[0] = f[0] + f[2] * tb;
fn[1] = f[1];
fn[2] = f[2] + f[3] * tb;
fn[3] = f[3];
fn[4] = f[4] + f[5] * tb;
fn[5] = f[5];
if (alpha != 0.0)
{
double ta = tan(alpha);
fn[1] += f[0] * ta;
fn[3] += f[2] * ta;
fn[5] += f[4] * ta;
}
set(fn);
}
void Matrix3::scale(double sx, double sy)
{
double fn[6];
fn[0] = sx * f[0];
fn[1] = sy * f[1];
fn[2] = sx * f[2];
fn[3] = sy * f[3];
fn[4] = sx * f[4];
fn[5] = sy * f[5];
set(fn);
}
void Matrix3::rotate(double angle)
{
double fn[6];
double fSin = sin(angle);
double fCos = cos(angle);
fn[0] = f[0] * fCos - f[1] * fSin;
fn[1] = f[0] * fSin + f[1] * fCos;
fn[2] = f[2] * fCos - f[3] * fSin;
fn[3] = f[2] * fSin + f[3] * fCos;
fn[4] = f[4] * fCos - f[5] * fSin;
fn[5] = f[4] * fSin + f[5] * fCos;
set(fn);
}
void Matrix3::translate(double tx, double ty)
{
f[4] += tx;
f[5] += ty;
}
void Matrix3::invert()
{
// short circuit trivial cases
if (f[1] == f[2] && f[1] == 0.0 && f[0] == f[3] && f[0] == 1.0)
{
f[4] = -f[4];
f[5] = -f[5];
return;
}
// check determinant
const double fDet = f[0] * f[3] - f[1] * f[2];
if (fDet == 0.0)
return;
// invert the matrix
double fn[6];
fn[0] = +f[3] / fDet;
fn[1] = -f[1] / fDet;
fn[2] = -f[2] / fDet;
fn[3] = +f[0] / fDet;
// apply inversion to translation
fn[4] = -(f[4] * fn[0] + f[5] * fn[2]);
fn[5] = -(f[4] * fn[1] + f[5] * fn[3]);
set(fn);
}
} // end vcl::pdf
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|