1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
#include <pdf/PDFEncryptorR6.hxx>
#include <pdf/EncryptionHashTransporter.hxx>
#include <pdf/pdfwriter_impl.hxx>
#include <comphelper/crypto/Crypto.hxx>
#include <comphelper/hash.hxx>
#include <comphelper/random.hxx>
using namespace css;
namespace vcl::pdf
{
namespace
{
constexpr size_t IV_SIZE = 16;
constexpr size_t BLOCK_SIZE = 16;
constexpr size_t KEY_SIZE = 32;
constexpr size_t SALT_SIZE = 8;
/** Calculates modulo 3 of the 128-bit integer, using the first 16 bytes of the vector */
sal_Int32 calculateModulo3(std::vector<sal_uInt8> const& rInput)
{
sal_Int32 nSum = 0;
for (size_t i = 0; i < 16; ++i)
nSum += rInput[i];
return nSum % 3;
}
void generateBytes(std::vector<sal_uInt8>& rBytes, size_t nSize)
{
rBytes.resize(nSize);
for (size_t i = 0; i < rBytes.size(); ++i)
rBytes[i] = sal_uInt8(comphelper::rng::uniform_uint_distribution(0, 0xFF));
}
} // end anonymous
std::vector<sal_uInt8> generateKey()
{
std::vector<sal_uInt8> aKey;
generateBytes(aKey, KEY_SIZE);
return aKey;
}
bool validateUserPassword(const sal_uInt8* pPass, size_t nLength, std::vector<sal_uInt8>& U)
{
std::vector<sal_uInt8> aHash(U.begin(), U.begin() + KEY_SIZE);
std::vector<sal_uInt8> aValidationSalt(U.begin() + KEY_SIZE, U.begin() + KEY_SIZE + SALT_SIZE);
std::vector<sal_uInt8> aCalculatedHash
= vcl::pdf::computeHashR6(pPass, nLength, aValidationSalt);
return aHash == aCalculatedHash;
}
bool validateOwnerPassword(const sal_uInt8* pPass, size_t nLength, std::vector<sal_uInt8>& U,
std::vector<sal_uInt8>& O)
{
std::vector<sal_uInt8> aHash(O.begin(), O.begin() + KEY_SIZE);
std::vector<sal_uInt8> aValidationSalt(O.begin() + KEY_SIZE, O.begin() + KEY_SIZE + SALT_SIZE);
std::vector<sal_uInt8> aCalculatedHash
= vcl::pdf::computeHashR6(pPass, nLength, aValidationSalt, U);
return aHash == aCalculatedHash;
}
/** Algorithm 8 */
void generateUandUE(const sal_uInt8* pPass, size_t nLength,
std::vector<sal_uInt8>& rFileEncryptionKey, std::vector<sal_uInt8>& U,
std::vector<sal_uInt8>& UE)
{
std::vector<sal_uInt8> aValidationSalt;
generateBytes(aValidationSalt, SALT_SIZE);
std::vector<sal_uInt8> aKeySalt;
generateBytes(aKeySalt, SALT_SIZE);
U = vcl::pdf::computeHashR6(pPass, nLength, aValidationSalt);
U.insert(U.end(), aValidationSalt.begin(), aValidationSalt.end());
U.insert(U.end(), aKeySalt.begin(), aKeySalt.end());
std::vector<sal_uInt8> aKeyHash = vcl::pdf::computeHashR6(pPass, nLength, aKeySalt);
std::vector<sal_uInt8> iv(IV_SIZE, 0); // zero IV
UE = std::vector<sal_uInt8>(rFileEncryptionKey.size(), 0);
comphelper::Encrypt aEncrypt(aKeyHash, iv, comphelper::CryptoType::AES_256_CBC);
aEncrypt.update(UE, rFileEncryptionKey);
}
/** Algorithm 9 */
void generateOandOE(const sal_uInt8* pPass, size_t nLength,
std::vector<sal_uInt8>& rFileEncryptionKey, std::vector<sal_uInt8>& U,
std::vector<sal_uInt8>& O, std::vector<sal_uInt8>& OE)
{
std::vector<sal_uInt8> aValidationSalt;
generateBytes(aValidationSalt, SALT_SIZE);
