diff options
author | Christian Lohmaier <lohmaier+LibreOffice@googlemail.com> | 2017-03-16 14:38:21 +0100 |
---|---|---|
committer | Christian Lohmaier <lohmaier+LibreOffice@googlemail.com> | 2017-03-16 14:58:48 +0100 |
commit | fea957b43e56e72a50ab5c6e0d1a065b719ab84a (patch) | |
tree | 749a2fd7b03e2a2ca45c4f09736d87bafefc7b38 /source/hu | |
parent | 66c300f4f5ba33a8243cd54ee077e7c79febec70 (diff) |
update translations for 5.3.2 rc1
and force-fix errors using pocheck
Change-Id: Id1d77adf5a89a0ce485273d3865ccf6771becf51
Diffstat (limited to 'source/hu')
-rw-r--r-- | source/hu/helpcontent2/source/text/smath/00.po | 26 | ||||
-rw-r--r-- | source/hu/helpcontent2/source/text/smath/01.po | 872 |
2 files changed, 449 insertions, 449 deletions
diff --git a/source/hu/helpcontent2/source/text/smath/00.po b/source/hu/helpcontent2/source/text/smath/00.po index ecfbe7ea0cc..6d226c5b4cc 100644 --- a/source/hu/helpcontent2/source/text/smath/00.po +++ b/source/hu/helpcontent2/source/text/smath/00.po @@ -4,7 +4,7 @@ msgstr "" "Project-Id-Version: PACKAGE VERSION\n" "Report-Msgid-Bugs-To: https://bugs.libreoffice.org/enter_bug.cgi?product=LibreOffice&bug_status=UNCONFIRMED&component=UI\n" "POT-Creation-Date: 2016-12-27 21:50+0100\n" -"PO-Revision-Date: 2016-07-24 11:38+0000\n" +"PO-Revision-Date: 2017-03-15 07:49+0000\n" "Last-Translator: Gábor Kelemen <kelemeng@gnome.hu>\n" "Language-Team: LANGUAGE <LL@li.org>\n" "Language: hu\n" @@ -13,8 +13,8 @@ msgstr "" "Content-Transfer-Encoding: 8bit\n" "Plural-Forms: nplurals=2; plural=(n != 1);\n" "X-Accelerator-Marker: ~\n" -"X-Generator: LibreOffice\n" -"X-POOTLE-MTIME: 1469360328.000000\n" +"X-Generator: Pootle 2.8\n" +"X-POOTLE-MTIME: 1489564160.000000\n" #: 00000004.xhp msgctxt "" @@ -313,7 +313,7 @@ msgctxt "" "par_id3154106\n" "help.text" msgid "Choose <emph>View - Elements</emph>; then on the Elements pane select <emph>Unary/Binary Operators</emph> from the listbox." -msgstr "" +msgstr "Válassza a <emph>Nézet - Elemek</emph> menüparancsot, majd az Elemek panelen válassza az <emph>Egy- és kétoperandusú operátorok</emph> elemet a listából." #: 00000004.xhp msgctxt "" @@ -330,7 +330,7 @@ msgctxt "" "par_id3154473\n" "help.text" msgid "Choose <emph>View - Elements</emph>; then on the Elements pane select <emph>Relations</emph> from the listbox." -msgstr "" +msgstr "Válassza a <emph>Nézet - Elemek</emph> menüparancsot, majd az Elemek panelen válassza a <emph>Relációk</emph> elemet a listából." #: 00000004.xhp msgctxt "" @@ -347,7 +347,7 @@ msgctxt "" "par_id3149342\n" "help.text" msgid "Choose <emph>View - Elements</emph>; then on the Elements pane select <emph>Operators</emph> from the listbox." -msgstr "" +msgstr "Válassza a <emph>Nézet - Elemek</emph> menüparancsot, majd az Elemek panelen válassza az <emph>Operátorok</emph> elemet a listából." #: 00000004.xhp msgctxt "" @@ -364,7 +364,7 @@ msgctxt "" "par_id3143275\n" "help.text" msgid "Choose <emph>View - Elements</emph>; then on the Elements pane select <emph>Functions</emph> from the listbox." -msgstr "" +msgstr "Válassza a <emph>Nézet - Elemek</emph> menüparancsot, majd az Elemek panelen válassza a <emph>Függvények</emph> elemet a listából." #: 00000004.xhp msgctxt "" @@ -381,7 +381,7 @@ msgctxt "" "par_id3147220\n" "help.text" msgid "Choose <emph>View - Elements</emph>; then on the Elements pane select <emph>Brackets</emph> from the listbox." -msgstr "" +msgstr "Válassza a <emph>Nézet - Elemek</emph> menüparancsot, majd az Elemek panelen válassza a <emph>Zárójelek</emph> elemet a listából." #: 00000004.xhp msgctxt "" @@ -398,7 +398,7 @@ msgctxt "" "par_id3147126\n" "help.text" msgid "Choose <emph>View - Elements</emph>; then on the Elements pane select <emph>Attributes</emph> from the listbox." -msgstr "" +msgstr "Válassza a <emph>Nézet - Elemek</emph> menüparancsot, majd az Elemek panelen válassza az <emph>Attribútumok</emph> elemet a listából." #: 00000004.xhp msgctxt "" @@ -415,7 +415,7 @@ msgctxt "" "par_id3150581\n" "help.text" msgid "Choose <emph>View - Elements</emph>; then on the Elements pane select <emph>Formats</emph> from the listbox." -msgstr "" +msgstr "Válassza a <emph>Nézet - Elemek</emph> menüparancsot, majd az Elemek panelen válassza a <emph>Formátumok</emph> elemet a listából." #: 00000004.xhp msgctxt "" @@ -432,7 +432,7 @@ msgctxt "" "par_id3147313\n" "help.text" msgid "Choose <emph>View - Elements</emph>; then on the Elements pane select <emph>Set Operations</emph> from the listbox." -msgstr "" +msgstr "Válassza a <emph>Nézet - Elemek</emph> menüparancsot, majd az Elemek panelen válassza a <emph>Halmazműveletek</emph> elemet a listából." #: 00000004.xhp msgctxt "" @@ -565,7 +565,7 @@ msgctxt "" "90\n" "help.text" msgid "Open the context menu in the Commands window - choose <emph>Others</emph>" -msgstr "A Parancsok ablakban nyissa meg a helyi menüt, majd válassza a <emph>Egyéb</emph> lehetőséget." +msgstr "A Parancsok ablakban nyissa meg a helyi menüt, majd válassza az <emph>Egyebek</emph> lehetőséget." #: 00000004.xhp msgctxt "" @@ -574,7 +574,7 @@ msgctxt "" "91\n" "help.text" msgid "Choose <emph>View - Elements</emph>; then on the Elements pane select <emph>Others</emph> from the listbox." -msgstr "" +msgstr "Válassza a <emph>Nézet - Elemek</emph> menüparancsot, majd az Elemek panelen válassza az <emph>Egyebek</emph> elemet a listából." #: 00000004.xhp msgctxt "" diff --git a/source/hu/helpcontent2/source/text/smath/01.po b/source/hu/helpcontent2/source/text/smath/01.po index 793e669db6f..c089377eaba 100644 --- a/source/hu/helpcontent2/source/text/smath/01.po +++ b/source/hu/helpcontent2/source/text/smath/01.po @@ -4,7 +4,7 @@ msgstr "" "Project-Id-Version: \n" "Report-Msgid-Bugs-To: https://bugs.libreoffice.org/enter_bug.cgi?product=LibreOffice&bug_status=UNCONFIRMED&component=UI\n" "POT-Creation-Date: 2016-12-27 21:50+0100\n" -"PO-Revision-Date: 2017-01-10 10:48+0000\n" +"PO-Revision-Date: 2017-03-16 09:18+0000\n" "Last-Translator: Gábor Kelemen <kelemeng@gnome.hu>\n" "Language-Team: Hungarian <gnome-hu-list at gnome dot org>\n" "Language: hu\n" @@ -14,7 +14,7 @@ msgstr "" "Plural-Forms: nplurals=2; plural=(n != 1);\n" "X-Accelerator-Marker: ~\n" "X-Generator: Pootle 2.8\n" -"X-POOTLE-MTIME: 1484045321.000000\n" +"X-POOTLE-MTIME: 1489655894.000000\n" #: 02080000.xhp msgctxt "" @@ -57,7 +57,7 @@ msgctxt "" "3\n" "help.text" msgid "\"Markers\" are placeholders. They take the form of <?> in the <emph>Commands</emph> window." -msgstr "A \"Jelölések\" helykitöltők. A <emph>Parancsok</emph> ablakban az alakjuk <?>." +msgstr "A „Jelölések” helykitöltők. A <emph>Parancsok</emph> ablakban az alakjuk <?>." #: 02090000.xhp msgctxt "" @@ -100,7 +100,7 @@ msgctxt "" "3\n" "help.text" msgid "\"Markers\" are placeholders. They take the form of <?> in the <emph>Commands</emph> window." -msgstr "A \"Jelölések\" helykitöltők. A <emph>Parancsok</emph> ablakban az alakjuk <?>." +msgstr "A „Jelölések” helykitöltők. A <emph>Parancsok</emph> ablakban az alakjuk <?>." #: 02100000.xhp msgctxt "" @@ -466,7 +466,7 @@ msgctxt "" "par_idN10085\n" "help.text" msgid "<image id=\"img_id3156399\" src=\"res/helpimg/starmath/un21201.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3156399\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3156399\" src=\"res/helpimg/starmath/un21201.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3156399\">Icon</alt></image>" #: 03090100.xhp msgctxt "" @@ -492,7 +492,7 @@ msgctxt "" "par_idN100C1\n" "help.text" msgid "<image id=\"img_id3148776\" src=\"res/helpimg/starmath/un21202.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3148776\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148776\" src=\"res/helpimg/starmath/un21202.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3148776\">Icon</alt></image>" #: 03090100.xhp msgctxt "" @@ -518,7 +518,7 @@ msgctxt "" "par_idN100FD\n" "help.text" msgid "<image id=\"img_id3150757\" src=\"res/helpimg/starmath/un21203.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150757\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3150757\" src=\"res/helpimg/starmath/un21203.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150757\">Icon</alt></image>" #: 03090100.xhp msgctxt "" @@ -544,7 +544,7 @@ msgctxt "" "par_idN10139\n" "help.text" msgid "<image id=\"img_id3145410\" src=\"res/helpimg/starmath/un21204.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3145410\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3145410\" src=\"res/helpimg/starmath/un21204.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3145410\">Icon</alt></image>" #: 03090100.xhp msgctxt "" @@ -570,7 +570,7 @@ msgctxt "" "par_idN10175\n" "help.text" msgid "<image id=\"img_id3151098\" src=\"res/helpimg/starmath/un21205.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3151098\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3151098\" src=\"res/helpimg/starmath/un21205.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3151098\">Icon</alt></image>" #: 03090100.xhp msgctxt "" @@ -596,7 +596,7 @@ msgctxt "" "par_idN101B0\n" "help.text" msgid "<image id=\"img_id3155898\" src=\"res/helpimg/starmath/un21206.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155898\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155898\" src=\"res/helpimg/starmath/un21206.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155898\">Icon</alt></image>" #: 03090100.xhp msgctxt "" @@ -622,7 +622,7 @@ msgctxt "" "par_idN101E9\n" "help.text" msgid "<image id=\"img_id3149308\" src=\"res/helpimg/starmath/un21207.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149308\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149308\" src=\"res/helpimg/starmath/un21207.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149308\">Icon</alt></image>" #: 03090100.xhp msgctxt "" @@ -640,7 +640,7 @@ msgctxt "" "20\n" "help.text" msgid "<ahelp hid=\"HID_SMA_XTIMESY\">Inserts an 'x' <emph>multiplication</emph> with two placeholders.</ahelp> You can also type <emph><?>times<?></emph> in the <emph>Commands</emph> window." -msgstr "<ahelp hid=\"HID_SMA_XTIMESY\">Beszúr egy \"×\" <emph>szorzást</emph>, két helykitöltővel.</ahelp> A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph><?>times<?></emph>." +msgstr "<ahelp hid=\"HID_SMA_XTIMESY\">Beszúr egy „×” <emph>szorzást</emph>, két helykitöltővel.</ahelp> A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph><?>times<?></emph>." #: 03090100.xhp msgctxt "" @@ -648,7 +648,7 @@ msgctxt "" "par_idN10226\n" "help.text" msgid "<image id=\"img_id3148982\" src=\"res/helpimg/starmath/un21208.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3148982\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148982\" src=\"res/helpimg/starmath/un21208.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3148982\">Icon</alt></image>" #: 03090100.xhp msgctxt "" @@ -674,7 +674,7 @@ msgctxt "" "par_idN1025F\n" "help.text" msgid "<image id=\"img_id3155140\" src=\"res/helpimg/starmath/un21209.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155140\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155140\" src=\"res/helpimg/starmath/un21209.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155140\">Icon</alt></image>" #: 03090100.xhp msgctxt "" @@ -700,7 +700,7 @@ msgctxt "" "par_idN10298\n" "help.text" msgid "<image id=\"img_id3149168\" src=\"res/helpimg/starmath/un21210.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149168\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149168\" src=\"res/helpimg/starmath/un21210.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149168\">Icon</alt></image>" #: 03090100.xhp msgctxt "" @@ -726,7 +726,7 @@ msgctxt "" "par_idN102D1\n" "help.text" msgid "<image id=\"img_id3148765\" src=\"res/helpimg/starmath/un21211.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3148765\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148765\" src=\"res/helpimg/starmath/un21211.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3148765\">Icon</alt></image>" #: 03090100.xhp msgctxt "" @@ -752,7 +752,7 @@ msgctxt "" "par_idN1030A\n" "help.text" msgid "<image id=\"img_id3147418\" src=\"res/helpimg/starmath/un21212.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3147418\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147418\" src=\"res/helpimg/starmath/un21212.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3147418\">Icon</alt></image>" #: 03090100.xhp msgctxt "" @@ -778,7 +778,7 @@ msgctxt "" "par_idN10343\n" "help.text" msgid "<image id=\"img_id3149566\" src=\"res/helpimg/starmath/un21213.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3149566\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149566\" src=\"res/helpimg/starmath/un21213.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3149566\">Icon</alt></image>" #: 03090100.xhp msgctxt "" @@ -804,7 +804,7 @@ msgctxt "" "par_idN10383\n" "help.text" msgid "<image id=\"img_id3147116\" src=\"res/helpimg/starmath/un21214.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3147116\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147116\" src=\"res/helpimg/starmath/un21214.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3147116\">Icon</alt></image>" #: 03090100.xhp msgctxt "" @@ -830,7 +830,7 @@ msgctxt "" "par_idN103C3\n" "help.text" msgid "<image id=\"img_id3148440\" src=\"res/helpimg/starmath/un21215.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3148440\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148440\" src=\"res/helpimg/starmath/un21215.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3148440\">Icon</alt></image>" #: 03090100.xhp msgctxt "" @@ -856,7 +856,7 @@ msgctxt "" "par_idN10403\n" "help.text" msgid "<image id=\"img_id3150173\" src=\"res/helpimg/starmath/un21221.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150173\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3150173\" src=\"res/helpimg/starmath/un21221.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150173\">Icon</alt></image>" #: 03090100.xhp msgctxt "" @@ -1033,7 +1033,7 @@ msgctxt "" "par_idN10086\n" "help.text" msgid "<image id=\"img_id3153573\" src=\"res/helpimg/starmath/bi21301.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3153573\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153573\" src=\"res/helpimg/starmath/bi21301.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3153573\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1059,7 +1059,7 @@ msgctxt "" "par_idN100BF\n" "help.text" msgid "<image id=\"img_id3147523\" src=\"res/helpimg/starmath/bi21302.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3147523\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147523\" src=\"res/helpimg/starmath/bi21302.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3147523\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1077,7 +1077,7 @@ msgctxt "" "53\n" "help.text" msgid "<ahelp hid=\"HID_SMA_XNEQY\">The <emph>neq</emph> icon or command inserts an <emph>inequality</emph> with two placeholders.</ahelp> You can also type <emph><?> neq <?></emph> in the <emph>Commands</emph> window." -msgstr "<ahelp hid=\"HID_SMA_XNEQY\">A \"nem egyenlő\" ikon, illetve a <emph>neq</emph> parancs egy <emph>nem egyenlő</emph> jelet szúr be két helykitöltővel.</ahelp> A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph><?> neq <?></emph>." +msgstr "<ahelp hid=\"HID_SMA_XNEQY\">A „nem egyenlő” ikon, illetve a <emph>neq</emph> parancs egy <emph>nem egyenlő</emph> jelet szúr be két helykitöltővel.</ahelp> A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph><?> neq <?></emph>." #: 03090200.xhp msgctxt "" @@ -1085,7 +1085,7 @@ msgctxt "" "par_idN10101\n" "help.text" msgid "<image id=\"img_id3154196\" src=\"res/helpimg/starmath/bi21303.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3154196\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154196\" src=\"res/helpimg/starmath/bi21303.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3154196\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1111,7 +1111,7 @@ msgctxt "" "par_idN10140\n" "help.text" msgid "<image id=\"img_id3154835\" src=\"res/helpimg/starmath/bi21304.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3154835\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154835\" src=\"res/helpimg/starmath/bi21304.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3154835\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1137,7 +1137,7 @@ msgctxt "" "par_idN10182\n" "help.text" msgid "<image id=\"img_id3147321\" src=\"res/helpimg/starmath/bi21322.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3147321\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147321\" src=\"res/helpimg/starmath/bi21322.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3147321\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1163,7 +1163,7 @@ msgctxt "" "par_idN101BF\n" "help.text" msgid "<image id=\"img_id3151030\" src=\"res/helpimg/starmath/bi21323.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3151030\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3151030\" src=\"res/helpimg/starmath/bi21323.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3151030\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1189,7 +1189,7 @@ msgctxt "" "par_idN101FC\n" "help.text" msgid "<image id=\"img_id3155133\" src=\"res/helpimg/starmath/bi21305.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3155133\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155133\" src=\"res/helpimg/starmath/bi21305.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3155133\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1215,7 +1215,7 @@ msgctxt "" "par_idN1023B\n" "help.text" msgid "<image id=\"img_id3147468\" src=\"res/helpimg/starmath/bi21306.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3147468\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147468\" src=\"res/helpimg/starmath/bi21306.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3147468\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1241,7 +1241,7 @@ msgctxt "" "par_idN10279\n" "help.text" msgid "<image id=\"img_id3155982\" src=\"res/helpimg/starmath/bi21307.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3155982\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155982\" src=\"res/helpimg/starmath/bi21307.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3155982\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1267,7 +1267,7 @@ msgctxt "" "par_idN102B5\n" "help.text" msgid "<image id=\"img_id3155773\" src=\"res/helpimg/starmath/bi21308.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3155773\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155773\" src=\"res/helpimg/starmath/bi21308.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3155773\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1293,7 +1293,7 @@ msgctxt "" "par_idN102F3\n" "help.text" msgid "<image id=\"img_id3148442\" src=\"res/helpimg/starmath/bi21309.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148442\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148442\" src=\"res/helpimg/starmath/bi21309.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148442\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1319,7 +1319,7 @@ msgctxt "" "par_idN10331\n" "help.text" msgid "<image id=\"img_id3153299\" src=\"res/helpimg/starmath/bi21310.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3153299\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153299\" src=\"res/helpimg/starmath/bi21310.