From eb9ec1c794a0d3b8522375c7a87ac3ee999c8a66 Mon Sep 17 00:00:00 2001 From: Christian Lohmaier Date: Tue, 9 May 2017 16:11:32 +0200 Subject: remove obsolete oldref attribute (removes one context line in pot) also remove obsolete l10n attribute (doesn't affect translations/pot) Change-Id: I809866ea7b16cb1cacad9efacb6fdeebae38ea9f --- source/text/scalc/01/04060183.xhp | 260 +++++++++++++++++++------------------- 1 file changed, 130 insertions(+), 130 deletions(-) (limited to 'source/text/scalc/01/04060183.xhp') diff --git a/source/text/scalc/01/04060183.xhp b/source/text/scalc/01/04060183.xhp index 84be734981..73ce3af89d 100644 --- a/source/text/scalc/01/04060183.xhp +++ b/source/text/scalc/01/04060183.xhp @@ -27,95 +27,95 @@ -Statistical Functions Part Three +Statistical Functions Part Three
LARGE function -LARGE -Returns the Rank_c-th largest value in a data set. -Syntax -LARGE(Data; RankC) - +LARGE +Returns the Rank_c-th largest value in a data set. +Syntax +LARGE(Data; RankC) + Data is the cell range of data. - + RankC is the ranking of the value. -Example - +Example + =LARGE(A1:C50;2) gives the second largest value in A1:C50.
SMALL function -SMALL -Returns the Rank_c-th smallest value in a data set. -Syntax -SMALL(Data; RankC) - +SMALL +Returns the Rank_c-th smallest value in a data set. +Syntax +SMALL(Data; RankC) + Data is the cell range of data. - + RankC is the rank of the value. -Example - +Example + =SMALL(A1:C50;2) gives the second smallest value in A1:C50.
CONFIDENCE function -CONFIDENCE -Returns the (1-alpha) confidence interval for a normal distribution. -Syntax -CONFIDENCE(Alpha; StDev; Size) - +CONFIDENCE +Returns the (1-alpha) confidence interval for a normal distribution. +Syntax +CONFIDENCE(Alpha; StDev; Size) + Alpha is the level of the confidence interval. - + StDev is the standard deviation for the total population. - + Size is the size of the total population. -Example - +Example + =CONFIDENCE(0.05;1.5;100) gives 0.29.
CONFIDENCE.T function -CONFIDENCE.T - +CONFIDENCE.T + Returns the (1-alpha) confidence interval for a Student's t distribution. -Syntax -CONFIDENCE.T(Alpha; StDev; Size) - +Syntax +CONFIDENCE.T(Alpha; StDev; Size) + Alpha is the level of the confidence interval. - + StDev is the standard deviation for the total population. - + Size is the size of the total population. -Example - +Example + =CONFIDENCE.T(0.05;1.5;100) gives 0.2976325427.
CONFIDENCE.NORM function -CONFIDENCE.NORM - +CONFIDENCE.NORM + Returns the (1-alpha) confidence interval for a normal distribution. -Syntax -CONFIDENCE.NORM(Alpha; StDev; Size) - +Syntax +CONFIDENCE.NORM(Alpha; StDev; Size) + Alpha is the level of the confidence interval. - + StDev is the standard deviation for the total population. - + Size is the size of the total population. -Example - +Example + =CONFIDENCE.NORM(0.05;1.5;100) gives 0.2939945977.
@@ -123,32 +123,32 @@ coefficient of correlation mw added one entry -CORREL -Returns the correlation coefficient between two data sets. -Syntax -CORREL(Data1; Data2) - +CORREL +Returns the correlation coefficient between two data sets. +Syntax +CORREL(Data1; Data2) + Data1 is the first data set. - + Data2 is the second data set. -Example - +Example + =CORREL(A1:A50;B1:B50) calculates the correlation coefficient as a measure of the linear correlation of the two data sets.
