diff options
author | Adolfo Jayme Barrientos <fitojb@ubuntu.com> | 2016-05-28 03:01:51 -0500 |
---|---|---|
committer | Adolfo Jayme Barrientos <fitojb@ubuntu.com> | 2016-05-28 08:04:57 +0000 |
commit | 7a10e0399a484b8904e05fec7af271bd7d109edf (patch) | |
tree | 4923e9daea2e04bb494a4f723d7ce5acdb80587a | |
parent | a3f89c38a446d74b5327544de7b753964ce94a29 (diff) |
Misused word: “strait” → “straight”
Change-Id: I9129c1d493ef47087fc3d39a58cc5142b4df8e38
(cherry picked from commit a9a0e8625655eabdf702cfc754412488a79c0513)
Reviewed-on: https://gerrit.libreoffice.org/25574
Reviewed-by: Adolfo Jayme Barrientos <fitojb@ubuntu.com>
Tested-by: Adolfo Jayme Barrientos <fitojb@ubuntu.com>
-rw-r--r-- | source/text/scalc/01/statistics_regression.xhp | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/source/text/scalc/01/statistics_regression.xhp b/source/text/scalc/01/statistics_regression.xhp index a217084c58..26ec722534 100644 --- a/source/text/scalc/01/statistics_regression.xhp +++ b/source/text/scalc/01/statistics_regression.xhp @@ -52,7 +52,7 @@ <list type="unordered"> <listitem> - <paragraph id="par_id1701201620334364" role="ul_item" xml-lang="en-US"><emph>Linear Regression</emph>: find a strait line in the form of <item type="literal">y = a.x + b</item>, where <item type="literal">a</item> is the slope and <item type="literal">b</item> is the intercept that best fits the data.</paragraph> + <paragraph id="par_id1701201620334364" role="ul_item" xml-lang="en-US"><emph>Linear Regression</emph>: find a straight line in the form of <item type="literal">y = a.x + b</item>, where <item type="literal">a</item> is the slope and <item type="literal">b</item> is the intercept that best fits the data.</paragraph> </listitem> <listitem> <paragraph id="par_id1701201620340168" role="ul_item" xml-lang="en-US"><emph>Logarithmic regression</emph>: find a logarithmic curve in the form of <item type="literal">y = a.ln(x) + b</item>, where <item type="literal">a</item> is the slope, <item type="literal">b</item> is the intercept and <item type="literal">ln(x)</item> is the natural logarithm of <item type="literal">x</item>, that best fits the data.</paragraph> |