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3153299\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1345,7 +1345,7 @@ msgctxt "" "par_idN1036F\n" "help.text" msgid "<image id=\"img_id3153976\" src=\"res/helpimg/starmath/bi21311.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3153976\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153976\" src=\"res/helpimg/starmath/bi21311.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3153976\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1371,7 +1371,7 @@ msgctxt "" "par_idN103AD\n" "help.text" msgid "<image id=\"img_id3151195\" src=\"res/helpimg/starmath/bi21312.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3151195\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3151195\" src=\"res/helpimg/starmath/bi21312.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3151195\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1397,7 +1397,7 @@ msgctxt "" "par_idN103EB\n" "help.text" msgid "<image id=\"img_id3150103\" src=\"res/helpimg/starmath/bi21313.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3150103\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3150103\" src=\"res/helpimg/starmath/bi21313.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3150103\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1423,7 +1423,7 @@ msgctxt "" "par_idN1042C\n" "help.text" msgid "<image id=\"img_id3151228\" src=\"res/helpimg/starmath/bi21314.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3151228\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3151228\" src=\"res/helpimg/starmath/bi21314.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3151228\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1449,7 +1449,7 @@ msgctxt "" "par_idN1046D\n" "help.text" msgid "<image id=\"img_id3151003\" src=\"res/helpimg/starmath/bi21315.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3151003\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3151003\" src=\"res/helpimg/starmath/bi21315.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3151003\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1475,7 +1475,7 @@ msgctxt "" "par_idN104AB\n" "help.text" msgid "<image id=\"img_id3149631\" src=\"res/helpimg/starmath/bi21316.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3149631\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149631\" src=\"res/helpimg/starmath/bi21316.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3149631\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1501,7 +1501,7 @@ msgctxt "" "par_idN104E7\n" "help.text" msgid "<image id=\"img_id3149969\" src=\"res/helpimg/starmath/bi21324.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3149969\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149969\" src=\"res/helpimg/starmath/bi21324.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3149969\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1527,7 +1527,7 @@ msgctxt "" "par_idN10525\n" "help.text" msgid "<image id=\"img_id3149516\" src=\"res/helpimg/starmath/bi21325.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3149516\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149516\" src=\"res/helpimg/starmath/bi21325.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3149516\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1553,7 +1553,7 @@ msgctxt "" "par_idN10563\n" "help.text" msgid "<image id=\"img_id3148697\" src=\"res/helpimg/starmath/bi21326.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148697\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148697\" src=\"res/helpimg/starmath/bi21326.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148697\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1579,7 +1579,7 @@ msgctxt "" "par_idN10564\n" "help.text" msgid "<image id=\"img_id3148698\" src=\"res/helpimg/starmath/bi21327.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148698\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148698\" src=\"res/helpimg/starmath/bi21327.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148698\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1605,7 +1605,7 @@ msgctxt "" "par_idN10565\n" "help.text" msgid "<image id=\"img_id3148699\" src=\"res/helpimg/starmath/bi21329.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148699\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148699\" src=\"res/helpimg/starmath/bi21329.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148699\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1631,7 +1631,7 @@ msgctxt "" "par_idN10566\n" "help.text" msgid "<image id=\"img_id3148700\" src=\"res/helpimg/starmath/bi21328.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148700\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148700\" src=\"res/helpimg/starmath/bi21328.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148700\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1657,7 +1657,7 @@ msgctxt "" "par_idN10567\n" "help.text" msgid "<image id=\"img_id3148701\" src=\"res/helpimg/starmath/bi21330.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148701\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148701\" src=\"res/helpimg/starmath/bi21330.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148701\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1683,7 +1683,7 @@ msgctxt "" "par_idN10568\n" "help.text" msgid "<image id=\"img_id3148702\" src=\"res/helpimg/starmath/bi21331.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148702\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148702\" src=\"res/helpimg/starmath/bi21331.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148702\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1709,7 +1709,7 @@ msgctxt "" "par_idN10569\n" "help.text" msgid "<image id=\"img_id3148703\" src=\"res/helpimg/starmath/bi21332.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148703\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148703\" src=\"res/helpimg/starmath/bi21332.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148703\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1735,7 +1735,7 @@ msgctxt "" "par_idN10570\n" "help.text" msgid "<image id=\"img_id3148704\" src=\"res/helpimg/starmath/bi21333.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148704\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148704\" src=\"res/helpimg/starmath/bi21333.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148704\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1761,7 +1761,7 @@ msgctxt "" "par_idN10571\n" "help.text" msgid "<image id=\"img_id3148705\" src=\"res/helpimg/starmath/bi21334.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148705\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148705\" src=\"res/helpimg/starmath/bi21334.png\" width=\"0.847cm\" height=\"0.847cm\"><alt id=\"alt_id3148705\">Icon</alt></image>" #: 03090200.xhp msgctxt "" @@ -1833,7 +1833,7 @@ msgctxt "" "52\n" "help.text" msgid "When entering information manually in the <emph>Commands</emph> window, note that a number of operators require spaces for the correct structure. This is especially true if you are working with values instead of placeholders. For example, for the \"is considerably greater\" relation, type either <emph>10 gg 1</emph> or <emph>a gg b</emph>." -msgstr "A <emph>Parancsok</emph> ablak használata során tartsa szem előtt, hogy bizonyos operátoroknál szükség van szóközökre a helyes szerkezet eléréséhez. Ez különösen akkor igaz, ha helykitöltők helyett konkrét értékekkel dolgozik. Például a \"lényegesen nagyobb\" reláció esetében használja a <emph>10 gg 1</emph> vagy az <emph>a gg b</emph> formát." +msgstr "A <emph>Parancsok</emph> ablak használata során tartsa szem előtt, hogy bizonyos operátoroknál szükség van szóközökre a helyes szerkezet eléréséhez. Ez különösen akkor igaz, ha helykitöltők helyett konkrét értékekkel dolgozik. Például a „lényegesen nagyobb” reláció esetében használja a <emph>10 gg 1</emph> vagy az <emph>a gg b</emph> formát." #: 03090300.xhp msgctxt "" @@ -1866,7 +1866,7 @@ msgctxt "" "par_id3149755\n" "help.text" msgid "<ahelp hid=\"smath/ui/floatingelements/RID_OPERATORS_CAT\">You can choose among various operators to structure your <emph>$[officename] Math</emph> formula. All available operators appear in the lower part of the Elements pane.</ahelp> They are also listed in the <link href=\"text/shared/00/00000001.xhp#kontextmenue\" name=\"context menu\">context menu</link> of the <emph>Commands</emph> window. All operators not contained in the Elements pane or in the context menu must be typed manually in the <emph>Commands</emph> window." -msgstr "" +msgstr "<ahelp hid=\"smath/ui/floatingelements/RID_OPERATORS_CAT\">A <emph>$[officename] Math</emph>-képletek összeállítása során számos operátor közül választhat A rendelkezésre álló operátorok listáját megtalálja a Képletelemek panel alsó részében.</ahelp> A lista a <emph>Parancsok</emph> ablak <link href=\"text/shared/00/00000001.xhp#kontextmenue\" name=\"helyi menü\">helyi menüjében</link> is megtalálható. A Képletelemek panelen és a helyi menüben fel nem sorolt parancsokat kézzel kell beírni a <emph>Parancsok</emph> ablakba." #: 03090300.xhp msgctxt "" @@ -1874,7 +1874,7 @@ msgctxt "" "par_id3153576\n" "help.text" msgid "The following is a list of the available operators. An icon next to the operator name indicates that it can be accessed through the Elements pane (choose <emph>View - Elements</emph>) or through the context menu of the <emph>Commands</emph> window." -msgstr "" +msgstr "Az alábbi lista a rendelkezésre álló operátorokat tartalmazza. Az operátor neve melletti ikon azt jelzi, hogy az adott operátor a Képletelemek panelen (válassza a <emph>Nézet - Képletelemek</emph> menüparancsot) vagy a <emph>Parancsok</emph> ablak helyi menüjéből érhető el." #: 03090300.xhp msgctxt "" @@ -1891,7 +1891,7 @@ msgctxt "" "par_idN10088\n" "help.text" msgid "<image id=\"img_id3152944\" src=\"res/helpimg/starmath/fo21601.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3152944\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3152944\" src=\"res/helpimg/starmath/fo21601.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3152944\">Icon</alt></image>" #: 03090300.xhp msgctxt "" @@ -1917,7 +1917,7 @@ msgctxt "" "par_idN100C4\n" "help.text" msgid "<image id=\"img_id3150970\" src=\"res/helpimg/starmath/fo21602.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150970\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3150970\" src=\"res/helpimg/starmath/fo21602.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150970\">Icon</alt></image>" #: 03090300.xhp msgctxt "" @@ -1943,7 +1943,7 @@ msgctxt "" "par_idN10102\n" "help.text" msgid "<image id=\"img_id3146932\" src=\"res/helpimg/starmath/fo21603.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3146932\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3146932\" src=\"res/helpimg/starmath/fo21603.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3146932\">Icon</alt></image>" #: 03090300.xhp msgctxt "" @@ -1969,7 +1969,7 @@ msgctxt "" "par_idN1013E\n" "help.text" msgid "<image id=\"img_id3149814\" src=\"res/helpimg/starmath/fo21604.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3149814\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149814\" src=\"res/helpimg/starmath/fo21604.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3149814\">Icon</alt></image>" #: 03090300.xhp msgctxt "" @@ -1995,7 +1995,7 @@ msgctxt "" "par_idN1017A\n" "help.text" msgid "<image id=\"img_id3152766\" src=\"res/helpimg/starmath/fo21613.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3152766\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3152766\" src=\"res/helpimg/starmath/fo21613.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3152766\">Icon</alt></image>" #: 03090300.xhp msgctxt "" @@ -2021,7 +2021,7 @@ msgctxt "" "par_idN101B8\n" "help.text" msgid "<image id=\"img_id3151023\" src=\"res/helpimg/starmath/fo21605.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3151023\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3151023\" src=\"res/helpimg/starmath/fo21605.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3151023\">Icon</alt></image>" #: 03090300.xhp msgctxt "" @@ -2047,7 +2047,7 @@ msgctxt "" "par_idN101F4\n" "help.text" msgid "<image id=\"img_id3145772\" src=\"res/helpimg/starmath/fo21606.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3145772\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3145772\" src=\"res/helpimg/starmath/fo21606.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3145772\">Icon</alt></image>" #: 03090300.xhp msgctxt "" @@ -2073,7 +2073,7 @@ msgctxt "" "par_idN10230\n" "help.text" msgid "<image id=\"img_id3147409\" src=\"res/helpimg/starmath/fo21607.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3147409\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147409\" src=\"res/helpimg/starmath/fo21607.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3147409\">Icon</alt></image>" #: 03090300.xhp msgctxt "" @@ -2099,7 +2099,7 @@ msgctxt "" "par_idN1026C\n" "help.text" msgid "<image id=\"img_id3149562\" src=\"res/helpimg/starmath/fo21614.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149562\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149562\" src=\"res/helpimg/starmath/fo21614.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149562\">Icon</alt></image>" #: 03090300.xhp msgctxt "" @@ -2125,7 +2125,7 @@ msgctxt "" "par_idN102AA\n" "help.text" msgid "<image id=\"img_id3147109\" src=\"res/helpimg/starmath/fo21609.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3147109\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147109\" src=\"res/helpimg/starmath/fo21609.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3147109\">Icon</alt></image>" #: 03090300.xhp msgctxt "" @@ -2151,7 +2151,7 @@ msgctxt "" "par_idN102E6\n" "help.text" msgid "<image id=\"img_id3147055\" src=\"res/helpimg/starmath/fo21610.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3147055\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147055\" src=\"res/helpimg/starmath/fo21610.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3147055\">Icon</alt></image>" #: 03090300.xhp msgctxt "" @@ -2177,7 +2177,7 @@ msgctxt "" "par_idN10322\n" "help.text" msgid "<image id=\"img_id3154578\" src=\"res/helpimg/starmath/fo21611.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3154578\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154578\" src=\"res/helpimg/starmath/fo21611.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3154578\">Icon</alt></image>" #: 03090300.xhp msgctxt "" @@ -2203,7 +2203,7 @@ msgctxt "" "par_idN1035E\n" "help.text" msgid "<image id=\"img_id3149332\" src=\"res/helpimg/starmath/fo21615.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149332\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149332\" src=\"res/helpimg/starmath/fo21615.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149332\">Icon</alt></image>" #: 03090300.xhp msgctxt "" @@ -2257,7 +2257,7 @@ msgctxt "" "45\n" "help.text" msgid "By typing <emph>oper</emph> in the Commands window, you can insert <emph>user-defined operators</emph> in $[officename] Math, a feature useful for incorporating special characters into a formula. An example is <emph>oper %theta x</emph>. Using the <emph>oper</emph> command, you can also insert characters not in the default $[officename] character set. <emph>oper</emph> can also be used in connection with limits; for example, <emph>oper %union from {i=1} to n x_{i}</emph>. In this example, the union symbol is indicated by the name <emph>union</emph>. However, this is not one of the predefined symbols. To define it, choose <emph>Tools - Symbols</emph>. select <emph>Special</emph> as the symbol set in the dialog that appears, then click the <emph>Edit</emph> button. In the next dialog, select <emph>Special</emph> as the symbol set again. Enter a meaningful name in the <emph>Symbol</emph> text box, for example, \"union\" and then click the union symbol in the set of symbols. Click <emph>Add</emph> and then <emph>OK</emph>. Click <emph>Close</emph> to close the <emph>Symbols</emph> dialog. You are now finished and can type the union symbol in the Commands window, by entering <emph>oper %union</emph>." -msgstr "A <emph>felhasználó által definiált operátorok</emph> beírásához írja be a Parancsok ablakba az <emph>oper</emph> parancsot. A funkció különösen akkor hasznos, ha különleges karaktereket szeretne a képletbe illeszteni. Például: <emph>oper %theta x</emph>. Az <emph>oper</emph> paranccsal a $[officename] alapértelmezett karakterkészletében nem szereplő karaktereket is beszúrhat a képletbe. Az <emph>oper</emph> a határokkal együtt is alkalmazható; például <emph>oper %union from {i=1} to n x_{i}</emph>. Ebben a példában az unió szimbólumot a <emph>union</emph> jelöli. Azonban ez a jel nem tartozik az előre meghatározott szimbólumok közé. A definiálásához válassza az <emph>Eszközök - Szimbólumok</emph> menüparancsot. A megjelenő párbeszédablakban válassza ki a <emph>Különleges</emph> szimbólumkészletet, majd kattintson a <emph>Szerkesztés</emph> gombra. A következő párbeszédablakon válassza ki ismét a <emph>Különleges</emph> szimbólumkészletet. Adjon meg egy sokatmondó nevet a <emph>Szimbólum</emph> szövegmezőben (például \"union\"), majd kattintson az unió jelre a szimbólumkészletben. Kattintson a <emph>Hozzáadás</emph> majd az <emph>OK</emph> gombra. A <emph>Bezárás</emph> gombbal zárja be a <emph>Szimbólumok</emph> párbeszédablakot. Az egyedi szimbólum elkészült, most már létrehozhatja a Parancsok ablakban az unió jelet: <emph>oper %union</emph>." +msgstr "A <emph>felhasználó által definiált operátorok</emph> beírásához írja be a Parancsok ablakba az <emph>oper</emph> parancsot. A funkció különösen akkor hasznos, ha különleges karaktereket szeretne a képletbe illeszteni. Például: <emph>oper %theta x</emph>. Az <emph>oper</emph> paranccsal a $[officename] alapértelmezett karakterkészletében nem szereplő karaktereket is beszúrhat a képletbe. Az <emph>oper</emph> a határokkal együtt is alkalmazható; például <emph>oper %union from {i=1} to n x_{i}</emph>. Ebben a példában az unió szimbólumot a <emph>union</emph> jelöli. Azonban ez a jel nem tartozik az előre meghatározott szimbólumok közé. A definiálásához válassza az <emph>Eszközök - Szimbólumok</emph> menüparancsot. A megjelenő párbeszédablakban válassza ki a <emph>Különleges</emph> szimbólumkészletet, majd kattintson a <emph>Szerkesztés</emph> gombra. A következő párbeszédablakon válassza ki ismét a <emph>Különleges</emph> szimbólumkészletet. Adjon meg egy sokatmondó nevet a <emph>Szimbólum</emph> szövegmezőben (például „union”), majd kattintson az unió jelre a szimbólumkészletben. Kattintson a <emph>Hozzáadás</emph> majd az <emph>OK</emph> gombra. A <emph>Bezárás</emph> gombbal zárja be a <emph>Szimbólumok</emph> párbeszédablakot. Az egyedi szimbólum elkészült, most már létrehozhatja a Parancsok ablakban az unió jelet: <emph>oper %union</emph>." #: 03090300.xhp msgctxt "" @@ -2308,7 +2308,7 @@ msgctxt "" "par_id3155374\n" "help.text" msgid "<ahelp hid=\"modules/smath/ui/floatingelements/RID_FUNCTIONS_CAT\">Choose a function in the lower part of the window.</ahelp> These functions are also listed in the <link href=\"text/shared/00/00000001.xhp#kontextmenue\" name=\"context menu\">context menu</link> of the <emph>Commands</emph> window. Any functions not contained in the Elements pane need to be typed manually in the Commands window." -msgstr "" +msgstr "<ahelp hid=\"modules/smath/ui/floatingelements/RID_FUNCTIONS_CAT\">Válasszon ki egy függvényt az ablak alsó részéből.