std::vector<sal_uInt8> aKeySalt;
generateBytes(aKeySalt, SALT_SIZE);
O = vcl::pdf::computeHashR6(pPass, nLength, aValidationSalt, U);
O.insert(O.end(), aValidationSalt.begin(), aValidationSalt.end());
O.insert(O.end(), aKeySalt.begin(), aKeySalt.end());
std::vector<sal_uInt8> aKeyHash = vcl::pdf::computeHashR6(pPass, nLength, aKeySalt, U);
std::vector<sal_uInt8> iv(IV_SIZE, 0); // zero IV
OE = std::vector<sal_uInt8>(rFileEncryptionKey.size(), 0);
comphelper::Encrypt aEncrypt(aKeyHash, iv, comphelper::CryptoType::AES_256_CBC);
aEncrypt.update(OE, rFileEncryptionKey);
}
/** Algorithm 8 step b) */
std::vector<sal_uInt8> decryptKey(const sal_uInt8* pPass, size_t nLength, std::vector<sal_uInt8>& U,
std::vector<sal_uInt8>& UE)
{
std::vector<sal_uInt8> aKeySalt(U.begin() + KEY_SIZE + SALT_SIZE,
U.begin() + KEY_SIZE + SALT_SIZE + SALT_SIZE);
auto aKeyHash = vcl::pdf::computeHashR6(pPass, nLength, aKeySalt);
std::vector<sal_uInt8> aEncryptedKey(UE.begin(), UE.begin() + KEY_SIZE);
std::vector<sal_uInt8> iv(IV_SIZE, 0);
comphelper::Decrypt aDecryptCBC(aKeyHash, iv, comphelper::CryptoType::AES_256_CBC);
std::vector<sal_uInt8> aFileEncryptionKey(aEncryptedKey.size());
sal_uInt32 nDecrypted = aDecryptCBC.update(aFileEncryptionKey, aEncryptedKey);
if (nDecrypted == 0)
return std::vector<sal_uInt8>();
return aFileEncryptionKey;
}
/** Algorithm 13: Validating the permissions */
std::vector<sal_uInt8> decryptPerms(std::vector<sal_uInt8>& rPermsEncrypted,
std::vector<sal_uInt8>& rFileEncryptionKey)
{
std::vector<sal_uInt8> aPermsDecrpyted(rPermsEncrypted.size());
std::vector<sal_uInt8> iv(IV_SIZE, 0);
comphelper::Decrypt aDecryptor(rFileEncryptionKey, iv, comphelper::CryptoType::AES_256_ECB);
aDecryptor.update(aPermsDecrpyted, rPermsEncrypted);
return aPermsDecrpyted;
}
/** Algorithm 10 step f) */
std::vector<sal_uInt8> encryptPerms(std::vector<sal_uInt8>& rPerms,
std::vector<sal_uInt8>& rFileEncryptionKey)
{
std::vector<sal_uInt8> aPermsEncrypted(rPerms.size());
std::vector<sal_uInt8> iv(IV_SIZE, 0);
comphelper::Encrypt aEncryptor(rFileEncryptionKey, iv, comphelper::CryptoType::AES_256_ECB);
aEncryptor.update(aPermsEncrypted, rPerms);
return aPermsEncrypted;
}
/** Algorithm 10 steps a) - e) */
std::vector<sal_uInt8> createPerms(sal_Int32 nAccessPermissions, bool bEncryptMetadata)
{
std::vector<sal_uInt8> aPermsCreated;
generateBytes(aPermsCreated, 16); // fill with random data - mainly for last 4 bytes
aPermsCreated[0] = sal_uInt8(nAccessPermissions);
aPermsCreated[1] = sal_uInt8(nAccessPermissions >> 8);
aPermsCreated[2] = sal_uInt8(nAccessPermissions >> 16);
aPermsCreated[3] = sal_uInt8(nAccessPermissions >> 24);
aPermsCreated[4] = sal_uInt8(0xff);
aPermsCreated[5] = sal_uInt8(0xff);
aPermsCreated[6] = sal_uInt8(0xff);
aPermsCreated[7] = sal_uInt8(0xff);
aPermsCreated[8] = bEncryptMetadata ? 'T' : 'F'; // Encrypt metadata
aPermsCreated[9] = 'a';
aPermsCreated[10] = 'd';
aPermsCreated[11] = 'b';
return aPermsCreated;
}