COVAR function -COVAR -Returns the covariance of the product of paired deviations. -Syntax -COVAR(Data1; Data2) - +COVAR +Returns the covariance of the product of paired deviations. +Syntax +COVAR(Data1; Data2) + Data1 is the first data set. - + Data2 is the second data set. -Example - +Example + =COVAR(A1:A30;B1:B30)
@@ -157,59 +157,59 @@ COVARIANCE.P function - COVARIANCE.P - Returns the covariance of the product of paired deviations, for the entire population. - Syntax - COVARIANCE.P(Data1; Data2) - Data1 is the first data set. - Data2 is the second data set. - Example - =COVARIANCE.P(A1:A30;B1:B30) + COVARIANCE.P + Returns the covariance of the product of paired deviations, for the entire population. + Syntax + COVARIANCE.P(Data1; Data2) + Data1 is the first data set. + Data2 is the second data set. + Example + =COVARIANCE.P(A1:A30;B1:B30)
COVARIANCE.S function - COVARIANCE.S - Returns the covariance of the product of paired deviations, for a sample of the population. - Syntax - COVARIANCE.S(Data1; Data2) - Data1 is the first data set. - Data2 is the second data set. - Example - =COVARIANCE.S(A1:A30;B1:B30) + COVARIANCE.S + Returns the covariance of the product of paired deviations, for a sample of the population. + Syntax + COVARIANCE.S(Data1; Data2) + Data1 is the first data set. + Data2 is the second data set. + Example + =COVARIANCE.S(A1:A30;B1:B30)
CRITBINOM function -CRITBINOM -Returns the smallest value for which the cumulative binomial distribution is greater than or equal to a criterion value. -Syntax -CRITBINOM(Trials; SP; Alpha) - +CRITBINOM +Returns the smallest value for which the cumulative binomial distribution is greater than or equal to a criterion value. +Syntax +CRITBINOM(Trials; SP; Alpha) + Trials is the total number of trials. - + SP is the probability of success for one trial. - + Alpha is the threshold probability to be reached or exceeded. -Example - +Example + =CRITBINOM(100;0.5;0.1) yields 44.
KURT function -KURT -Returns the kurtosis of a data set (at least 4 values required). -Syntax -KURT(Number1; Number2; ...Number30) - +KURT +Returns the kurtosis of a data set (at least 4 values required). +Syntax +KURT(Number1; Number2; ...Number30) + Number1,Number2,...Number30 are numeric arguments or ranges representing a random sample of distribution. -Example - +Example + =KURT(A1;A2;A3;A4;A5;A6)
@@ -218,18 +218,18 @@ inverse of lognormal distribution
mw added one entry -LOGINV -Returns the inverse of the lognormal distribution. -Syntax -LOGINV(Number; Mean; StDev) - +LOGINV +Returns the inverse of the lognormal distribution. +Syntax +LOGINV(Number; Mean; StDev) + Number is the probability value for which the inverse standard logarithmic distribution is to be calculated. - + Mean is the arithmetic mean of the standard logarithmic distribution. - + StDev is the standard deviation of the standard logarithmic distribution. -Example - +Example + =LOGINV(0.05;0;1) returns 0.1930408167.
@@ -237,19 +237,19 @@ inverse of lognormal distribution mw added one entry -LOGNORM.INV -Returns the inverse of the lognormal distribution. +LOGNORM.INV +Returns the inverse of the lognormal distribution. This function is identical to LOGINV and was introduced for interoperability with other office suites. -Syntax -LOGNORM.INV(Number; Mean; StDev) - +Syntax +LOGNORM.INV(Number; Mean; StDev) + Number (required) is the probability value for which the inverse standard logarithmic distribution is to be calculated. - + Mean (required) is the arithmetic mean of the standard logarithmic distribution. - + StDev (required) is the standard deviation of the standard logarithmic distribution. -Example - +Example + =LOGNORM.INV(0.05;0;1) returns 0.1930408167.
@@ -257,20 +257,20 @@ lognormal distribution mw added one entry -LOGNORMDIST -Returns the values of a lognormal distribution. -Syntax -LOGNORMDIST(Number; Mean; StDev; Cumulative) - +LOGNORMDIST +Returns the values of a lognormal distribution. +Syntax +LOGNORMDIST(Number; Mean; StDev; Cumulative) + Number is the probability value for which the standard logarithmic distribution is to be calculated. - + Mean (optional) is the mean value of the standard logarithmic distribution. - + StDev (optional) is the standard deviation of the standard logarithmic distribution. - + Cumulative (optional) = 0 calculates the density function, Cumulative = 1 calculates the distribution. -Example - +Example + =LOGNORMDIST(0.1;0;1) returns 0.01.
@@ -278,20 +278,20 @@ lognormal distribution mw added one entry -LOGNORM.DIST -Returns the values of a lognormal distribution. -Syntax -LOGNORM.DIST(Number; Mean; StDev; Cumulative) - +LOGNORM.DIST +Returns the values of a lognormal distribution. +Syntax +LOGNORM.DIST(Number; Mean; StDev; Cumulative) + Number (required) is the probability value for which the standard logarithmic distribution is to be calculated. - + Mean (required) is the mean value of the standard logarithmic distribution. - + StDev (required) is the standard deviation of the standard logarithmic distribution. - + Cumulative (required) = 0 calculates the density function, Cumulative = 1 calculates the distribution. -Example - +Example + =LOGNORM.DIST(0.1;0;1;1) returns 0.0106510993.
-- cgit