</ahelp> A függvények listája a <emph>Parancsok</emph> ablak <link href=\"text/shared/00/00000001.xhp#kontextmenue\" name=\"helyi menü\">helyi menüjében</link> is megtalálható. Az Elemek panelen fel nem sorolt függvényeket kézzel kell beírni a Parancsok ablakban." #: 03090400.xhp msgctxt "" @@ -2317,7 +2317,7 @@ msgctxt "" "3\n" "help.text" msgid "The following is a list of all functions that appear in the <emph>Elements</emph> pane. The icon next to the function indicates that it can be accessed through the Elements pane (menu View - Elements) or through the context menu of the <emph>Commands</emph> window." -msgstr "" +msgstr "Az alábbi lista a <emph>Képletelemek</emph> panelen megjelenő összes függvényt tartalmazza. A függvény melletti ikon jelzi, hogy a Képletelemek panelen (Nézet - Képletelemek menüparancs) vagy a <emph>Parancsok</emph> ablak helyi menüjéből egyaránt elérhető." #: 03090400.xhp msgctxt "" @@ -2334,7 +2334,7 @@ msgctxt "" "par_idN10081\n" "help.text" msgid "<image id=\"img_id3153154\" src=\"res/helpimg/starmath/fu21505.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153154\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153154\" src=\"res/helpimg/starmath/fu21505.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153154\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2360,7 +2360,7 @@ msgctxt "" "par_idN100BC\n" "help.text" msgid "<image id=\"img_id3147507\" src=\"res/helpimg/starmath/fu21506.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3147507\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147507\" src=\"res/helpimg/starmath/fu21506.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3147507\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2386,7 +2386,7 @@ msgctxt "" "par_idN100F7\n" "help.text" msgid "<image id=\"img_id3154574\" src=\"res/helpimg/starmath/fu21507.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154574\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154574\" src=\"res/helpimg/starmath/fu21507.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154574\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2412,7 +2412,7 @@ msgctxt "" "par_idN10132\n" "help.text" msgid "<image id=\"img_id3149687\" src=\"res/helpimg/starmath/fu21508.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149687\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149687\" src=\"res/helpimg/starmath/fu21508.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149687\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2438,7 +2438,7 @@ msgctxt "" "par_id3149483\n" "help.text" msgid "<image id=\"img_id3149490\" src=\"res/helpimg/starmath/fu21908.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149490\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149490\" src=\"res/helpimg/starmath/fu21908.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149490\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2464,7 +2464,7 @@ msgctxt "" "par_idN101B1\n" "help.text" msgid "<image id=\"img_id3149043\" src=\"res/helpimg/starmath/fu21509.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149043\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149043\" src=\"res/helpimg/starmath/fu21509.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149043\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2490,7 +2490,7 @@ msgctxt "" "par_idN101EA\n" "help.text" msgid "<image id=\"img_id3147139\" src=\"res/helpimg/starmath/fu21510.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3147139\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147139\" src=\"res/helpimg/starmath/fu21510.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3147139\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2516,7 +2516,7 @@ msgctxt "" "par_idN10223\n" "help.text" msgid "<image id=\"img_id3148759\" src=\"res/helpimg/starmath/fu21511.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3148759\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148759\" src=\"res/helpimg/starmath/fu21511.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3148759\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2542,7 +2542,7 @@ msgctxt "" "par_idN1025C\n" "help.text" msgid "<image id=\"img_id3149536\" src=\"res/helpimg/starmath/fu21512.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149536\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149536\" src=\"res/helpimg/starmath/fu21512.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149536\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2568,7 +2568,7 @@ msgctxt "" "par_idN10295\n" "help.text" msgid "<image id=\"img_id3147499\" src=\"res/helpimg/starmath/fu21513.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3147499\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147499\" src=\"res/helpimg/starmath/fu21513.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3147499\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2594,7 +2594,7 @@ msgctxt "" "par_idN102CE\n" "help.text" msgid "<image id=\"img_id3168610\" src=\"res/helpimg/starmath/fu21503.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3168610\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3168610\" src=\"res/helpimg/starmath/fu21503.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3168610\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2620,7 +2620,7 @@ msgctxt "" "par_idN10309\n" "help.text" msgid "<image id=\"img_id3147608\" src=\"res/helpimg/starmath/fu21514.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3147608\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147608\" src=\"res/helpimg/starmath/fu21514.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3147608\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2646,7 +2646,7 @@ msgctxt "" "par_idN10342\n" "help.text" msgid "<image id=\"img_id3151087\" src=\"res/helpimg/starmath/fu21515.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3151087\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3151087\" src=\"res/helpimg/starmath/fu21515.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3151087\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2672,7 +2672,7 @@ msgctxt "" "par_idN1037C\n" "help.text" msgid "<image id=\"img_id3151112\" src=\"res/helpimg/starmath/fu21516.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3151112\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3151112\" src=\"res/helpimg/starmath/fu21516.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3151112\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2698,7 +2698,7 @@ msgctxt "" "par_idN103B5\n" "help.text" msgid "<image id=\"img_id3154714\" src=\"res/helpimg/starmath/fu21504.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154714\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154714\" src=\"res/helpimg/starmath/fu21504.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154714\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2724,7 +2724,7 @@ msgctxt "" "par_idN103EE\n" "help.text" msgid "<image id=\"img_id3145633\" src=\"res/helpimg/starmath/fu21517.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3145633\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3145633\" src=\"res/helpimg/starmath/fu21517.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3145633\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2750,7 +2750,7 @@ msgctxt "" "par_idN10427\n" "help.text" msgid "<image id=\"img_id3146951\" src=\"res/helpimg/starmath/fu21518.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3146951\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3146951\" src=\"res/helpimg/starmath/fu21518.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3146951\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2776,7 +2776,7 @@ msgctxt "" "par_idN10460\n" "help.text" msgid "<image id=\"img_id3149369\" src=\"res/helpimg/starmath/fu21519.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149369\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149369\" src=\"res/helpimg/starmath/fu21519.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149369\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2802,7 +2802,7 @@ msgctxt "" "par_idN10493\n" "help.text" msgid "<image id=\"img_id3153141\" src=\"res/helpimg/starmath/fu21520.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153141\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153141\" src=\"res/helpimg/starmath/fu21520.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153141\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2828,7 +2828,7 @@ msgctxt "" "par_idN104CC\n" "help.text" msgid "<image id=\"img_id3154624\" src=\"res/helpimg/starmath/fu21501.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154624\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154624\" src=\"res/helpimg/starmath/fu21501.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154624\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2854,7 +2854,7 @@ msgctxt "" "par_idN10507\n" "help.text" msgid "<image id=\"img_id3154023\" src=\"res/helpimg/starmath/fu21521.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154023\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154023\" src=\"res/helpimg/starmath/fu21521.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154023\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2880,7 +2880,7 @@ msgctxt "" "par_idN1053A\n" "help.text" msgid "<image id=\"img_id3149602\" src=\"res/helpimg/starmath/fu21522.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149602\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149602\" src=\"res/helpimg/starmath/fu21522.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149602\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2906,7 +2906,7 @@ msgctxt "" "par_idN10573\n" "help.text" msgid "<image id=\"img_id3155342\" src=\"res/helpimg/starmath/fu21523.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155342\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155342\" src=\"res/helpimg/starmath/fu21523.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155342\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2932,7 +2932,7 @@ msgctxt "" "par_idN105AC\n" "help.text" msgid "<image id=\"img_id3150842\" src=\"res/helpimg/starmath/fu21524.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150842\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3150842\" src=\"res/helpimg/starmath/fu21524.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150842\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2958,7 +2958,7 @@ msgctxt "" "par_idN105E5\n" "help.text" msgid "<image id=\"img_id3145301\" src=\"res/helpimg/starmath/fu21502.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3145301\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3145301\" src=\"res/helpimg/starmath/fu21502.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3145301\">Icon</alt></image>" #: 03090400.xhp msgctxt "" @@ -2985,7 +2985,7 @@ msgctxt "" "38\n" "help.text" msgid "You can also assign an index or an exponent to a function. For example, typing <emph>sin^2x</emph> results in in a function \"sine to the power of 2x\"." -msgstr "A függvényekhez indexek és kitevők rendelhetők. Például a <emph>sin^2x</emph> a \"szinusznégyzet x\" függvényt állítja elő." +msgstr "A függvényekhez indexek és kitevők rendelhetők. Például a <emph>sin^2x</emph> a „szinusznégyzet x” függvényt állítja elő." #: 03090400.xhp msgctxt "" @@ -3027,7 +3027,7 @@ msgctxt "" "par_id3147258\n" "help.text" msgid "<ahelp hid=\"smath/ui/floatingelements/RID_BRACKETS_CAT\">You can choose among various bracket types to structure a <emph>$[officename] Math</emph> formula. Bracket types are displayed in the lower part of the Elements pane.</ahelp> These brackets are also listed in the <link href=\"text/shared/00/00000001.xhp#kontextmenue\" name=\"context menu\">context menu</link> of the <emph>Commands</emph> window. All brackets that are not contained in the Elements pane or in the context menu can be typed manually in the <emph>Commands</emph> window." -msgstr "" +msgstr "<ahelp hid=\"smath/ui/floatingelements/RID_BRACKETS_CAT\">A <emph>$[officename] Math</emph>-képletek összeállítása során számos zárójeltípus közül választhat. A zárójeltípusok a Képletelemek panel alsó részében jelennek meg.</ahelp> A zárójelek listája a <emph>Parancsok</emph> ablak <link href=\"text/shared/00/00000001.xhp#kontextmenue\" name=\"helyi menü\">helyi menüjében</link> is megtalálható. A Képletelemek panelen és a helyi menüben fel nem sorolt zárójeleket kézzel kell beírni a <emph>Parancsok</emph> ablakba." #: 03090500.xhp msgctxt "" @@ -3035,7 +3035,7 @@ msgctxt "" "par_id3154264\n" "help.text" msgid "The following is a complete list of all available bracket types. The icon next to the bracket type indicates that it can be accessed through the Elements pane (menu View - Elements) or through the context menu of the <emph>Commands</emph> window." -msgstr "" +msgstr "Az alábbi lista a rendelkezésre álló összes zárójeltípust tartalmazza. A zárójeltípus melletti ikon jelzi, hogy a Képletelemek panelen (Nézet - Képletelemek menüparancs) vagy a <emph>Parancsok</emph> ablak helyi menüjéből egyaránt elérhető." #: 03090500.xhp msgctxt "" @@ -3052,7 +3052,7 @@ msgctxt "" "par_idN10084\n" "help.text" msgid "<image id=\"img_id3149801\" src=\"res/helpimg/starmath/al21801.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3149801\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149801\" src=\"res/helpimg/starmath/al21801.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3149801\">Icon</alt></image>" #: 03090500.xhp msgctxt "" @@ -3078,7 +3078,7 @@ msgctxt "" "par_idN100BF\n" "help.text" msgid "<image id=\"img_id3158440\" src=\"res/helpimg/starmath/al21802.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3158440\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3158440\" src=\"res/helpimg/starmath/al21802.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3158440\">Icon</alt></image>" #: 03090500.xhp msgctxt "" @@ -3104,7 +3104,7 @@ msgctxt "" "par_idN100F8\n" "help.text" msgid "<image id=\"img_id3146923\" src=\"res/helpimg/starmath/al21823.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3146923\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3146923\" src=\"res/helpimg/starmath/al21823.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3146923\">Icon</alt></image>" #: 03090500.xhp msgctxt "" @@ -3130,7 +3130,7 @@ msgctxt "" "par_idN10131\n" "help.text" msgid "<image id=\"img_id3149815\" src=\"res/helpimg/starmath/al21804.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3149815\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149815\" src=\"res/helpimg/starmath/al21804.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3149815\">Icon</alt></image>" #: 03090500.xhp msgctxt "" @@ -3156,7 +3156,7 @@ msgctxt "" "par_idN1016C\n" "help.text" msgid "<image id=\"img_id3148736\" src=\"res/helpimg/starmath/al21805.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3148736\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148736\" src=\"res/helpimg/starmath/al21805.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3148736\">Icon</alt></image>" #: 03090500.xhp msgctxt "" @@ -3182,7 +3182,7 @@ msgctxt "" "par_idN101A5\n" "help.text" msgid "<image id=\"img_id3153350\" src=\"res/helpimg/starmath/al21806.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3153350\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153350\" src=\"res/helpimg/starmath/al21806.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3153350\">Icon</alt></image>" #: 03090500.xhp msgctxt "" @@ -3208,7 +3208,7 @@ msgctxt "" "par_idN101DE\n" "help.text" msgid "<image id=\"img_id3155118\" src=\"res/helpimg/starmath/al21803.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3155118\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155118\" src=\"res/helpimg/starmath/al21803.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3155118\">Icon</alt></image>" #: 03090500.xhp msgctxt "" @@ -3234,7 +3234,7 @@ msgctxt "" "par_idN10217\n" "help.text" msgid "<image id=\"img_id3155867\" src=\"res/helpimg/starmath/al21821.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3155867\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155867\" src=\"res/helpimg/starmath/al21821.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3155867\">Icon</alt></image>" #: 03090500.xhp msgctxt "" @@ -3260,7 +3260,7 @@ msgctxt "" "par_idN10253\n" "help.text" msgid "<image id=\"img_id3149561\" src=\"res/helpimg/starmath/al21808.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3149561\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149561\" src=\"res/helpimg/starmath/al21808.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3149561\">Icon</alt></image>" #: 03090500.xhp msgctxt "" @@ -3286,7 +3286,7 @@ msgctxt "" "par_idN1028E\n" "help.text" msgid "<image id=\"img_id3147733\" src=\"res/helpimg/starmath/al21809.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3147733\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147733\" src=\"res/helpimg/starmath/al21809.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3147733\">Icon</alt></image>" #: 03090500.xhp msgctxt "" @@ -3312,7 +3312,7 @@ msgctxt "" "par_idN102CC\n" "help.text" msgid "<image id=\"img_id3148852\" src=\"res/helpimg/starmath/al21810.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3148852\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148852\" src=\"res/helpimg/starmath/al21810.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3148852\">Icon</alt></image>" #: 03090500.xhp msgctxt "" @@ -3338,7 +3338,7 @@ msgctxt "" "par_idN10307\n" "help.text" msgid "<image id=\"img_id3153794\" src=\"res/helpimg/starmath/al21824.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3153794\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153794\" src=\"res/helpimg/starmath/al21824.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3153794\">Icon</alt></image>" #: 03090500.xhp msgctxt "" @@ -3364,7 +3364,7 @@ msgctxt "" "par_idN10342\n" "help.text" msgid "<image id=\"img_id3153972\" src=\"res/helpimg/starmath/al21812.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153972\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153972\" src=\"res/helpimg/starmath/al21812.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153972\">Icon</alt></image>" #: 03090500.xhp msgctxt "" @@ -3390,7 +3390,7 @@ msgctxt "" "par_idN1037E\n" "help.text" msgid "<image id=\"img_id3155598\" src=\"res/helpimg/starmath/al21813.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155598\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155598\" src=\"res/helpimg/starmath/al21813.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155598\">Icon</alt></image>" #: 03090500.xhp msgctxt "" @@ -3416,7 +3416,7 @@ msgctxt "" "par_idN103B7\n" "help.text" msgid "<image id=\"img_id3153223\" src=\"res/helpimg/starmath/al21814.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3153223\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153223\" src=\"res/helpimg/starmath/al21814.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3153223\">Icon</alt></image>" #: 03090500.xhp msgctxt "" @@ -3442,7 +3442,7 @@ msgctxt "" "par_idN103F0\n" "help.text" msgid "<image id=\"img_id3150026\" src=\"res/helpimg/starmath/al21811.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150026\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3150026\" src=\"res/helpimg/starmath/al21811.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150026\">Icon</alt></image>" #: 03090500.xhp msgctxt "" @@ -3468,7 +3468,7 @@ msgctxt "" "par_idN10429\n" "help.text" msgid "<image id=\"img_id3154235\" src=\"res/helpimg/starmath/al21822.