/** Algorithm 2.B: Computing a hash (revision 6 and later) */
std::vector<sal_uInt8> computeHashR6(const sal_uInt8* pPassword, size_t nPasswordLength,
std::vector<sal_uInt8> const& rValidationSalt,
std::vector<sal_uInt8> const& rUserKey)
{
// Round 0
comphelper::Hash aHash(comphelper::HashType::SHA256);
aHash.update(pPassword, nPasswordLength);
aHash.update(rValidationSalt);
if (!rUserKey.empty()) // if calculating owner key
aHash.update(rUserKey);
std::vector<sal_uInt8> K = aHash.finalize();
std::vector<sal_uInt8> E;
sal_Int32 nRound = 1; // round 0 is done already
do
{
// Step a)
std::vector<sal_uInt8> K1;
for (sal_Int32 nRepetition = 0; nRepetition < 64; ++nRepetition)
{
K1.insert(K1.end(), pPassword, pPassword + nPasswordLength);
K1.insert(K1.end(), K.begin(), K.end());
if (!rUserKey.empty()) // if calculating owner key
K1.insert(K1.end(), rUserKey.begin(), rUserKey.end());
}
// Step b)
std::vector<sal_uInt8> aKey(K.begin(), K.begin() + 16);
std::vector<sal_uInt8> aInitVector(K.begin() + 16, K.end());
E = std::vector<sal_uInt8>(K1.size(), 0);
comphelper::Encrypt aEncrypt(aKey, aInitVector, comphelper::CryptoType::AES_128_CBC);
aEncrypt.update(E, K1);
// Step c)
sal_Int32 nModulo3Result = calculateModulo3(E);
// Step d)
comphelper::HashType eType;
switch (nModulo3Result)
{
case 0:
eType = comphelper::HashType::SHA256;
break;
case 1:
eType = comphelper::HashType::SHA384;
break;
default:
eType = comphelper::HashType::SHA512;
break;
}
K = comphelper::Hash::calculateHash(E.data(), E.size(), eType);
nRound++;
}
// Step e) and f)
// We stop iteration if we do at least 64 rounds and (the last element of E <= round number - 32)
while (nRound < 64 || E.back() > (nRound - 32));
// Output - first 32 bytes
return std::vector<sal_uInt8>(K.begin(), K.begin() + 32);
}
size_t addPaddingToVector(std::vector<sal_uInt8>& rVector, size_t nBlockSize)
{
size_t nPaddedSize = comphelper::roundUp(rVector.size(), size_t(nBlockSize));
if (nPaddedSize > rVector.size())
{
sal_uInt8 nPaddedValue = sal_uInt8(nPaddedSize - rVector.size());
rVector.resize(nPaddedSize, nPaddedValue);
}
return nPaddedSize;
}
class VCL_DLLPUBLIC EncryptionContext
{
private:
std::vector<sal_uInt8> maKey;
public:
EncryptionContext(std::vector<sal_uInt8> const& rKey)
: maKey(rKey)
{
}
/** Algorithm 1.A: Encryption of data using the AES algorithms */
void encrypt(const void* pInput, sal_uInt64 nInputSize, std::vector<sal_uInt8>& rOutput,
std::vector<sal_uInt8>& rIV)
{
comphelper::Encrypt aEncrypt(maKey, rIV, comphelper::CryptoType::AES_256_CBC);
const sal_uInt8* pInputBytes = static_cast<const sal_uInt8*>(pInput);
std::vector<sal_uInt8> aInput(pInputBytes, pInputBytes + nInputSize);
size_t nPaddedSize = addPaddingToVector(aInput, BLOCK_SIZE);
std::vector<sal_uInt8> aOutput(nPaddedSize);
aEncrypt.update(aOutput, aInput);
rOutput.resize(nPaddedSize + IV_SIZE);
std::copy(rIV.begin(), rIV.end(), rOutput.begin());
std::copy(aOutput.begin(), aOutput.end(), rOutput.begin() + IV_SIZE);
}
};
PDFEncryptorR6::PDFEncryptorR6() = default;
