diff options
author | Olivier Hallot <olivier.hallot@libreoffice.org> | 2017-07-22 12:23:36 -0300 |
---|---|---|
committer | Olivier Hallot <olivier.hallot@edx.srv.br> | 2017-07-23 23:33:57 +0200 |
commit | 768ebf50c5564dc4ecbde7af8dd136c4acdf87f4 (patch) | |
tree | c6f11374eb7f1e0dc4004a2773038f095d07bdf9 /source | |
parent | e3187aa9dd2a80972b8aded1fb8f2270caa70438 (diff) |
Fix some DTD issues in Help Pages
<item> does not have child nodes
Change-Id: Ieac002b65cfc54c66af92e1a7cb80a1fc7ce31f4
Reviewed-on: https://gerrit.libreoffice.org/40313
Reviewed-by: Olivier Hallot <olivier.hallot@edx.srv.br>
Tested-by: Olivier Hallot <olivier.hallot@edx.srv.br>
Diffstat (limited to 'source')
-rw-r--r-- | source/text/scalc/guide/autofilter.xhp | 2 | ||||
-rw-r--r-- | source/text/schart/01/04050100.xhp | 18 |
2 files changed, 10 insertions, 10 deletions
diff --git a/source/text/scalc/guide/autofilter.xhp b/source/text/scalc/guide/autofilter.xhp index 46b2266341..8e605f9760 100644 --- a/source/text/scalc/guide/autofilter.xhp +++ b/source/text/scalc/guide/autofilter.xhp @@ -52,7 +52,7 @@ </listitem> </list> <paragraph xml-lang="en-US" id="par_id9216589" role="paragraph">When you apply an additional AutoFilter on another column of a filtered data range, then the other combo boxes list only the filtered data.</paragraph> - <paragraph xml-lang="en-US" id="par_id3153714" role="paragraph">To display all records again, select the <emph>all</emph> entry in the AutoFilter combo box. If you choose "Standard<emph>"</emph>, the <item type="menuitem">Standard Filter</item> dialog appears, allowing you to set up a standard filter. Choose "Top 10" to display the highest 10 values only. </paragraph> + <paragraph xml-lang="en-US" id="par_id3153714" role="paragraph">To display all records again, select the <emph>all</emph> entry in the AutoFilter combo box. If you choose <emph>Standard</emph>, the <item type="menuitem">Standard Filter</item> dialog appears, allowing you to set up a standard filter. Choose "Top 10" to display the highest 10 values only. </paragraph> <paragraph xml-lang="en-US" id="par_id3147340" role="paragraph">To stop using AutoFilter, reselect all cells selected in step 1 and once again choose <emph>Data - Filter - AutoFilter</emph>.</paragraph> <paragraph xml-lang="en-US" id="par_id4303415" role="tip">To assign different AutoFilters to different sheets, you must first define a database range on each sheet.</paragraph> <paragraph xml-lang="en-US" id="par_id3159236" role="warning">The arithmetic functions also take account of the cells that are not visible due to an applied filter. For example, a sum of an entire column will also total the values in the filtered cells. Apply the <link href="text/scalc/01/04060106.xhp" name="SUBTOTAL">SUBTOTAL</link> function if only the cells visible after the application of a filter are to be taken into account.</paragraph> diff --git a/source/text/schart/01/04050100.xhp b/source/text/schart/01/04050100.xhp index 1b5302880d..8b863cd933 100644 --- a/source/text/schart/01/04050100.xhp +++ b/source/text/schart/01/04050100.xhp @@ -102,7 +102,7 @@ <paragraph id="par_id8962066" role="paragraph" xml-lang="en-US">To change format of values (use less significant digits or scientific notation), select the equation in the chart, right-click to open the context menu, and choose <item type="menuitem">Format Trend Line Equation - Numbers</item>.</paragraph> <paragraph id="par_id180820161627109994" role="paragraph" xml-lang="en-US">Default equation uses <item type="literal">x</item> for abscissa variable, and <item type="literal">f(x)</item> for ordinate variable. To change these names, select the trend line, choose <item type="menuitem">Format - Format Selection – Type</item> and enter names in <item type="literal">X Variable Name</item> and <item type="literal">Y Variable Name</item> edit boxes.</paragraph> <bookmark xml-lang="en-US" branch="hid/.uno:InsertR2Value" id="bm_id2754602" localize="false"/> -<paragraph id="par_id18082016163702791" role="paragraph" xml-lang="en-US">To show the coefficient of determination R<sup>2</sup>, select the equation in the chart, right-click to open the context menu, and choose <item type="menuitem">Insert R</item><item type="menuitem">2</item>.</paragraph> +<paragraph id="par_id18082016163702791" role="paragraph" xml-lang="en-US">To show the coefficient of determination R<sup>2</sup>, select the equation in the chart, right-click to open the context menu, and choose <item type="menuitem">Insert R</item><sup><item type="menuitem">2</item></sup>.