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3154235\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154235\" src=\"res/helpimg/starmath/al21822.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3154235\">Icon</alt></image>" #: 03090500.xhp msgctxt "" @@ -3494,7 +3494,7 @@ msgctxt "" "par_idN10464\n" "help.text" msgid "<image id=\"img_id3154349\" src=\"res/helpimg/starmath/al21825.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3154349\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154349\" src=\"res/helpimg/starmath/al21825.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3154349\">Icon</alt></image>" #: 03090500.xhp msgctxt "" @@ -3520,7 +3520,7 @@ msgctxt "" "par_idN104A0\n" "help.text" msgid "<image id=\"img_id3149646\" src=\"res/helpimg/starmath/al21826.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3149646\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149646\" src=\"res/helpimg/starmath/al21826.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3149646\">Icon</alt></image>" #: 03090500.xhp msgctxt "" @@ -3707,7 +3707,7 @@ msgctxt "" "par_id3145802\n" "help.text" msgid "<ahelp hid=\"smath/ui/floatingelements/RID_ATTRIBUTES_CAT\">You can choose from various attributes for <emph>%PRODUCTNAME</emph> <emph>Math</emph> formulas. Some attributes are displayed in the lower part of the Elements pane.</ahelp> These attributes are also listed in the <link href=\"text/shared/00/00000001.xhp#kontextmenue\" name=\"context menu\">context menu</link> of the <emph>Commands</emph> window. All attributes not contained in the Elements pane or in the context menu must be typed manually in the <emph>Commands</emph> window." -msgstr "" +msgstr "<ahelp hid=\"smath/ui/floatingelements/RID_ATTRIBUTES_CAT\">A <emph>%PRODUCTNAME</emph> <emph>Math</emph>-képletek szerkesztésénél sok jellemző közül választhat. Néhány jellemző a Képletelemek panel alsó részén is megjelenik.</ahelp> Ezek a jellemzők benne vannak a <emph>Parancsok</emph> ablak <link href=\"text/shared/00/00000001.xhp#kontextmenue\" name=\"helyi menü\">helyi menüjében</link> is. A Képletelemek panelen, illetve a helyi menüben nem szereplő jellemzőket kézzel kell beírni a <emph>Parancsok</emph> ablakban." #: 03090600.xhp msgctxt "" @@ -3715,7 +3715,7 @@ msgctxt "" "par_id3155962\n" "help.text" msgid "The following is a complete list of all attributes available in <item type=\"productname\">%PRODUCTNAME</item> Math. The symbol next to the attribute indicates that it can be accessed through the Elements pane (choose <emph>View - Elements</emph>) or through the context menu of the <emph>Commands</emph> window." -msgstr "" +msgstr "Az alábbi lista a <item type=\"productname\">%PRODUCTNAME</item> Math programban rendelkezésre álló összes jellemzőt tartalmazza. A jellemző melletti ikon jelzi, hogy a Képletelemek panelről (válassza a <emph>Nézet - Képletelemek</emph> menüparancsot) vagy a <emph>Parancsok</emph> ablak helyi menüjéből egyaránt elérhető." #: 03090600.xhp msgctxt "" @@ -3724,7 +3724,7 @@ msgctxt "" "4\n" "help.text" msgid "In describing the following attribute functions, the letter \"a\" in the icon refers to the placeholder that you would like to assign to the respective attribute. You can substitute this character with any other character that you choose." -msgstr "A jellemzők itt következő leírásában az ikonokon található \"a\" betű a megfelelő jellemzőhöz rendelhető helykitöltőt jelöli. Ezt a karaktert tetszés szerint lecserélheti egy másikra." +msgstr "A jellemzők itt következő leírásában az ikonokon található „a” betű a megfelelő jellemzőhöz rendelhető helykitöltőt jelöli. Ezt a karaktert tetszés szerint lecserélheti egy másikra." #: 03090600.xhp msgctxt "" @@ -3741,7 +3741,7 @@ msgctxt "" "par_idN10098\n" "help.text" msgid "<image id=\"img_id3150391\" src=\"res/helpimg/starmath/at21701.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3150391\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3150391\" src=\"res/helpimg/starmath/at21701.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3150391\">Icon</alt></image>" #: 03090600.xhp msgctxt "" @@ -3767,7 +3767,7 @@ msgctxt "" "par_idN100D5\n" "help.text" msgid "<image id=\"img_id3154504\" src=\"res/helpimg/starmath/at21702.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3154504\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154504\" src=\"res/helpimg/starmath/at21702.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3154504\">Icon</alt></image>" #: 03090600.xhp msgctxt "" @@ -3793,7 +3793,7 @@ msgctxt "" "par_idN10115\n" "help.text" msgid "<image id=\"img_id3155370\" src=\"res/helpimg/starmath/at21703.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3155370\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155370\" src=\"res/helpimg/starmath/at21703.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3155370\">Icon</alt></image>" #: 03090600.xhp msgctxt "" @@ -3811,7 +3811,7 @@ msgctxt "" "13\n" "help.text" msgid "<ahelp hid=\"HID_SMA_CHECKX\">Inserts a placeholder with a reverse circumflex (\"checkmark\") over it.</ahelp> You can also type <emph>check <?></emph> in the <emph>Commands</emph> window." -msgstr "<ahelp hid=\"HID_SMA_CHECKX\">Beszúr egy helykitöltőt, amely felett egy \"hacsek\" van.</ahelp> A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph>check<?></emph>." +msgstr "<ahelp hid=\"HID_SMA_CHECKX\">Beszúr egy helykitöltőt, amely felett egy „hacsek” van.</ahelp> A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph>check<?></emph>." #: 03090600.xhp msgctxt "" @@ -3819,7 +3819,7 @@ msgctxt "" "par_idN1014E\n" "help.text" msgid "<image id=\"img_id3145202\" src=\"res/helpimg/starmath/at21704.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3145202\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3145202\" src=\"res/helpimg/starmath/at21704.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3145202\">Icon</alt></image>" #: 03090600.xhp msgctxt "" @@ -3845,7 +3845,7 @@ msgctxt "" "par_idN10187\n" "help.text" msgid "<image id=\"img_id3159179\" src=\"res/helpimg/starmath/at21709.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3159179\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3159179\" src=\"res/helpimg/starmath/at21709.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3159179\">Icon</alt></image>" #: 03090600.xhp msgctxt "" @@ -3871,7 +3871,7 @@ msgctxt "" "par_idN101C0\n" "help.text" msgid "<image id=\"img_id3149808\" src=\"res/helpimg/starmath/im21106.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3149808\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149808\" src=\"res/helpimg/starmath/im21106.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3149808\">Icon</alt></image>" #: 03090600.xhp msgctxt "" @@ -3897,7 +3897,7 @@ msgctxt "" "par_idN101FB\n" "help.text" msgid "<image id=\"img_id3153776\" src=\"res/helpimg/starmath/at21708.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3153776\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153776\" src=\"res/helpimg/starmath/at21708.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3153776\">Icon</alt></image>" #: 03090600.xhp msgctxt "" @@ -3923,7 +3923,7 @@ msgctxt "" "par_idN10236\n" "help.text" msgid "<image id=\"img_id3149695\" src=\"res/helpimg/starmath/at21707.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3149695\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149695\" src=\"res/helpimg/starmath/at21707.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3149695\">Icon</alt></image>" #: 03090600.xhp msgctxt "" @@ -3941,7 +3941,7 @@ msgctxt "" "25\n" "help.text" msgid "<ahelp hid=\"HID_SMA_HATX\">Inserts a placeholder with a circumflex (\"hat\").</ahelp> You can also directly enter <emph>hat <?></emph> in the Commands window." -msgstr "<ahelp hid=\"HID_SMA_HATX\">Beszúr egy helykitöltőt, amely felett circumflex (\"kalap\") van.</ahelp> A Parancsok ablakba közvetlenül beírható forma: <emph>hat<?></emph>." +msgstr "<ahelp hid=\"HID_SMA_HATX\">Beszúr egy helykitöltőt, amely felett circumflex („kalap”) van.</ahelp> A Parancsok ablakba közvetlenül beírható forma: <emph>hat<?></emph>." #: 03090600.xhp msgctxt "" @@ -3949,7 +3949,7 @@ msgctxt "" "par_idN1026E\n" "help.text" msgid "<image id=\"img_id3148986\" src=\"res/helpimg/starmath/at21705.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3148986\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148986\" src=\"res/helpimg/starmath/at21705.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3148986\">Icon</alt></image>" #: 03090600.xhp msgctxt "" @@ -3967,7 +3967,7 @@ msgctxt "" "9\n" "help.text" msgid "<ahelp hid=\"HID_SMA_BARX\">Inserts a line (\"bar\") above a placeholder .</ahelp> You can also type <emph>bar <?></emph> in the <emph>Commands</emph> window." -msgstr "<ahelp hid=\"HID_SMA_BARX\">Egy vonalat (\"felülvonást\") szúr be a helykitöltő fölé.</ahelp> A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph>bar<?></emph>." +msgstr "<ahelp hid=\"HID_SMA_BARX\">Egy vonalat („felülvonást”) szúr be a helykitöltő fölé.</ahelp> A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph>bar<?></emph>." #: 03090600.xhp msgctxt "" @@ -3975,7 +3975,7 @@ msgctxt "" "par_idN102A7\n" "help.text" msgid "<image id=\"img_id3147095\" src=\"res/helpimg/starmath/at21710.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3147095\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147095\" src=\"res/helpimg/starmath/at21710.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3147095\">Icon</alt></image>" #: 03090600.xhp msgctxt "" @@ -4001,7 +4001,7 @@ msgctxt "" "par_idN102E0\n" "help.text" msgid "<image id=\"img_id3147328\" src=\"res/helpimg/starmath/at21724.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3147328\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147328\" src=\"res/helpimg/starmath/at21724.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3147328\">Icon</alt></image>" #: 03090600.xhp msgctxt "" @@ -4027,7 +4027,7 @@ msgctxt "" "par_idN10319\n" "help.text" msgid "<image id=\"img_id3153359\" src=\"res/helpimg/starmath/at21723.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3153359\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153359\" src=\"res/helpimg/starmath/at21723.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3153359\">Icon</alt></image>" #: 03090600.xhp msgctxt "" @@ -4053,7 +4053,7 @@ msgctxt "" "par_idN10352\n" "help.text" msgid "<image id=\"img_id3155117\" src=\"res/helpimg/starmath/at21722.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3155117\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155117\" src=\"res/helpimg/starmath/at21722.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3155117\">Icon</alt></image>" #: 03090600.xhp msgctxt "" @@ -4071,7 +4071,7 @@ msgctxt "" "57\n" "help.text" msgid "<ahelp hid=\"HID_SMA_WIDEHATX\">Inserts a wide circumflex (\"hat\") with a placeholder. </ahelp> You can also type <emph>widehat</emph> in the <emph>Commands</emph> window." -msgstr "<ahelp hid=\"HID_SMA_WIDEHATX\">Egy helykitöltővel ellátott széles circumflex (\"kalap\") ékezetet szúr be. </ahelp>A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph>widehat</emph>." +msgstr "<ahelp hid=\"HID_SMA_WIDEHATX\">Egy helykitöltővel ellátott széles circumflex („kalap”) ékezetet szúr be. </ahelp>A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph>widehat</emph>." #: 03090600.xhp msgctxt "" @@ -4079,7 +4079,7 @@ msgctxt "" "par_idN1038B\n" "help.text" msgid "<image id=\"img_id3148873\" src=\"res/helpimg/starmath/at21711.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3148873\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148873\" src=\"res/helpimg/starmath/at21711.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3148873\">Icon</alt></image>" #: 03090600.xhp msgctxt "" @@ -4105,7 +4105,7 @@ msgctxt "" "par_idN103C4\n" "help.text" msgid "<image id=\"img_id3147424\" src=\"res/helpimg/starmath/at21713.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3147424\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147424\" src=\"res/helpimg/starmath/at21713.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3147424\">Icon</alt></image>" #: 03090600.xhp msgctxt "" @@ -4131,7 +4131,7 @@ msgctxt "" "par_idN103FD\n" "help.text" msgid "<image id=\"img_id3145130\" src=\"res/helpimg/starmath/at21714.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3145130\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3145130\" src=\"res/helpimg/starmath/at21714.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3145130\">Icon</alt></image>" #: 03090600.xhp msgctxt "" @@ -4157,7 +4157,7 @@ msgctxt "" "par_idN10436\n" "help.text" msgid "<image id=\"img_id3145318\" src=\"res/helpimg/starmath/at21715.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3145318\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3145318\" src=\"res/helpimg/starmath/at21715.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3145318\">Icon</alt></image>" #: 03090600.xhp msgctxt "" @@ -4183,7 +4183,7 @@ msgctxt "" "par_idN1046F\n" "help.text" msgid "<image id=\"img_id3156104\" src=\"res/helpimg/starmath/at21712.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3156104\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3156104\" src=\"res/helpimg/starmath/at21712.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3156104\">Icon</alt></image>" #: 03090600.xhp msgctxt "" @@ -4209,7 +4209,7 @@ msgctxt "" "par_idN104A8\n" "help.text" msgid "<image id=\"img_id3145626\" src=\"res/helpimg/starmath/at21716.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3145626\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3145626\" src=\"res/helpimg/starmath/at21716.png\" width=\"0.2228in\" height=\"0.2228in\"><alt id=\"alt_id3145626\">Icon</alt></image>" #: 03090600.xhp msgctxt "" @@ -4227,7 +4227,7 @@ msgctxt "" "41\n" "help.text" msgid "<ahelp hid=\"HID_SMA_PHANTOMX\">Inserts a placeholder for a transparent character. This character takes up the space of \"a\" but does not display it.</ahelp> You can also type <emph>phantom <?></emph> in the <emph>Commands</emph> window." -msgstr "<ahelp hid=\"HID_SMA_PHANTOMX\">Beszúr egy helykitöltőt egy átlátszó karakter számára. A karakter egy \"a\" betű helyét foglalja el, de a képletben nem jelenik meg semmi.</ahelp> A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph>phantom<?></emph>." +msgstr "<ahelp hid=\"HID_SMA_PHANTOMX\">Beszúr egy helykitöltőt egy átlátszó karakter számára. A karakter egy „a” betű helyét foglalja el, de a képletben nem jelenik meg semmi.</ahelp> A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph>phantom<?></emph>." #: 03090600.xhp msgctxt "" @@ -4340,7 +4340,7 @@ msgctxt "" "48\n" "help.text" msgid "Use the <emph>color</emph> command to change the color of your formula. Type <emph>color</emph>, then type the color name (the available colors are white, black, cyan, magenta, red, blue, green and yellow), then the formula, character or character sequence. The input <emph>color green size 20 a</emph> results in a green letter \"a\" with a font size of 20." -msgstr "A képlet színének megváltoztatásához használja a <emph>color</emph> parancsot. Írja be a <emph>color</emph> parancsot, a szín kódját (a rendelkezésre álló színek: white - fehér, black - fekete, cyan - türkiz, magenta - bíbor, red - vörös, blue - kék, green - zöld és yellow - sárga), majd a képletet, karaktert vagy karaktersorozatot. A <emph>color green size 20 a</emph> parancs egy zöld \"a\" betűt eredményez 20-as betűmérettel." +msgstr "A képlet színének megváltoztatásához használja a <emph>color</emph> parancsot. Írja be a <emph>color</emph> parancsot, a szín kódját (a rendelkezésre álló színek: white - fehér, black - fekete, cyan - türkiz, magenta - bíbor, red - vörös, blue - kék, green - zöld és yellow - sárga), majd a képletet, karaktert vagy karaktersorozatot. A <emph>color green size 20 a</emph> parancs egy zöld „a” betűt eredményez 20-as betűmérettel." #: 03090600.xhp msgctxt "" @@ -4358,7 +4358,7 @@ msgctxt "" "46\n" "help.text" msgid "The <link href=\"text/smath/01/03091300.xhp\" name=\"attributes\">attributes</link> \"acute\", \"bar\", \"breve\", \"check\", \"circle\", \"dot\", \"ddot\", \"dddot\", \"grave\", \"hat\", \"tilde\" and \"vec\" have fixed sizes. Their width or length cannot be adjusted when positioned over a long symbol." -msgstr "Az \"acute\", \"bar\", \"breve\", \"check\", \"circle\", \"dot\", \"ddot\", \"dddot\", \"grave\", \"hat\", \"tilde\" és \"vec\" <link href=\"text/smath/01/03091300.xhp\" name=\"jellemzők\">jellemzők</link> rögzített mérettel rendelkeznek. Egy hosszú szimbólum fölé helyezve el őket, a szélességük és a hosszuk nem állítható." +msgstr "Az „acute”, „bar”, „breve”, „check”, „circle”, „dot”, „ddot”, „dddot”, „grave”, „hat”, „tilde” és „vec” <link href=\"text/smath/01/03091300.xhp\" name=\"jellemzők\">jellemzők</link> rögzített mérettel rendelkeznek. Egy hosszú szimbólum fölé helyezve el őket, a szélességük és a hosszuk nem állítható." #: 03090600.xhp msgctxt "" @@ -4428,7 +4428,7 @@ msgctxt "" "2\n" "help.text" msgid "<ahelp hid=\"smath/ui/floatingelements/RID_FORMAT_CAT\">You can choose among various options for formatting a $[officename] Math formula. The format options are displayed in the lower half of the Formula Elements pane.</ahelp> These options are also listed in the <link href=\"text/shared/00/00000001.xhp#kontextmenue\" name=\"context menu\">context menu</link> of the <emph>Commands</emph> window." -msgstr "" +msgstr "<ahelp hid=\"smath/ui/floatingelements/RID_FORMAT_CAT\">A $[officename] Math-képletek összeállítása során számos formázási lehetőség közül választhat. A formázási lehetőségek megjelennek a Képletelemek panel alsó részében.</ahelp> A lehetőségek listája a <emph>Parancsok</emph> ablak <link href=\"text/shared/00/00000001.xhp#kontextmenue\" name=\"helyi menü\">helyi menüjében</link> is megtalálható." #: 03090700.xhp msgctxt "" @@ -4437,7 +4437,7 @@ msgctxt "" "3\n" "help.text" msgid "The following is a complete list of all available formatting options in $[officename] Math. The icon next to the formatting option indicates that it can be accessed through the Elements pane (menu <emph>View - Elements</emph>) or through the context menu of the <emph>Commands</emph> window." -msgstr "" +msgstr "A következő, egy teljes lista a $[officename] Math összes elérhető formázási beállításáról. A formázási lehetőség melletti ikon jelzi, hogy a Képletelemek panelről (válassza a <emph>Nézet - Képletelemek</emph> menüparancsot) vagy a <emph>Parancsok</emph> ablak helyi menüjéből egyaránt elérhető." #: 03090700.xhp msgctxt "" @@ -4446,7 +4446,7 @@ msgctxt "" "17\n" "help.text" msgid "The letter \"a\" refers to the placeholder in your formula which you would like to assign to the respective formatting. You can substitute this character for any other you like." -msgstr "A képletekben az \"a\" betű azt a helykitöltőt jelöli, amelyhez az adott formázást hozzá kívánja rendelni. Ezt a karaktert bármi másra lecserélheti." +msgstr "A képletekben az „a” betű azt a helykitöltőt jelöli, amelyhez az adott formázást hozzá kívánja rendelni. Ezt a karaktert bármi másra lecserélheti." #: 03090700.xhp msgctxt "" @@ -4463,7 +4463,7 @@ msgctxt "" "par_idN1008B\n" "help.text" msgid "<image id=\"img_id3150981\" src=\"res/helpimg/starmath/co21916.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150981\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3150981\" src=\"res/helpimg/starmath/co21916.