PDFEncryptorR6::~PDFEncryptorR6() = default;
std::vector<sal_uInt8> PDFEncryptorR6::getEncryptedAccessPermissions(std::vector<sal_uInt8>& rKey)
{
std::vector<sal_uInt8> aPerms = createPerms(m_nAccessPermissions, false);
return encryptPerms(aPerms, rKey);
}
void PDFEncryptorR6::initEncryption(EncryptionHashTransporter& rEncryptionHashTransporter,
const OUString& rOwnerPassword, const OUString& rUserPassword)
{
if (rUserPassword.isEmpty())
return;
std::vector<sal_uInt8> aEncryptionKey = vcl::pdf::generateKey();
rEncryptionHashTransporter.setEncryptionKey(aEncryptionKey);
std::vector<sal_uInt8> U;
std::vector<sal_uInt8> UE;
OString pUserPasswordUtf8 = OUStringToOString(rUserPassword, RTL_TEXTENCODING_UTF8);
vcl::pdf::generateUandUE(reinterpret_cast<const sal_uInt8*>(pUserPasswordUtf8.getStr()),
pUserPasswordUtf8.getLength(), aEncryptionKey, U, UE);
rEncryptionHashTransporter.setU(U);
rEncryptionHashTransporter.setUE(UE);
OUString aOwnerPasswordToUse = rOwnerPassword.isEmpty() ? rUserPassword : rOwnerPassword;
std::vector<sal_uInt8> O;
std::vector<sal_uInt8> OE;
OString pOwnerPasswordUtf8 = OUStringToOString(aOwnerPasswordToUse, RTL_TEXTENCODING_UTF8);
vcl::pdf::generateOandOE(reinterpret_cast<const sal_uInt8*>(pOwnerPasswordUtf8.getStr()),
pOwnerPasswordUtf8.getLength(), aEncryptionKey, U, O, OE);
rEncryptionHashTransporter.setO(O);
rEncryptionHashTransporter.setOE(OE);
}
bool PDFEncryptorR6::prepareEncryption(
const uno::Reference<beans::XMaterialHolder>& xEncryptionMaterialHolder,
vcl::PDFEncryptionProperties& rProperties)
{
auto* pTransporter
= EncryptionHashTransporter::getEncHashTransporter(xEncryptionMaterialHolder);
if (!pTransporter)
{
rProperties.clear();
return false;
}
rProperties.UValue = pTransporter->getU();
rProperties.UE = pTransporter->getUE();
rProperties.OValue = pTransporter->getO();
rProperties.OE = pTransporter->getOE();
rProperties.EncryptionKey = pTransporter->getEncryptionKey();
return true;
}
void PDFEncryptorR6::setupKeysAndCheck(vcl::PDFEncryptionProperties& rProperties)
{
m_nAccessPermissions = rProperties.getAccessPermissions();
}
sal_uInt64 PDFEncryptorR6::calculateSizeIncludingHeader(sal_uInt64 nSize)
{
return IV_SIZE + comphelper::roundUp<sal_uInt64>(nSize, BLOCK_SIZE);
}
void PDFEncryptorR6::setupEncryption(std::vector<sal_uInt8>& rEncryptionKey, sal_Int32 /*nObject*/)
{
m_pEncryptionContext = std::make_unique<EncryptionContext>(rEncryptionKey);
}
void PDFEncryptorR6::encrypt(const void* pInput, sal_uInt64 nInputSize,
std::vector<sal_uInt8>& rOutput, sal_uInt64 /*nOutputSize*/)
{
std::vector<sal_uInt8> aIV;
generateBytes(aIV, IV_SIZE);
m_pEncryptionContext->encrypt(pInput, nInputSize, rOutput, aIV);
}
void PDFEncryptorR6::encryptWithIV(const void* pInput, sal_uInt64 nInputSize,
std::vector<sal_uInt8>& rOutput, std::vector<sal_uInt8>& rIV)
{
m_pEncryptionContext->encrypt(pInput, nInputSize, rOutput, rIV);
}
} // end vcl::pdf
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|