</paragraph> <paragraph id="par_id180820161637028632" role="note" xml-lang="en-US">If intercept is forced, coefficient of determination R<sup>2</sup> is not calculated in the same way as with free intercept. R<sup>2</sup> values can not be compared with forced or free intercept.</paragraph> <paragraph id="hd_id180820161534333509" role="heading" level="2" xml-lang="en-US">Trend Lines Curve Types</paragraph> @@ -113,16 +113,16 @@ <paragraph id="par_id180820161604098009" role="paragraph" xml-lang="en-US"><emph>Linear</emph> trend line: regression through equation <item type="literal">y=a∙x+b</item>. Intercept <item type="literal">b</item> can be forced.</paragraph> </listitem> <listitem> - <paragraph id="par_id180820161612524298" role="paragraph" xml-lang="en-US"><emph>Polynomial</emph> trend line: regression through equation <item type="literal">y=Σ(a</item><item type="literal">i</item><item type="literal">∙x</item><item type="literal">i</item><item type="literal">)</item>. Intercept <item type="literal">a</item><item type="literal">0</item> can be forced. Degree of polynomial must be given (at least 2).</paragraph> + <paragraph id="par_id180820161612524298" role="paragraph" xml-lang="en-US"><emph>Polynomial</emph> trend line: regression through equation <item type="literal">y=Σ</item><sub><item type="literal">i</item></sub><item type="literal">(a</item><sub><item type="literal">i</item></sub><item type="literal">∙x</item><sup><item type="literal">i</item></sup><item type="literal">)</item>. Intercept <item type="literal">a</item><sub><item type="literal">0</item></sub> can be forced. Degree of polynomial must be given (at least 2).</paragraph> </listitem> <listitem> <paragraph id="par_id180820161612525364" role="paragraph" xml-lang="en-US"><emph>Logarithmic</emph> trend line: regression through equation <item type="literal">y=a∙ln(x)+b</item>.</paragraph> </listitem> <listitem> - <paragraph id="par_id180820161612526680" role="paragraph" xml-lang="en-US"><emph>Exponential</emph> trend line: regression through equation <item type="literal">y=b∙exp(a∙x)</item>.This equation is equivalent to <item type="literal">y=b∙m</item><item type="literal">x</item> with <item type="literal">m=exp(a)</item>. Intercept <item type="literal">b</item> can be forced.</paragraph> + <paragraph id="par_id180820161612526680" role="paragraph" xml-lang="en-US"><emph>Exponential</emph> trend line: regression through equation <item type="literal">y=b∙exp(a∙x)</item>.This equation is equivalent to <item type="literal">y=b∙m</item><sup><item type="literal">x</item></sup> with <item type="literal">m=exp(a)</item>. Intercept <item type="literal">b</item> can be forced.</paragraph> </listitem> <listitem> - <paragraph id="par_id180820161612527230" role="paragraph" xml-lang="en-US"><emph>Power</emph> trend line: regression through equation <item type="literal">y=b∙x</item><item type="literal">a</item>.</paragraph> + <paragraph id="par_id180820161612527230" role="paragraph" xml-lang="en-US"><emph>Power</emph> trend line: regression through equation <item type="literal">y=b∙x</item><sup><item type="literal">a</item></sup>.</paragraph> </listitem> <listitem> <paragraph id="par_id180820161617342768" role="paragraph" xml-lang="en-US"><emph>Moving average</emph> trend line: simple moving average is calculated with the <emph>n</emph> previous y-values, <emph>n</emph> being the period. No equation is available for this trend line.</paragraph> @@ -139,7 +139,7 @@ <paragraph id="par_id1664479" role="paragraph" xml-lang="en-US">Exponential trend line: only positive y-values are considered, except if all y-values are negative: regression will then follow equation <item type="literal">y=-b∙exp(a∙x)</item>.</paragraph> </listitem> <listitem> - <paragraph id="par_id8734702" role="paragraph" xml-lang="en-US">Power trend line: only positive x-values are considered; only positive y-values are considered, except if all y-values are negative: regression will then follow equation<item type="literal"> y=-b∙x</item><item type="literal">a</item>.</paragraph> + <paragraph id="par_id8734702" role="paragraph" xml-lang="en-US">Power trend line: only positive x-values are considered; only positive y-values are considered, except if all y-values are negative: regression will then follow equation<item type="literal"> y=-b∙x</item><sup><item type="literal">a</item></sup>.