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150981\">Icon</alt></image>" #: 03090700.xhp msgctxt "" @@ -4489,7 +4489,7 @@ msgctxt "" "par_idN100C4\n" "help.text" msgid "<image id=\"img_id3149691\" src=\"res/helpimg/starmath/co21918.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149691\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149691\" src=\"res/helpimg/starmath/co21918.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149691\">Icon</alt></image>" #: 03090700.xhp msgctxt "" @@ -4515,7 +4515,7 @@ msgctxt "" "par_idN100FF\n" "help.text" msgid "<image id=\"img_id3149097\" src=\"res/helpimg/starmath/co21908.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149097\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149097\" src=\"res/helpimg/starmath/co21908.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149097\">Icon</alt></image>" #: 03090700.xhp msgctxt "" @@ -4541,7 +4541,7 @@ msgctxt "" "par_idN1013E\n" "help.text" msgid "<image id=\"img_id3149044\" src=\"res/helpimg/starmath/co21905.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149044\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149044\" src=\"res/helpimg/starmath/co21905.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149044\">Icon</alt></image>" #: 03090700.xhp msgctxt "" @@ -4567,7 +4567,7 @@ msgctxt "" "par_idN10179\n" "help.text" msgid "<image id=\"img_id3154390\" src=\"res/helpimg/starmath/co21901.png\" width=\"0.2228inch\" height=\"0.2228inch\"><alt id=\"alt_id3154390\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154390\" src=\"res/helpimg/starmath/co21901.png\" width=\"0.2228inch\" height=\"0.2228inch\"><alt id=\"alt_id3154390\">Icon</alt></image>" #: 03090700.xhp msgctxt "" @@ -4593,7 +4593,7 @@ msgctxt "" "par_idN101B2\n" "help.text" msgid "<image id=\"img_id3155117\" src=\"res/helpimg/starmath/co21912.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155117\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155117\" src=\"res/helpimg/starmath/co21912.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155117\">Icon</alt></image>" #: 03090700.xhp msgctxt "" @@ -4619,7 +4619,7 @@ msgctxt "" "par_idN101EB\n" "help.text" msgid "<image id=\"img_id3149544\" src=\"res/helpimg/starmath/co21917.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149544\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149544\" src=\"res/helpimg/starmath/co21917.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149544\">Icon</alt></image>" #: 03090700.xhp msgctxt "" @@ -4645,7 +4645,7 @@ msgctxt "" "par_idN10226\n" "help.text" msgid "<image id=\"img_id3145265\" src=\"res/helpimg/starmath/co21904.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3145265\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3145265\" src=\"res/helpimg/starmath/co21904.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3145265\">Icon</alt></image>" #: 03090700.xhp msgctxt "" @@ -4671,7 +4671,7 @@ msgctxt "" "par_idN10265\n" "help.text" msgid "<image id=\"img_id3149220\" src=\"res/helpimg/starmath/co21906.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149220\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149220\" src=\"res/helpimg/starmath/co21906.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149220\">Icon</alt></image>" #: 03090700.xhp msgctxt "" @@ -4697,7 +4697,7 @@ msgctxt "" "par_idN102A0\n" "help.text" msgid "<image id=\"img_id3149848\" src=\"res/helpimg/starmath/co21902.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149848\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149848\" src=\"res/helpimg/starmath/co21902.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149848\">Icon</alt></image>" #: 03090700.xhp msgctxt "" @@ -4723,7 +4723,7 @@ msgctxt "" "par_idN102DC\n" "help.text" msgid "<image id=\"img_id3154094\" src=\"res/helpimg/starmath/co21909.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154094\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154094\" src=\"res/helpimg/starmath/co21909.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154094\">Icon</alt></image>" #: 03090700.xhp msgctxt "" @@ -4741,7 +4741,7 @@ msgctxt "" "6\n" "help.text" msgid "<ahelp hid=\"HID_SMA_ALIGNLX\">This icon assigns left-alignment to \"a\" and inserts a placeholder.</ahelp> You can type <emph>alignl<?></emph> directly in the <emph>Commands</emph> window." -msgstr "<ahelp hid=\"HID_SMA_ALIGNLX\">Ez az ikon \"a\"-hoz vízszintes balra igazítást rendel, és beszúr egy helykitöltőt.</ahelp> A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph>alignl<?></emph>." +msgstr "<ahelp hid=\"HID_SMA_ALIGNLX\">Ez az ikon „a”-hoz vízszintes balra igazítást rendel, és beszúr egy helykitöltőt.</ahelp> A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph>alignl<?></emph>." #: 03090700.xhp msgctxt "" @@ -4749,7 +4749,7 @@ msgctxt "" "par_idN10317\n" "help.text" msgid "<image id=\"img_id3156130\" src=\"res/helpimg/starmath/co21910.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3156130\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3156130\" src=\"res/helpimg/starmath/co21910.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3156130\">Icon</alt></image>" #: 03090700.xhp msgctxt "" @@ -4767,7 +4767,7 @@ msgctxt "" "10\n" "help.text" msgid "<ahelp hid=\"HID_SMA_ALIGNCX\">Assigns horizontal central alignment to \"a\" and inserts a placeholder.</ahelp> You can also type <emph>alignc<?></emph> directly in the <emph>Commands</emph> window." -msgstr "<ahelp hid=\"HID_SMA_ALIGNCX\">Az \"a\"-hoz vízszintes középre igazítást rendel, és beszúr egy helykitöltőt.</ahelp> A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph>alignc<?></emph>." +msgstr "<ahelp hid=\"HID_SMA_ALIGNCX\">Az „a”-hoz vízszintes középre igazítást rendel, és beszúr egy helykitöltőt.</ahelp> A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph>alignc<?></emph>." #: 03090700.xhp msgctxt "" @@ -4775,7 +4775,7 @@ msgctxt "" "par_idN10352\n" "help.text" msgid "<image id=\"img_id3155583\" src=\"res/helpimg/starmath/co21911.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155583\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155583\" src=\"res/helpimg/starmath/co21911.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155583\">Icon</alt></image>" #: 03090700.xhp msgctxt "" @@ -4801,7 +4801,7 @@ msgctxt "" "par_idN1038D\n" "help.text" msgid "<image id=\"img_id3155085\" src=\"res/helpimg/starmath/co21907.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155085\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155085\" src=\"res/helpimg/starmath/co21907.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155085\">Icon</alt></image>" #: 03090700.xhp msgctxt "" @@ -4827,7 +4827,7 @@ msgctxt "" "par_idN103C9\n" "help.text" msgid "<image id=\"img_id3150027\" src=\"res/helpimg/starmath/co21903.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150027\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3150027\" src=\"res/helpimg/starmath/co21903.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150027\">Icon</alt></image>" #: 03090700.xhp msgctxt "" @@ -4925,7 +4925,7 @@ msgctxt "" "hd_id8036133\n" "help.text" msgid "To align using the \"matrix\" command" -msgstr "Igazítás a \"matrix\" parancs használatával" +msgstr "Igazítás a „matrix” parancs használatával" #: 03090700.xhp msgctxt "" @@ -4942,7 +4942,7 @@ msgctxt "" "56\n" "help.text" msgid "If a line or an expression begins with text, it is aligned on the left by default. You can change this with any of the <emph>align</emph> commands. An example is <emph>stack{a+b-c*d#alignr \"text\"}</emph>, where \"text\" appears aligned to the right. Note that text must always be surrounded by quotation marks." -msgstr "Ha egy sor vagy kifejezés szöveggel kezdődik, akkor alapértelmezés szerint balra lesz igazítva. Ezt valamelyik <emph>align</emph> paranccsal módosíthatja. Például: <emph>stack{a+b-c*d#alignr \"szöveg\"}</emph>, ahol a \"szöveg\" jobbra igazítva jelenik meg. Jegyezze meg, hogy a szövegnek mindenképpen idézőjelek között kell szerepelnie." +msgstr "Ha egy sor vagy kifejezés szöveggel kezdődik, akkor alapértelmezés szerint balra lesz igazítva. Ezt valamelyik <emph>align</emph> paranccsal módosíthatja. Például: <emph>stack{a+b-c*d#alignr \"szöveg\"}</emph>, ahol a „szöveg” jobbra igazítva jelenik meg. Ne feledje, hogy a szövegnek mindenképpen idézőjelek között kell szerepelnie." #: 03090700.xhp msgctxt "" @@ -5012,7 +5012,7 @@ msgctxt "" "2\n" "help.text" msgid "<ahelp hid=\"smath/ui/floatingelements/RID_SETOPERATIONS_CAT\">Assign different set operators to the characters in your <emph>$[officename] Math</emph> formula. The individual operators are shown in the lower section of the Elements pane</ahelp>. Call the <link href=\"text/shared/00/00000001.xhp#kontextmenue\" name=\"context menu\">context menu</link> in the <emph>Commands</emph> window to see an identical list of the individual functions. Any operators not found in the Elements pane have to be entered directly in the Commands window. You can also directly insert other parts of the formula even if symbols already exist for them." -msgstr "" +msgstr "<ahelp hid=\"smath/ui/floatingelements/RID_SETOPERATIONS_CAT\">A <emph>$[officename] Math</emph>-képletben különböző halmazoperátorokat lehet a karakterekhez rendelni. Az egyes operátorok a Képletelemek panel alsó részében találhatók.</ahelp> Ugyanezen lista a <emph>Parancsok</emph> ablak <link href=\"text/shared/00/00000001.xhp#kontextmenue\" name=\"helyi menü\">helyi menüjében</link> is megtalálható. A Képletelemek panelen fel nem sorolt operátorokat közvetlenül kell beírni a Parancsok ablakban. A képlet más részeit is beszúrhatja közvetlenül, még akkor is, ha szimbólumokat tartalmaznak." #: 03090800.xhp msgctxt "" @@ -5021,7 +5021,7 @@ msgctxt "" "3\n" "help.text" msgid "After clicking the <emph>Set Operations</emph> icon in the Elements pane additional icons will be shown in the lower part of this window. Simply click a symbol to incorporate the operator in the formula being edited in the Commands window." -msgstr "" +msgstr "Kattintson a <emph>Halmazműveletek</emph> ikonra a Képletelemek panelen. Ekkor az ablak alsó részén további ikonok jelennek meg. Kattintson a Parancsok ablakban szerkesztett képletbe beszúrandó halmazoperátort jelképező ikonra." #: 03090800.xhp msgctxt "" @@ -5038,7 +5038,7 @@ msgctxt "" "par_idN10081\n" "help.text" msgid "<image id=\"img_id3145418\" src=\"res/helpimg/starmath/op21401.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3145418\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3145418\" src=\"res/helpimg/starmath/op21401.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3145418\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5064,7 +5064,7 @@ msgctxt "" "par_idN100BC\n" "help.text" msgid "<image id=\"img_id3153782\" src=\"res/helpimg/starmath/op21402.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3153782\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153782\" src=\"res/helpimg/starmath/op21402.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3153782\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5090,7 +5090,7 @@ msgctxt "" "par_idN100F7\n" "help.text" msgid "<image id=\"img_id3150972\" src=\"res/helpimg/starmath/op21403.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3150972\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3150972\" src=\"res/helpimg/starmath/op21403.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3150972\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5116,7 +5116,7 @@ msgctxt "" "par_idN10135\n" "help.text" msgid "<image id=\"img_id3155180\" src=\"res/helpimg/starmath/op22002.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3155180\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155180\" src=\"res/helpimg/starmath/op22002.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3155180\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5142,7 +5142,7 @@ msgctxt "" "par_idN1016E\n" "help.text" msgid "<image id=\"img_id3147093\" src=\"res/helpimg/starmath/op21405.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3147093\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147093\" src=\"res/helpimg/starmath/op21405.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3147093\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5168,7 +5168,7 @@ msgctxt "" "par_idN101A7\n" "help.text" msgid "<image id=\"img_id3155147\" src=\"res/helpimg/starmath/op21406.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3155147\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155147\" src=\"res/helpimg/starmath/op21406.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3155147\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5194,7 +5194,7 @@ msgctxt "" "par_idN101E0\n" "help.text" msgid "<image id=\"img_id3154922\" src=\"res/helpimg/starmath/op21407.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3154922\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154922\" src=\"res/helpimg/starmath/op21407.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3154922\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5220,7 +5220,7 @@ msgctxt "" "par_idN1021C\n" "help.text" msgid "<image id=\"img_id3148889\" src=\"res/helpimg/starmath/op21408.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3148889\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148889\" src=\"res/helpimg/starmath/op21408.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3148889\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5246,7 +5246,7 @@ msgctxt "" "par_idN10255\n" "help.text" msgid "<image id=\"img_id3147473\" src=\"res/helpimg/starmath/op22001.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3147473\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147473\" src=\"res/helpimg/starmath/op22001.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3147473\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5272,7 +5272,7 @@ msgctxt "" "par_idN1028E\n" "help.text" msgid "<image id=\"img_id3155974\" src=\"res/helpimg/starmath/op21409.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3155974\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155974\" src=\"res/helpimg/starmath/op21409.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3155974\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5298,7 +5298,7 @@ msgctxt "" "par_idN102C9\n" "help.text" msgid "<image id=\"img_id3147119\" src=\"res/helpimg/starmath/op21410.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3147119\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147119\" src=\"res/helpimg/starmath/op21410.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3147119\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5324,7 +5324,7 @@ msgctxt "" "par_idN10304\n" "help.text" msgid "<image id=\"img_id3147065\" src=\"res/helpimg/starmath/op21411.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3147065\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147065\" src=\"res/helpimg/starmath/op21411.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3147065\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5350,7 +5350,7 @@ msgctxt "" "par_idN1033F\n" "help.text" msgid "<image id=\"img_id3154590\" src=\"res/helpimg/starmath/op21412.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3154590\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154590\" src=\"res/helpimg/starmath/op21412.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3154590\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5376,7 +5376,7 @@ msgctxt "" "par_idN1037A\n" "help.text" msgid "<image id=\"img_id3149318\" src=\"res/helpimg/starmath/op21413.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3149318\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149318\" src=\"res/helpimg/starmath/op21413.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3149318\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5402,7 +5402,7 @@ msgctxt "" "par_idN103B7\n" "help.text" msgid "<image id=\"img_id3151193\" src=\"res/helpimg/starmath/op21414.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3151193\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3151193\" src=\"res/helpimg/starmath/op21414.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3151193\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5428,7 +5428,7 @@ msgctxt "" "par_idN103F4\n" "help.text" msgid "<image id=\"img_id3146956\" src=\"res/helpimg/starmath/op21415.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3146956\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3146956\" src=\"res/helpimg/starmath/op21415.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3146956\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5454,7 +5454,7 @@ msgctxt "" "par_idN10431\n" "help.text" msgid "<image id=\"img_id3151223\" src=\"res/helpimg/starmath/op21416.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3151223\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3151223\" src=\"res/helpimg/starmath/op21416.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3151223\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5480,7 +5480,7 @@ msgctxt "" "par_idN1046E\n" "help.text" msgid "<image id=\"img_id3156087\" src=\"res/helpimg/starmath/op21417.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3156087\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3156087\" src=\"res/helpimg/starmath/op21417.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3156087\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5506,7 +5506,7 @@ msgctxt "" "par_idN104A7\n" "help.text" msgid "<image id=\"img_id3147383\" src=\"res/helpimg/starmath/op21418.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3147383\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3147383\" src=\"res/helpimg/starmath/op21418.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3147383\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5532,7 +5532,7 @@ msgctxt "" "par_idN104E0\n" "help.text" msgid "<image id=\"img_id3154038\" src=\"res/helpimg/starmath/op21419.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3154038\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154038\" src=\"res/helpimg/starmath/op21419.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3154038\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5558,7 +5558,7 @@ msgctxt "" "par_idN10519\n" "help.text" msgid "<image id=\"img_id3149625\" src=\"res/helpimg/starmath/op21420.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3149625\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149625\" src=\"res/helpimg/starmath/op21420.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3149625\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -5584,7 +5584,7 @@ msgctxt "" "par_idN10552\n" "help.text" msgid "<image id=\"img_id3155555\" src=\"res/helpimg/starmath/op21421.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3155555\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155555\" src=\"res/helpimg/starmath/op21421.png\" width=\"8.47mm\" height=\"8.47mm\"><alt id=\"alt_id3155555\">Icon</alt></image>" #: 03090800.xhp msgctxt "" @@ -6099,7 +6099,7 @@ msgctxt "" "4\n" "help.text" msgid "Braces \"{}\" are used to group expressions together to form one new expression. For example, \"sqrt {x * y}\" is the square root of the entire product x*y, while \"sqrt x * y\" is the square root of x multiplied by y. Braces do not require an extra space." -msgstr "A kapcsos zárójelekkel \"{}\" a kifejezéseket csoportosíthatja úgy, hogy egy új kifejezést hozzanak létre. Például az \"sqrt {x * y}\" kifejezés x és y szorzatának négyzetgyökét jelöli, míg az \"sqrt x * y\" x négyzetgyöke, szorozva y-nal. A kapcsos zárójelek nem igénylik külön szóközök használatát." +msgstr "A kapcsos zárójelekkel „{}” a kifejezéseket csoportosíthatja úgy, hogy egy új kifejezést hozzanak létre. Például az „sqrt {x * y}” kifejezés x és y szorzatának négyzetgyökét jelöli, míg az „sqrt x * y” x négyzetgyöke, szorozva y-nal. A kapcsos zárójelek nem igénylik külön szóközök használatát." #: 03091100.xhp msgctxt "" @@ -6108,7 +6108,7 @@ msgctxt "" "5\n" "help.text" msgid "Set brackets were previously inserted in the Elements pane or directly in the Commands window as \"left lbrace <?> right rbrace\". Now, a left and a right set bracket can also be inserted using \"lbrace\" and \"rbrace\", with or without wildcards." -msgstr "" +msgstr "A kapcsos zárójeleket korábban a Képletelemek panelen illetve a Parancs ablakban a következő formában kellett megadni: „left lbrace <?> right rbrace”. Most „lbrace” illetve „rbrace” formában bal vagy jobb kapcsos zárójel is beilleszthető helyettesítő karakterekkel vagy azok nélkül." #: 03091100.xhp msgctxt "" @@ -6117,7 +6117,7 @@ msgctxt "" "6\n" "help.text" msgid "There are a total of eight (8) different types of brackets available. The \"ceil\" and \"floor\" brackets are often used for rounding up or down the argument to the next integer: \"lceil -3.7 rceil = -3\" or \"lfloor -3.7 rfloor = -4\"." -msgstr "Összesen nyolc (8) különféle zárójel használatára van lehetőség. A \"ceil\" és \"floor\" zárójeleket gyakran az argumentum le- illetve felkerekítéséhez használják: \"lceil -3,7 rceil = -3\" vagy \"lfloor -3,7 rfloor = -4\"." +msgstr "Összesen nyolc (8) különféle zárójel használatára van lehetőség. A „ceil” és „floor” zárójeleket gyakran az argumentum le- illetve felkerekítéséhez használják: „lceil -3,7 rceil = -3” vagy „lfloor -3,7 rfloor = -4”." #: 03091100.xhp msgctxt "" @@ -6126,7 +6126,7 @@ msgctxt "" "63\n" "help.text" msgid "Operator brackets, also known as Bra-kets (angle brackets with a vertical line in between), are common in Physics notation: \"langle a mline b rangle\" or \"langle a mline b mline c over d mline e rangle\". The height and positioning of the vertical lines always corresponds exactly to the enclosing brackets." -msgstr "Az operátor-zárójeleket, más néven bra és ket jeleket (hegyes zárójelek, köztük egy függőleges vonallal) általában fizikában használják, például: \"langle a mline b rangle\" vagy \"langle a mline b mline c over d mline e rangle\". A függőleges vonalak magassága és pozíciója mindig pontosan a közrefogó zárójelekhez igazodik." +msgstr "Az operátor-zárójeleket, más néven bra és ket jeleket (hegyes zárójelek, köztük egy függőleges vonallal) általában fizikában használják, például: „langle a mline b rangle” vagy „langle a mline b mline c over d mline e rangle”. A függőleges vonalak magassága és pozíciója mindig pontosan a közrefogó zárójelekhez igazodik." #: 03091100.xhp msgctxt "" @@ -6144,7 +6144,7 @@ msgctxt "" "8\n" "help.text" msgid "All types of brackets have the same grouping function as described for \"{}\" brackets." -msgstr "Minden zárójel rendelkezik a \"{}\" zárójelnél leírt csoportosítási funkcióval." +msgstr "Minden zárójel rendelkezik a „{}” zárójelnél leírt csoportosítási funkcióval." #: 03091100.xhp msgctxt "" @@ -6162,7 +6162,7 @@ msgctxt "" "10\n" "help.text" msgid "Brackets do not adjust their size to the enclosed expression. For example, if you want \"( a over b )\" with a bracket size adjusted to a and b you must insert \"left\" and \"right\". Entering \"left(a over b right)\" produces appropriate sizing. If, however, the brackets themselves are part of the expression whose size is changed, they are included the size change: \"size 3(a over b)\" and \"size 12(a over b)\". The sizing of the bracket-to-expression ratio does not change in any way." -msgstr "A zárójelek nem igazodnak a közrefogott kifejezések méretéhez. Ha például az \"( a over b )\" kifejezésben a zárójelek méretét a teljes hatvány méretéhez kívánja igazítani, akkor kifejezéshez szeretné igazítani, akkor írja be a használja a \"left\" és \"right\" módosítókat. A \"left(a over b right)\" forma a megfelelő méretűre igazítja a zárójelek méretét. Ha azonban a zárójelek olyan kifejezés részét képezik, amelynek változik a mérete, akkor a zárójelek mérete is változik, például: \"size 3(a over b)\" vagy \"size 12(a over b)\". A zárójel és a kifejezés méretezésének aránya nem változik." +msgstr "A zárójelek nem igazodnak a közrefogott kifejezések méretéhez. Ha például az „( a over b )” kifejezésben a zárójelek méretét a teljes hatvány méretéhez kívánja igazítani, akkor kifejezéshez szeretné igazítani, akkor írja be a használja a „left” és „right” módosítókat. A „left(a over b right)” forma a megfelelő méretűre igazítja a zárójelek méretét. Ha azonban a zárójelek olyan kifejezés részét képezik, amelynek változik a mérete, akkor a zárójelek mérete is változik, például: „size 3(a over b)” vagy „size 12(a over b)”. A zárójel és a kifejezés méretezésének aránya nem változik." #: 03091100.xhp msgctxt "" @@ -6171,7 +6171,7 @@ msgctxt "" "11\n" "help.text" msgid "Since \"left\" and \"right\" ensure unique assignment of the brackets, every single bracket can be used as an argument for these two commands, even placing right brackets on the left side, or left brackets on the right. Instead of a bracket you can use the \"none\" qualifier, which means that there is no bracket shown and that there is no space reserved for a bracket. Using this, you can create the following expressions:" -msgstr "Mivel a \"left\" és \"right\" paraméterek egyedileg vannak az egyes zárójelekhez rendelve, az ilyen kifejezésekben tetszőleges zárójel használható, akár nyitó zárójelet is tehet a jobb oldalra vagy fordítva. Ha a zárójel helyett a \"none\" minősítőt használja, akkor nem jelenik meg zárójel, és hely sem lesz számára fenntartva. Ennek megfelelően megadhat az alábbiakhoz hasonló kifejezéseket:" +msgstr "Mivel a „left” és „right” paraméterek egyedileg vannak az egyes zárójelekhez rendelve, az ilyen kifejezésekben tetszőleges zárójel használható, akár nyitó zárójelet is tehet a jobb oldalra vagy fordítva. Ha a zárójel helyett a „none” minősítőt használja, akkor nem jelenik meg zárójel, és hely sem lesz számára fenntartva. Ennek megfelelően megadhat az alábbiakhoz hasonló kifejezéseket:" #: 03091100.xhp msgctxt "" @@ -6216,7 +6216,7 @@ msgctxt "" "16\n" "help.text" msgid "The same rules apply to \"left\" and \"right\" as to the other brackets: they also work as group builders and may enclose empty expressions." -msgstr "A \"left\" és a \"right\" parancsokra ugyanazok a szabályok érvényesek, mint a többi zárójelre: csoportalkotók, és üres kifejezést is magukba zárhatnak." +msgstr "A „left” és a „right” parancsokra ugyanazok a szabályok érvényesek, mint a többi zárójelre: csoportalkotók, és üres kifejezést is magukba zárhatnak." #: 03091100.xhp msgctxt "" @@ -6243,7 +6243,7 @@ msgctxt "" "23\n" "help.text" msgid "Using \"left\" and \"right\" makes the above expression valid in $[officename] Math: \"left [2, 3 right )\". However, the brackets do not have any fixed size because they adjust to the argument. Setting a single bracket is a bit cumbersome. Therefore, there you can display single brackets with a fixed size by placing a \"\\\" (backslash) in front of normal brackets. These brackets then act like any other symbol and no longer have the special functionality of brackets; that is they do not work as group builders and their orientation corresponds to that of other symbols. See \"size *2 \\langle x \\rangle\" and \"size *2 langle x rangle\"." -msgstr "A fenti kifejezés a $[officename] Math programban a \"left\" és \"right\" parancsok segítségével valósítható meg: \"left [2, 3 right )\". A zárójeleknek nincs rögzített méretük, mivel az argumentumhoz igazodnak. Egyedülálló zárójel csak némi trükközés útján írható be. Rögzített méretű egyedülálló zárójel létrehozásához írjon egy \"\\\" (fordított törtjel) karaktert a normál zárójel elé. Ezek a zárójelek ezután az egyszerű karakterekhez hasonlóan viselkednek, és elveszítik a zárójelek különleges tulajdonságait, azaz nem képeznek csoportot, és a tájolásuk is a többi szimbóluméhoz igazodik. Például : \"size *2 \\langle x \\rangle\" and \"size *2 langle x rangle\"." +msgstr "A fenti kifejezés a $[officename] Math programban a „left” és „right” parancsok segítségével valósítható meg: „left [2, 3 right )”. A zárójeleknek nincs rögzített méretük, mivel az argumentumhoz igazodnak. Egyedülálló zárójel csak némi trükközés útján írható be. Rögzített méretű egyedülálló zárójel létrehozásához írjon egy „\\” (fordított törtjel) karaktert a normál zárójel elé. Ezek a zárójelek ezután az egyszerű karakterekhez hasonlóan viselkednek, és elveszítik a zárójelek különleges tulajdonságait, azaz nem képeznek csoportot, és a tájolásuk is a többi szimbóluméhoz igazodik. Például : „size *2 \\langle x \\rangle” és „size *2 langle x rangle”." #: 03091100.xhp msgctxt "" @@ -6333,7 +6333,7 @@ msgctxt "" "33\n" "help.text" msgid "In this way, intervals like the one above can be built in <emph>$[officename] Math</emph> without any problems: \\[2\", \"3\\) or \"\\]2\", \"3\\[ (Attention: These quotation marks are part of the entry.)" -msgstr "Ily módon a fentihez hasonló intervallumok probléma nélkül létrehozhatók a <emph>$[officename] Math</emph> programban: \\[2\", \"3\\) or \"\\]2\", \"3\\[ (Figyelem: az idézőjelek itt a képlet részei!)" +msgstr "Ily módon a fentihez hasonló intervallumok probléma nélkül létrehozhatók a <emph>$[officename] Math</emph> programban: \\[2\", \"3\\) vagy \"\\]2\", \"3\\[ (Figyelem: az idézőjelek itt a képlet részei!)" #: 03091100.xhp msgctxt "" @@ -6342,7 +6342,7 @@ msgctxt "" "34\n" "help.text" msgid "Please note that the quotation marks must be entered and can be obtained with <emph>Shift+2</emph> and not with typographical quotation marks. Generally, punctuation marks (like the comma in this case) are set as text. Although it is also possible to type \"\\[2,~3\\)\" the above option is preferable. In the previous example, \"fixed size\" always describes a bracket size dependent on the font size used." -msgstr "Tartsa szem előtt, hogy az idézőjeleket a <emph>Shift+2</emph> billentyűvel kell bevinni, és nem azonosan a tipográfiai idézőjelekkel. Általában a központozási jeleket (ebben az esetben a vesszőt) szövegként kell bevinni. Bár lehetne \"\\[2,~3\\)\" alakban is írni, a fenti megoldás inkább javasolt. Az előző példában a \"rögzített méret\" a betűmérettől függő zárójelméretet határoz meg." +msgstr "Tartsa szem előtt, hogy az idézőjeleket a <emph>Shift+2</emph> billentyűvel kell bevinni, és nem azonosan a tipográfiai idézőjelekkel. Általában a központozási jeleket (ebben az esetben a vesszőt) szövegként kell bevinni. Bár lehetne „\\[2,~3\\)” alakban is írni, a fenti megoldás inkább javasolt. Az előző példában a „rögzített méret” a betűmérettől függő zárójelméretet határoz meg." #: 03091100.xhp msgctxt "" @@ -6351,7 +6351,7 @@ msgctxt "" "35\n" "help.text" msgid "Nesting groups within each other is relatively problem-free. In the formula hat \"{a + b}\" the \"hat\" is displayed simply over the center of \"{a + b}\". Also, \"color red lceil a rceil\" and \"grave hat langle x * y rangle\" work as expected. The result of the latter can be compared to \"grave {hat langle x * y rangle}\". These attributes do not compete, but rather can be combined." -msgstr "A csoportok egymásba ágyazása viszonylag problémamentesen megoldható. A \"hat \"{a + b}\"\" parancsban a \"kalap\" az \"{a + b}\" közepe fölött jelenik meg. Hasonlóan a \"color red lceil a rceil\" és \"grave hat langle x * y rangle\" is az elvártnak megfelelően működik. Érdemes összehasonlítani ez utóbbi eredményét a \"grave {hat langle x * y rangle}\" kifejezéssel. Ezen jellemzők nem ütköznek egymással, hanem kombinálhatóak." +msgstr "A csoportok egymásba ágyazása viszonylag problémamentesen megoldható. A „hat \"{a + b}\"” parancsban a „kalap” az „{a + b}” közepe fölött jelenik meg. Hasonlóan a „color red lceil a rceil” és „grave hat langle x * y rangle” is az elvártnak megfelelően működik. Érdemes összehasonlítani ez utóbbi eredményét a „grave {hat langle x * y rangle}” kifejezéssel. Ezen jellemzők nem ütköznek egymással, hanem kombinálhatóak." #: 03091100.xhp msgctxt "" @@ -6360,7 +6360,7 @@ msgctxt "" "36\n" "help.text" msgid "This differs slightly for competing or mutually influencing attributes. This is often the case with font attributes. For example, which color does the b have in \"color yellow color red (a + color green b)\", or which size does it have in \"size *4 (a + size /2 b)\"? Given a base size of 12, does it have the size 48, 6 or even 24 (which could be seen as a combination)? The following are basic resolution rules, which will be followed consistently in the future. In general, the rules apply to all group operations. This only has a visible effect on the font attributes, like \"bold\", \"ital\", \"phantom\", \"size\", \"color\" and \"font\":" -msgstr "Nem igaz ez az ütköző vagy egymásra hatással levő jellemzők esetében. A betűjellemzőknél gyakran ez a helyzet. Például milyen színű b a következő kifejezésben: \"color yellow color red (a + color green b)\", vagy mekkora a mérete ebben: \"size *4 (a + size /2 b)\"? Ha az alapméret 12, akkor 48, 6, vagy esetleg 24 (melyik tekinthető kombinációnak)? Az alábbi alapvető feloldási szabályokat a továbbiakban következetesen betartjuk. Általában a szabályok minden csoportosítási műveletre vonatkoznak. Ennek csak a betűjellemzőknél van látható jele, például \"bold\", \"ital\", \"phantom\", \"size\", \"color\" és \"font\":" +msgstr "Nem igaz ez az ütköző vagy egymásra hatással levő jellemzők esetében. A betűjellemzőknél gyakran ez a helyzet. Például milyen színű b a következő kifejezésben: „color yellow color red (a + color green b)”, vagy mekkora a mérete ebben: „size *4 (a + size /2 b)”? Ha az alapméret 12, akkor 48, 6, vagy esetleg 24 (melyik tekinthető kombinációnak)? Az alábbi alapvető feloldási szabályokat a továbbiakban következetesen betartjuk. Általában a szabályok minden csoportosítási műveletre vonatkoznak. Ennek csak a betűjellemzőknél van látható jele, például „bold”, „ital”, „phantom”, „size”, „color” és „font”:" #: 03091100.xhp msgctxt "" @@ -6369,7 +6369,7 @@ msgctxt "" "37\n" "help.text" msgid "Group operations in sequence are treated as if every single operation is enclosed by braces. They are nested, and in every level there can be no more than one operation. Here is an example of a formula with many group operations: \"size 12 color red font sans size -5 (a + size 8 b)\" like \"{size 12{color red{font sans{size -5 (a + {size 8 b})}}}}\"." -msgstr "Az egymást követő csoportműveletek úgy viselkednek, mintha minden egyes műveletet zárójelek fognának közre. A műveletek egymásba vannak ágyazva, és minden szinten csak egyetlen művelet található. Következzék itt egy példaképlet, amelyben több csoportművelet is van: \"size 12 color red font sans size -5 (a + size 8 b)\" like \"{size 12{color red{font sans{size -5 (a + {size 8 b})}}}}\"." +msgstr "Az egymást követő csoportműveletek úgy viselkednek, mintha minden egyes műveletet zárójelek fognának közre. A műveletek egymásba vannak ágyazva, és minden szinten csak egyetlen művelet található. Következzék itt egy példaképlet, amelyben több csoportművelet is van: „size 12 color red font sans size -5 (a + size 8 b)\" like \"{size 12{color red{font sans{size -5 (a + {size 8 b})}}}}”." #: 03091100.xhp msgctxt "" @@ -6378,7 +6378,7 @@ msgctxt "" "38\n" "help.text" msgid "This example formula is then interpreted from left to right. The operations only affect its corresponding group (or expression). Operations further to the right \"replace\" or \"combine themselves with\" their predecessors." -msgstr "Ezt a példaképlet balról jobbra haladva értelmeződik. A műveletek csak a hozzájuk tartozó csoportra (vagy kifejezésre) hatnak. A sorban később következő műveletek \"lecserélik\" az előttük állót, vagy \"egyesülnek\" vele." +msgstr "Ezt a példaképlet balról jobbra haladva értelmeződik. A műveletek csak a hozzájuk tartozó csoportra (vagy kifejezésre) hatnak. A sorban később következő műveletek „lecserélik” az előttük állót, vagy „egyesülnek” vele." #: 03091100.xhp msgctxt "" @@ -6387,7 +6387,7 @@ msgctxt "" "39\n" "help.text" msgid "A group operation does not have any effect on higher-level operations but rather affects only lower-level groups and expressions, including their brackets and super-/subscripts. For example, \"a + size *2 (b * size -8 c_1)^2\"" -msgstr "A csoportműveleteknek nincs hatása a magasabb szintű műveletekre, de befolyásolja az összes alacsonyabb szintű csoportot és kifejezést, beleértve a zárójeleket, és a felső illetve alsó indexeket is. Például: \"a + size *2 (b * size -8 c_1)^2\"" +msgstr "A csoportműveleteknek nincs hatása a magasabb szintű műveletekre, de befolyásolja az összes alacsonyabb szintű csoportot és kifejezést, beleértve a zárójeleket, és a felső illetve alsó indexeket is. Például: „a + size *2 (b * size -8 c_1)^2”" #: 03091100.xhp msgctxt "" @@ -6396,7 +6396,7 @@ msgctxt "" "40\n" "help.text" msgid "\"color ...\" and \"font ...\" as well as \"size n\" (n is a decimal) replace any preceding operations of the same type" -msgstr "A \"color ...\" és \"font ...