</paragraph> </listitem></list> <paragraph id="par_id181279" role="paragraph" xml-lang="en-US">You should transform your data accordingly; it is best to work on a copy of the original data and transform the copied data.</paragraph> @@ -162,7 +162,7 @@ <paragraph id="hd_id7874080" role="heading" level="3" xml-lang="en-US">The exponential regression equation</paragraph> <paragraph id="par_id4679097" role="paragraph" xml-lang="en-US"> For exponential trend lines a transformation to a linear model takes place. The optimal curve fitting is related to the linear model and the results are interpreted accordingly.</paragraph> -<paragraph id="par_id9112216" role="paragraph" xml-lang="en-US">The exponential regression follows the equation <item type="literal">y=b*exp(a*x)</item> or <item type="literal">y=b*m</item><sup>x</sup>, which is transformed to <item type="literal">ln(y)=ln(b)+a*x</item> or <item type="literal">ln(y)=ln(b)+ln(m)*x</item> respectively.</paragraph> +<paragraph id="par_id9112216" role="paragraph" xml-lang="en-US">The exponential regression follows the equation <item type="literal">y=b*exp(a*x)</item> or <item type="literal">y=b*m</item><sup><item type="literal">x</item></sup>, which is transformed to <item type="literal">ln(y)=ln(b)+a*x</item> or <item type="literal">ln(y)=ln(b)+ln(m)*x</item> respectively.</paragraph> <paragraph id="par_id4416638" role="code" xml-lang="en-US">a = SLOPE(LN(Data_Y);Data_X) </paragraph> <paragraph id="par_id1039155" role="paragraph" xml-lang="en-US">The variables for the second variation are calculated as follows:</paragraph> <paragraph id="par_id7184057" role="code" xml-lang="en-US">m = EXP(SLOPE(LN(Data_Y);Data_X)) </paragraph> @@ -172,7 +172,7 @@ <paragraph id="par_id6946317" role="paragraph" xml-lang="en-US">Besides m, b and r<sup>2</sup> the array function <emph>LOGEST</emph> provides additional statistics for a regression analysis.</paragraph> <paragraph id="hd_id6349375" role="heading" level="3" xml-lang="en-US">The power regression equation</paragraph> -<paragraph id="par_id1857661" role="paragraph" xml-lang="en-US"> For <emph>power regression</emph> curves a transformation to a linear model takes place. The power regression follows the equation <item type="literal">y=b*x^a</item> , which is transformed to <item type="literal">ln(y)=ln(b)+a*ln(x)</item>.</paragraph> +<paragraph id="par_id1857661" role="paragraph" xml-lang="en-US"> For <emph>power regression</emph> curves a transformation to a linear model takes place. The power regression follows the equation <item type="literal">y=b*x</item><sup><item type="literal">a</item></sup>, which is transformed to <item type="literal">ln(y)=ln(b)+a*ln(x)</item>.</paragraph> <paragraph id="par_id8517105" role="code" xml-lang="en-US">a = SLOPE(LN(Data_Y);LN(Data_X)) </paragraph> <paragraph id="par_id9827265" role="code" xml-lang="en-US">b = EXP(INTERCEPT(LN(Data_Y);LN(Data_X)) </paragraph> <paragraph id="par_id2357249" role="code" xml-lang="en-US">r<sup>2</sup> = RSQ(LN(Data_Y);LN(Data_X)) </paragraph> @@ -181,7 +181,7 @@ <paragraph id="par_id8918729" role="paragraph" xml-lang="en-US">For <emph>polynomial regression</emph> curves a transformation to a linear model takes place.</paragraph> <paragraph id="par_id33875" role="paragraph" xml-lang="en-US">Create a table with the columns x, x<sup>2</sup>, x<sup>3</sup>, … , x<sup>n</sup>, y up to the desired degree n. </paragraph> <paragraph id="par_id8720053" role="paragraph" xml-lang="en-US">Use the formula <item type="literal">=LINEST(Data_Y,Data_X)</item> with the complete range x to x<sup>n</sup> (without headings) as Data_X. </paragraph> -<paragraph id="par_id5068514" role="paragraph" xml-lang="en-US">The first row of the <emph>LINEST</emph> output contains the coefficients of the regression polynomial, with the coefficient of xⁿ at the leftmost position.</paragraph> +<paragraph id="par_id5068514" role="paragraph" xml-lang="en-US">The first row of the <emph>LINEST</emph> output contains the coefficients of the regression polynomial, with the coefficient of x<sup>n</sup> at the leftmost position.</paragraph> <paragraph id="par_id8202154" role="paragraph" xml-lang="en-US">The first element of the third row of the <emph>LINEST</emph> output is the value of r<sup>2</sup>. See the <link href="text/scalc/01/04060107.xhp#Section8"><emph>LINEST</emph></link> function for details on proper use and an explanation of the other output parameters.</paragraph> <section id="relatedtopics"> @@ -194,4 +194,4 @@ </section> </body> -</helpdocument>
\ No newline at end of file +</helpdocument> |