\", valamint \"size n\" (ahol n egész decimális szám) műveletek az összes előttük álló azonos műveletet lecserélik." +msgstr "A „color ...” és „font ...”, valamint „size n” (ahol n egész decimális szám) műveletek az összes előttük álló azonos műveletet lecserélik." #: 03091100.xhp msgctxt "" @@ -6405,7 +6405,7 @@ msgctxt "" "41\n" "help.text" msgid "for \"size +n\", \"size -n\", \"size *n\", and \"size /n\" the effects of the operations are combined," -msgstr "A \"size +n\", \"size -n\", \"size *n\", és \"size /n\" operátoroknál a hatás összeadódik." +msgstr "A „size +n”, „size -n”, „size *n”, és „size /n” operátoroknál a hatás összeadódik." #: 03091100.xhp msgctxt "" @@ -6414,7 +6414,7 @@ msgctxt "" "42\n" "help.text" msgid "\"size *2 size -5 a\" would be double the starting size minus 5" -msgstr "A \"size *2 size -5 a\" esetén a mérete a kiinduló méret duplája mínusz 5 lesz." +msgstr "A „size *2 size -5 a” esetén a mérete a kiinduló méret duplája mínusz 5 lesz." #: 03091100.xhp msgctxt "" @@ -6423,7 +6423,7 @@ msgctxt "" "43\n" "help.text" msgid "\"font sans ( a + font serif b)\"" -msgstr "\"font sans ( a + font serif b)\"" +msgstr "„font sans ( a + font serif b)”" #: 03091100.xhp msgctxt "" @@ -6432,7 +6432,7 @@ msgctxt "" "44\n" "help.text" msgid "\"size *2 ( a + size /2 b )\"" -msgstr "\"size *2 ( a + size /2 b )\"" +msgstr "„size *2 ( a + size /2 b )”" #: 03091100.xhp msgctxt "" @@ -6441,7 +6441,7 @@ msgctxt "" "50\n" "help.text" msgid "To change the size of a formula, use \"size +\" or -,*,/. Do not use \"size n\". These can easily be used in any context. This enables you to copy to other areas by using Copy and Paste, and the result remains the same. Furthermore, such expressions survive a change of base size in the menu better than when using \"size n\". If you use only \"size *\" and \"size /\" (for example, \"size *1.24 a or size /0.86 a\") the proportions remain intact." -msgstr "A képlet méretének módosításához használja a \"size +\" vagy -,*,/ parancsot. A \"size n\" forma ellenjavallt. Az ilyen képleteket bármilyen környezetben könnyen fel lehet használni. Így anélkül másolhatja a képleteket a vágólap segítségével, hogy a végeredmény megváltozna. Továbbá az ilyen kifejezések jobban követik az alapméret változását is, mint a \"size n\". Ha csak a \"size *\" és \"size /\" formát használja (például \"size *1.24 a vagy size /0.86 a\"), akkor az arányok is sértetlenek maradnak." +msgstr "A képlet méretének módosításához használja a „size +” vagy -,*,/ parancsot. A „size n” forma ellenjavallt. Az ilyen képleteket bármilyen környezetben könnyen fel lehet használni. Így anélkül másolhatja a képleteket a vágólap segítségével, hogy a végeredmény megváltozna. Továbbá az ilyen kifejezések jobban követik az alapméret változását is, mint a „size n”. Ha csak a „size *” és „size /” formát használja (például „size *1.24 a vagy size /0.86 a”), akkor az arányok is sértetlenek maradnak." #: 03091100.xhp msgctxt "" @@ -6459,7 +6459,7 @@ msgctxt "" "52\n" "help.text" msgid "Exactly identical proportions with \"size 18 a_n\" and \"size *1.5 a_n\"." -msgstr "A következő formázások hatása megegyezik: \"size 18 a_n\" és \"size *1.5 a_n\"." +msgstr "A következő formázások hatása megegyezik: „size 18 a_n” és „size *1.5 a_n”." #: 03091100.xhp msgctxt "" @@ -6468,7 +6468,7 @@ msgctxt "" "53\n" "help.text" msgid "This differs in different contexts: \"x^{size 18 a_n}\" and \"x^{size *1.5 a_n}\"" -msgstr "Ezek különböző környezetben más hatást váltanak ki: \"x^size 18 a_n\" és \"x^size *1.5 a_n\"." +msgstr "Ezek különböző környezetben más hatást váltanak ki: „x^size 18 a_n” és „x^size *1.5 a_n”." #: 03091100.xhp msgctxt "" @@ -6682,7 +6682,7 @@ msgctxt "" "13\n" "help.text" msgid "Unlike other formula editors where \"<emph>_</emph>\" and \" <emph>^</emph> \" only refer to the next character (\"a_24\" refers only to the \"2\"), $[officename] Math refers to the entire number(s)/name(s)/text. If you want to put superscripts and subscripts in sequence, the expression can be written as follows: a_2{}^3 or a^3{}_2" -msgstr "Az olyan képletszerkesztőkkel ellentétben, ahol a \"<emph>_</emph>\" és a \"<emph>^</emph>\" csak a következő karakterre vonatkozik (azaz \"a_24\"-ből csak a \"2\"-esre) a $[officename] Math programban az egész számra, névre vagy szövegre vonatkozik. Ezért ha az alsó és felső indexeket sorban akarja elhelyezni, akkor ezt a következő módon teheti meg: a_2{}^3 vagy a^3{}_2" +msgstr "Az olyan képletszerkesztőkkel ellentétben, ahol a „<emph>_</emph>” és a „<emph>^</emph>” csak a következő karakterre vonatkozik (azaz „a_24”-ből csak a „2”-esre) a $[officename] Math programban az egész számra, névre vagy szövegre vonatkozik. Ezért ha az alsó és felső indexeket sorban akarja elhelyezni, akkor ezt a következő módon teheti meg: a_2{}^3 vagy a^3{}_2" #: 03091200.xhp msgctxt "" @@ -6691,7 +6691,7 @@ msgctxt "" "15\n" "help.text" msgid "To write tensors, <emph>$[officename] Math</emph> provides several options. In addition to the notation \"R_i{}^{jk}{}_l\", common in other applications, additional notations can be used, namely \"R_i{}^jk{}_l\" and \"{{R_i}^jk}_l\"." -msgstr "A <emph>$[officename] Math</emph> számos lehetőséget kínál tenzorok létrehozására. A más alkalmazásokban elterjedt \"R_i{}^{jk}{}_l\" jelölésen kívül további módszerek is használhatók, nevezetesen \"R_i{}^jk{}_l\" and \"{{R_i}^jk}_l\"." +msgstr "A <emph>$[officename] Math</emph> számos lehetőséget kínál tenzorok létrehozására. A más alkalmazásokban elterjedt „R_i{}^{jk}{}_l” jelölésen kívül további módszerek is használhatók, nevezetesen „R_i{}^jk{}_l” és „{{R_i}^jk}_l”." #: 03091200.xhp msgctxt "" @@ -6700,7 +6700,7 @@ msgctxt "" "16\n" "help.text" msgid "Super- and subscripts to the left of the base character can also be right-justified. To do this, the new commands \"lsub\" and \"lsup\" are used. Both commands have the same effect as \"sub\" and \"sup\", except that they are left of the base character. See also \"a lsub 2 lsup 3\"." -msgstr "Az alapkarakter bal oldalához illesztett alsó és felső indexeket jobbra is lehet igazítani. Ez az \"lsub\" és \"lsup\" parancsok segítségével érhető el. A parancsok hatása megegyezik a \"sub\" illetve \"sup\" parancsokéval, de az indexek a karakter bal oldalára kerülnek. Lásd még: \"a lsub 2 lsup 3\"." +msgstr "Az alapkarakter bal oldalához illesztett alsó és felső indexeket jobbra is lehet igazítani. Ez az „lsub” és „lsup” parancsok segítségével érhető el. A parancsok hatása megegyezik a „sub” illetve „sup” parancsokéval, de az indexek a karakter bal oldalára kerülnek. Lásd még: „a lsub 2 lsup 3”." #: 03091200.xhp msgctxt "" @@ -6718,7 +6718,7 @@ msgctxt "" "18\n" "help.text" msgid "The commands \"sub\" and \"sup\" are also available as \"rsub\" and \"rsup\"." -msgstr "A \"sub\" és \"sup\" parancsok \"rsub\" illetve \"rsup\" formában is léteznek." +msgstr "A „sub” és „sup” parancsok „rsub” illetve „rsup” formában is léteznek." #: 03091200.xhp msgctxt "" @@ -6727,7 +6727,7 @@ msgctxt "" "20\n" "help.text" msgid "Using the \"csub\" and \"csup\" commands, you can write super- and subscripts directly above or below a character. An example is \"a csub y csup x\". Combinations of indexes and exponents together are also possible: \"abc_1^2 lsub 3 lsup 4 csub 55555 csup 66666\"." -msgstr "A \"csub\" és \"csup\" parancsokkal az alsó és felső indexeket közvetlenül karakterek alá és fölé lehet igazítani. Példa: \"a csub y csup x\". Indexeket és kitevőket egyszerre lehet alkalmazni, például: \"abc_1^2 lsub 3 lsup 4 csub 55555 csup 66666\"." +msgstr "A „csub” és „csup” parancsokkal az alsó és felső indexeket közvetlenül karakterek alá és fölé lehet igazítani. Példa: „a csub y csup x”. Indexeket és kitevőket egyszerre lehet alkalmazni, például: „abc_1^2 lsub 3 lsup 4 csub 55555 csup 66666”." #: 03091200.xhp msgctxt "" @@ -6736,7 +6736,7 @@ msgctxt "" "21\n" "help.text" msgid "Super- and subscripts can be attached to most unary and binary operators. Two examples: \"a div_2 b a<csub n b +_2 h\" and \"a toward csub f b x toward csup f y\"." -msgstr "Az alsó és felső indexet a legtöbb egy- és kétoperandusú operátorhoz hozzá lehet csatolni. Két példa: \"a div_2 b a<csub n b +_2 h\" és \"a toward csub f b x toward csup f y\"." +msgstr "Az alsó és felső indexet a legtöbb egy- és kétoperandusú operátorhoz hozzá lehet csatolni. Két példa: „a div_2 b a<csub n b +_2 h” és „a toward csub f b x toward csup f y”." #: 03091200.xhp msgctxt "" @@ -6849,7 +6849,7 @@ msgctxt "" "3\n" "help.text" msgid "The factorial is not scaled (example: \"fact stack{a#b}\" and \"fact {a over b}\") but is oriented using the baseline or center of the arguments." -msgstr "A faktoriálisjel nem lehet méreteződik (például: \"fact stack{a#b}\" és \"fact {a over b}\"), de igazodik az argumentumok alapvonalához illetve középvonalához." +msgstr "A faktoriálisjel nem lehet méreteződik (például: „fact stack{a#b}” és „fact {a over b}”), de igazodik az argumentumok alapvonalához illetve középvonalához." #: 03091400.xhp msgctxt "" @@ -6858,7 +6858,7 @@ msgctxt "" "4\n" "help.text" msgid "Brackets always have a fixed size as well. This applies to all symbols that can be used as brackets. Compare \"(((a)))\", \"( stack{a#b#c})\", \"(a over b)\"." -msgstr "A zárójeleknek is rögzített a méretük. Ez minden olyan szimbólumra is igaz, amely használható zárójelként. Például: \"(((a)))\", \"( stack{a#b#c})\", \"(a over b)\"." +msgstr "A zárójeleknek is rögzített a méretük. Ez minden olyan szimbólumra is igaz, amely használható zárójelként. Például: „(((a)))”, „( stack{a#b#c})”, „(a over b)”." #: 03091400.xhp msgctxt "" @@ -6867,7 +6867,7 @@ msgctxt "" "7\n" "help.text" msgid "Brackets preceded by \"left\" or \"right\", however, are always adjusted to the argument. See \"left(left(left(a right)right)right)\", \"left(stack{a#b#c}right)\", \"left(a over b right)\"." -msgstr "Ha azonban a \"left\" vagy \"right\" parancs áll a zárójel előtt, akkor az mindig az argumentum méretéhez igazodik. Lásd: \"left(left(left(a right)right)right)\", \"left(stack{a#b#c}right)\", \"left(a over b right)\"." +msgstr "Ha azonban a „left” vagy „right” parancs áll a zárójel előtt, akkor az mindig az argumentum méretéhez igazodik. Lásd: „left(left(left(a right)right)right)”, „left(stack{a#b#c}right)”, „left(a over b right)”." #: 03091400.xhp msgctxt "" @@ -6959,7 +6959,7 @@ msgctxt "" "par_id3151388\n" "help.text" msgid "Symbol in Elements pane" -msgstr "" +msgstr "Szimbólum a Képletelemek panelen" #: 03091501.xhp msgctxt "" @@ -6976,7 +6976,7 @@ msgctxt "" "par_id3156276\n" "help.text" msgid "<image id=\"Graphic10\" src=\"res/helpimg/starmath/un21209.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"Graphic10\" src=\"res/helpimg/starmath/un21209.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" #: 03091501.xhp msgctxt "" @@ -6993,7 +6993,7 @@ msgctxt "" "par_id3163824\n" "help.text" msgid "<image id=\"Graphic21\" src=\"res/helpimg/starmath/un21202.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"Graphic21\" src=\"res/helpimg/starmath/un21202.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" #: 03091501.xhp msgctxt "" @@ -7010,7 +7010,7 @@ msgctxt "" "par_id3147514\n" "help.text" msgid "<image id=\"Graphic4\" src=\"res/helpimg/starmath/un21204.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"Graphic4\" src=\"res/helpimg/starmath/un21204.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" #: 03091501.xhp msgctxt "" @@ -7027,7 +7027,7 @@ msgctxt "" "par_id3154821\n" "help.text" msgid "<image id=\"Graphic13\" src=\"res/helpimg/starmath/un21212.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"Graphic13\" src=\"res/helpimg/starmath/un21212.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" #: 03091501.xhp msgctxt "" @@ -7044,7 +7044,7 @@ msgctxt "" "par_id3155179\n" "help.text" msgid "<image id=\"Graphic7\" src=\"res/helpimg/starmath/un21208.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"Graphic7\" src=\"res/helpimg/starmath/un21208.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" #: 03091501.xhp msgctxt "" @@ -7061,7 +7061,7 @@ msgctxt "" "par_id3150832\n" "help.text" msgid "<image id=\"Graphic6\" src=\"res/helpimg/starmath/un21205.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"Graphic6\" src=\"res/helpimg/starmath/un21205.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" #: 03091501.xhp msgctxt "" @@ -7078,7 +7078,7 @@ msgctxt "" "par_id3145590\n" "help.text" msgid "<image id=\"Graphic2\" src=\"res/helpimg/starmath/un21201.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"Graphic2\" src=\"res/helpimg/starmath/un21201.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" #: 03091501.xhp msgctxt "" @@ -7095,7 +7095,7 @@ msgctxt "" "par_id3150764\n" "help.text" msgid "<image id=\"Graphic3\" src=\"res/helpimg/starmath/un21203.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"Graphic3\" src=\"res/helpimg/starmath/un21203.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" #: 03091501.xhp msgctxt "" @@ -7120,7 +7120,7 @@ msgctxt "" "par_id3146336\n" "help.text" msgid "<image id=\"Graphic14\" src=\"res/helpimg/starmath/un21214.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"Graphic14\" src=\"res/helpimg/starmath/un21214.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" #: 03091501.xhp msgctxt "" @@ -7187,7 +7187,7 @@ msgctxt "" "par_id3147212\n" "help.text" msgid "<image id=\"Graphic8\" src=\"res/helpimg/starmath/un21206.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"Graphic8\" src=\"res/helpimg/starmath/un21206.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" #: 03091501.xhp msgctxt "" @@ -7204,7 +7204,7 @@ msgctxt "" "par_id3151130\n" "help.text" msgid "<image id=\"Graphic16\" src=\"res/helpimg/starmath/un21221.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"Graphic16\" src=\"res/helpimg/starmath/un21221.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" #: 03091501.xhp msgctxt "" @@ -7221,7 +7221,7 @@ msgctxt "" "par_id3147470\n" "help.text" msgid "<image id=\"Graphic12\" src=\"res/helpimg/starmath/un21211.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"Graphic12\" src=\"res/helpimg/starmath/un21211.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" #: 03091501.xhp msgctxt "" @@ -7238,7 +7238,7 @@ msgctxt "" "par_id3151319\n" "help.text" msgid "<image id=\"Graphic5\" src=\"res/helpimg/starmath/un21213.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"Graphic5\" src=\"res/helpimg/starmath/un21213.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_\">Icon</alt></image>" #: 03091501.xhp msgctxt "" @@ -7331,7 +7331,7 @@ msgctxt "" "par_id3147065\n" "help.text" msgid "<image id=\"Graphic15\" src=\"res/helpimg/starmath/un21215.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"Graphic15\" src=\"res/helpimg/starmath/un21215.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" #: 03091501.xhp msgctxt "" @@ -7365,7 +7365,7 @@ msgctxt "" "par_id3148873\n" "help.text" msgid "<image id=\"Graphic11\" src=\"res/helpimg/starmath/un21210.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"Graphic11\" src=\"res/helpimg/starmath/un21210.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" #: 03091501.xhp msgctxt "" @@ -7382,7 +7382,7 @@ msgctxt "" "par_id3147073\n" "help.text" msgid "<image id=\"Graphic9\" src=\"res/helpimg/starmath/un21207.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"Graphic9\" src=\"res/helpimg/starmath/un21207.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_\">Icon</alt></image>" #: 03091501.xhp msgctxt "" @@ -7465,7 +7465,7 @@ msgctxt "" "par_id3154032\n" "help.text" msgid "Symbol in Elements pane" -msgstr "" +msgstr "Szimbólum a Képletelemek panelen" #: 03091502.xhp msgctxt "" @@ -7490,7 +7490,7 @@ msgctxt "" "par_id3156247\n" "help.text" msgid "<image id=\"img_id3156253\" src=\"res/helpimg/starmath/bi21305.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3156253\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3156253\" src=\"res/helpimg/starmath/bi21305.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3156253\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7532,7 +7532,7 @@ msgctxt "" "par_id3153031\n" "help.text" msgid "<image id=\"img_id3153037\" src=\"res/helpimg/starmath/bi21313.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153037\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153037\" src=\"res/helpimg/starmath/bi21313.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153037\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7557,7 +7557,7 @@ msgctxt "" "par_id3155548\n" "help.text" msgid "<image id=\"img_id3155554\" src=\"res/helpimg/starmath/bi21302.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155554\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155554\" src=\"res/helpimg/starmath/bi21302.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155554\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7574,7 +7574,7 @@ msgctxt "" "par_id3150600\n" "help.text" msgid "<image id=\"img_id3150606\" src=\"res/helpimg/starmath/bi21301.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150606\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3150606\" src=\"res/helpimg/starmath/bi21301.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150606\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7599,7 +7599,7 @@ msgctxt "" "par_id3152978\n" "help.text" msgid "<image id=\"img_id3152984\" src=\"res/helpimg/starmath/bi21306.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3152984\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3152984\" src=\"res/helpimg/starmath/bi21306.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3152984\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7624,7 +7624,7 @@ msgctxt "" "par_id3152741\n" "help.text" msgid "<image id=\"img_id3153876\" src=\"res/helpimg/starmath/bi21314.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153876\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153876\" src=\"res/helpimg/starmath/bi21314.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153876\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7658,7 +7658,7 @@ msgctxt "" "par_id3150840\n" "help.text" msgid "<image id=\"img_id3150846\" src=\"res/helpimg/starmath/bi21307.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150846\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3150846\" src=\"res/helpimg/starmath/bi21307.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150846\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7684,7 +7684,7 @@ msgctxt "" "par_id3154050\n" "help.text" msgid "<image id=\"img_id3154056\" src=\"res/helpimg/starmath/bi21322.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154056\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154056\" src=\"res/helpimg/starmath/bi21322.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154056\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7701,7 +7701,7 @@ msgctxt "" "par_id3150419\n" "help.text" msgid "<image id=\"img_id3150425\" src=\"res/helpimg/starmath/bi21324.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150425\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3150425\" src=\"res/helpimg/starmath/bi21324.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150425\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7718,7 +7718,7 @@ msgctxt "" "par_id3154424\n" "help.text" msgid "<image id=\"img_id3154429\" src=\"res/helpimg/starmath/bi21325.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154429\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154429\" src=\"res/helpimg/starmath/bi21325.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154429\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7735,7 +7735,7 @@ msgctxt "" "par_id3155410\n" "help.text" msgid "<image id=\"img_id3155417\" src=\"res/helpimg/starmath/bi21326.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155417\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155417\" src=\"res/helpimg/starmath/bi21326.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155417\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7752,7 +7752,7 @@ msgctxt "" "par_id3153373\n" "help.text" msgid "<image id=\"img_id3153379\" src=\"res/helpimg/starmath/bi21303.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153379\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153379\" src=\"res/helpimg/starmath/bi21303.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153379\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7769,7 +7769,7 @@ msgctxt "" "par_id3149139\n" "help.text" msgid "<image id=\"img_id3149145\" src=\"res/helpimg/starmath/bi21310.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149145\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149145\" src=\"res/helpimg/starmath/bi21310.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149145\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7786,7 +7786,7 @@ msgctxt "" "par_id3153648\n" "help.text" msgid "<image id=\"img_id3153653\" src=\"res/helpimg/starmath/bi21309.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153653\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153653\" src=\"res/helpimg/starmath/bi21309.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153653\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7803,7 +7803,7 @@ msgctxt "" "par_id3145098\n" "help.text" msgid "<image id=\"img_id3145104\" src=\"res/helpimg/starmath/bi21323.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3145104\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3145104\" src=\"res/helpimg/starmath/bi21323.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3145104\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7820,7 +7820,7 @@ msgctxt "" "par_id3152809\n" "help.text" msgid "<image id=\"img_id3150267\" src=\"res/helpimg/starmath/bi21304.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150267\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3150267\" src=\"res/helpimg/starmath/bi21304.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150267\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7837,7 +7837,7 @@ msgctxt "" "par_id3153161\n" "help.text" msgid "<image id=\"img_id3153168\" src=\"res/helpimg/starmath/bi21308.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153168\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153168\" src=\"res/helpimg/starmath/bi21308.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153168\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7854,7 +7854,7 @@ msgctxt "" "par_id3150336\n" "help.text" msgid "<image id=\"img_id3148396\" src=\"res/helpimg/starmath/bi21312.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3148396\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148396\" src=\"res/helpimg/starmath/bi21312.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3148396\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7871,7 +7871,7 @@ msgctxt "" "par_id3154416\n" "help.text" msgid "<image id=\"img_id3154422\" src=\"res/helpimg/starmath/bi21315.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154422\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154422\" src=\"res/helpimg/starmath/bi21315.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154422\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7888,7 +7888,7 @@ msgctxt "" "par_id3149265\n" "help.text" msgid "<image id=\"img_id3149271\" src=\"res/helpimg/starmath/bi21311.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149271\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149271\" src=\"res/helpimg/starmath/bi21311.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149271\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7905,7 +7905,7 @@ msgctxt "" "par_id3153957\n" "help.text" msgid "<image id=\"img_id3153962\" src=\"res/helpimg/starmath/bi21316.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153962\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153962\" src=\"res/helpimg/starmath/bi21316.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153962\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7922,7 +7922,7 @@ msgctxt "" "par_id3153958\n" "help.text" msgid "<image id=\"img_id3153963\" src=\"res/helpimg/starmath/bi21327.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153963\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153963\" src=\"res/helpimg/starmath/bi21327.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153963\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7939,7 +7939,7 @@ msgctxt "" "par_id3153959\n" "help.text" msgid "<image id=\"img_id3153964\" src=\"res/helpimg/starmath/bi21328.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153964\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153964\" src=\"res/helpimg/starmath/bi21328.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153964\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7956,7 +7956,7 @@ msgctxt "" "par_id3153960\n" "help.text" msgid "<image id=\"img_id3153965\" src=\"res/helpimg/starmath/bi21329.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153965\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153965\" src=\"res/helpimg/starmath/bi21329.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153965\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7973,7 +7973,7 @@ msgctxt "" "par_id3153961\n" "help.text" msgid "<image id=\"img_id3153966\" src=\"res/helpimg/starmath/bi21330.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153966\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153966\" src=\"res/helpimg/starmath/bi21330.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153966\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -7990,7 +7990,7 @@ msgctxt "" "par_id3153962\n" "help.text" msgid "<image id=\"img_id3153967\" src=\"res/helpimg/starmath/bi21331.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153967\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153967\" src=\"res/helpimg/starmath/bi21331.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153967\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -8007,7 +8007,7 @@ msgctxt "" "par_id3153963\n" "help.text" msgid "<image id=\"img_id3153968\" src=\"res/helpimg/starmath/bi21332.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153968\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153968\" src=\"res/helpimg/starmath/bi21332.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153968\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -8024,7 +8024,7 @@ msgctxt "" "par_id3153964\n" "help.text" msgid "<image id=\"img_id3153969\" src=\"res/helpimg/starmath/bi21333.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153969\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153969\" src=\"res/helpimg/starmath/bi21333.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153969\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -8041,7 +8041,7 @@ msgctxt "" "par_id3153965\n" "help.text" msgid "<image id=\"img_id3153970\" src=\"res/helpimg/starmath/bi21334.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153970\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153970\" src=\"res/helpimg/starmath/bi21334.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153970\">Icon</alt></image>" #: 03091502.xhp msgctxt "" @@ -8108,7 +8108,7 @@ msgctxt "" "par_id3145724\n" "help.text" msgid "Symbol in Elements pane" -msgstr "" +msgstr "Szimbólum a Képletelemek panelen" #: 03091503.xhp msgctxt "" @@ -8125,7 +8125,7 @@ msgctxt "" "par_id3146505\n" "help.text" msgid "<image id=\"img_id3146512\" src=\"res/helpimg/starmath/op22001.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3146512\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3146512\" src=\"res/helpimg/starmath/op22001.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3146512\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8142,7 +8142,7 @@ msgctxt "" "par_id3159379\n" "help.text" msgid "<image id=\"img_id3159386\" src=\"res/helpimg/starmath/op22002.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3159386\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3159386\" src=\"res/helpimg/starmath/op22002.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3159386\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8159,7 +8159,7 @@ msgctxt "" "par_id3158166\n" "help.text" msgid "<image id=\"img_id3158173\" src=\"res/helpimg/starmath/op21401.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3158173\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3158173\" src=\"res/helpimg/starmath/op21401.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3158173\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8176,7 +8176,7 @@ msgctxt "" "par_id3152402\n" "help.text" msgid "<image id=\"img_id3152408\" src=\"res/helpimg/starmath/op21405.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3152408\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3152408\" src=\"res/helpimg/starmath/op21405.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3152408\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8193,7 +8193,7 @@ msgctxt "" "par_id3158212\n" "help.text" msgid "<image id=\"img_id3158218\" src=\"res/helpimg/starmath/op21402.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3158218\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3158218\" src=\"res/helpimg/starmath/op21402.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3158218\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8210,7 +8210,7 @@ msgctxt "" "par_id3158819\n" "help.text" msgid "<image id=\"img_id3158825\" src=\"res/helpimg/starmath/op21413.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3158825\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3158825\" src=\"res/helpimg/starmath/op21413.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3158825\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8227,7 +8227,7 @@ msgctxt "" "par_id3158966\n" "help.text" msgid "<image id=\"img_id3158973\" src=\"res/helpimg/starmath/op21414.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3158973\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3158973\" src=\"res/helpimg/starmath/op21414.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3158973\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8244,7 +8244,7 @@ msgctxt "" "par_id3159114\n" "help.text" msgid "<image id=\"img_id3159120\" src=\"res/helpimg/starmath/op21415.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3159120\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3159120\" src=\"res/helpimg/starmath/op21415.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3159120\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8261,7 +8261,7 @@ msgctxt "" "par_id3163002\n" "help.text" msgid "<image id=\"img_id3163008\" src=\"res/helpimg/starmath/op21416.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3163008\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3163008\" src=\"res/helpimg/starmath/op21416.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3163008\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8286,7 +8286,7 @@ msgctxt "" "par_id3158359\n" "help.text" msgid "<image id=\"img_id3158366\" src=\"res/helpimg/starmath/op21403.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3158366\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3158366\" src=\"res/helpimg/starmath/op21403.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3158366\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8303,7 +8303,7 @@ msgctxt "" "par_id3156480\n" "help.text" msgid "<image id=\"img_id3156486\" src=\"res/helpimg/starmath/op21421.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3156486\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3156486\" src=\"res/helpimg/starmath/op21421.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3156486\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8328,7 +8328,7 @@ msgctxt "" "par_id3145932\n" "help.text" msgid "<image id=\"img_id3145938\" src=\"res/helpimg/starmath/op21407.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3145938\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3145938\" src=\"res/helpimg/starmath/op21407.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3145938\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8345,7 +8345,7 @@ msgctxt "" "par_id3163149\n" "help.text" msgid "<image id=\"img_id3163156\" src=\"res/helpimg/starmath/op21417.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3163156\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3163156\" src=\"res/helpimg/starmath/op21417.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3163156\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8362,7 +8362,7 @@ msgctxt "" "par_id3163444\n" "help.text" msgid "<image id=\"img_id3163450\" src=\"res/helpimg/starmath/op21419.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3163450\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3163450\" src=\"res/helpimg/starmath/op21419.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3163450\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8379,7 +8379,7 @@ msgctxt "" "par_id3163591\n" "help.text" msgid "<image id=\"img_id3163598\" src=\"res/helpimg/starmath/op21420.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3163598\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3163598\" src=\"res/helpimg/starmath/op21420.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3163598\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8396,7 +8396,7 @@ msgctxt "" "par_id3163296\n" "help.text" msgid "<image id=\"img_id3163303\" src=\"res/helpimg/starmath/op21418.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3163303\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3163303\" src=\"res/helpimg/starmath/op21418.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3163303\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8413,7 +8413,7 @@ msgctxt "" "par_id3146357\n" "help.text" msgid "<image id=\"img_id3146363\" src=\"res/helpimg/starmath/op21408.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3146363\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3146363\" src=\"res/helpimg/starmath/op21408.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3146363\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8430,7 +8430,7 @@ msgctxt "" "par_id3146652\n" "help.text" msgid "<image id=\"img_id3146659\" src=\"res/helpimg/starmath/op21409.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3146659\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3146659\" src=\"res/helpimg/starmath/op21409.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3146659\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8447,7 +8447,7 @@ msgctxt "" "par_id3146800\n" "help.text" msgid "<image id=\"img_id3146806\" src=\"res/helpimg/starmath/op21410.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3146806\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3146806\" src=\"res/helpimg/starmath/op21410.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3146806\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8464,7 +8464,7 @@ msgctxt "" "par_id3158524\n" "help.text" msgid "<image id=\"img_id3158530\" src=\"res/helpimg/starmath/op21411.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3158530\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3158530\" src=\"res/helpimg/starmath/op21411.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3158530\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8481,7 +8481,7 @@ msgctxt "" "par_id3158671\n" "help.text" msgid "<image id=\"img_id3158678\" src=\"res/helpimg/starmath/op21412.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3158678\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3158678\" src=\"res/helpimg/starmath/op21412.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3158678\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8498,7 +8498,7 @@ msgctxt "" "par_id3152548\n" "help.text" msgid "<image id=\"img_id3152555\" src=\"res/helpimg/starmath/op21406.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3152555\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3152555\" src=\"res/helpimg/starmath/op21406.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3152555\">Icon</alt></image>" #: 03091503.xhp msgctxt "" @@ -8547,7 +8547,7 @@ msgctxt "" "par_id3156681\n" "help.text" msgid "Symbol in Elements pane" -msgstr "" +msgstr "Szimbólum a Képletelemek panelen" #: 03091504.xhp msgctxt "" @@ -8564,7 +8564,7 @@ msgctxt "" "par_id3166018\n" "help.text" msgid "<image id=\"img_id3166024\" src=\"res/helpimg/starmath/fu21501.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3166024\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3166024\" src=\"res/helpimg/starmath/fu21501.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3166024\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8581,7 +8581,7 @@ msgctxt "" "par_id3164840\n" "help.text" msgid "<image id=\"img_id3164847\" src=\"res/helpimg/starmath/fu21518.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3164847\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3164847\" src=\"res/helpimg/starmath/fu21518.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3164847\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8598,7 +8598,7 @@ msgctxt "" "par_id3165134\n" "help.text" msgid "<image id=\"img_id3165141\" src=\"res/helpimg/starmath/fu21520.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3165141\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3165141\" src=\"res/helpimg/starmath/fu21520.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3165141\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8615,7 +8615,7 @@ msgctxt "" "par_id3166312\n" "help.text" msgid "<image id=\"img_id3166318\" src=\"res/helpimg/starmath/fu21522.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3166318\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3166318\" src=\"res/helpimg/starmath/fu21522.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3166318\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8632,7 +8632,7 @@ msgctxt "" "par_id3143430\n" "help.text" msgid "<image id=\"img_id3143436\" src=\"res/helpimg/starmath/fu21524.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3143436\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3143436\" src=\"res/helpimg/starmath/fu21524.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3143436\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8649,7 +8649,7 @@ msgctxt "" "par_id3152238\n" "help.text" msgid "<image id=\"img_id3152244\" src=\"res/helpimg/starmath/fu21517.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3152244\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3152244\" src=\"res/helpimg/starmath/fu21517.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3152244\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8666,7 +8666,7 @@ msgctxt "" "par_id3164987\n" "help.text" msgid "<image id=\"img_id3164994\" src=\"res/helpimg/starmath/fu21519.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3164994\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3164994\" src=\"res/helpimg/starmath/fu21519.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3164994\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8683,7 +8683,7 @@ msgctxt "" "par_id3166165\n" "help.text" msgid "<image id=\"img_id3166172\" src=\"res/helpimg/starmath/fu21521.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3166172\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3166172\" src=\"res/helpimg/starmath/fu21521.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3166172\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8700,7 +8700,7 @@ msgctxt "" "par_id3166459\n" "help.text" msgid "<image id=\"img_id3166465\" src=\"res/helpimg/starmath/fu21523.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3166465\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3166465\" src=\"res/helpimg/starmath/fu21523.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3166465\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8726,7 +8726,7 @@ msgctxt "" "par_id3151649\n" "help.text" msgid "<image id=\"img_id3151656\" src=\"res/helpimg/starmath/fu21510.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3151656\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3151656\" src=\"res/helpimg/starmath/fu21510.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3151656\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8743,7 +8743,7 @@ msgctxt "" "par_id3165576\n" "help.text" msgid "<image id=\"img_id3165583\" src=\"res/helpimg/starmath/fu21514.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3165583\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3165583\" src=\"res/helpimg/starmath/fu21514.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3165583\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8760,7 +8760,7 @@ msgctxt "" "par_id3151944\n" "help.text" msgid "<image id=\"img_id3151950\" src=\"res/helpimg/starmath/fu21512.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3151950\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3151950\" src=\"res/helpimg/starmath/fu21512.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3151950\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8777,7 +8777,7 @@ msgctxt "" "par_id3165871\n" "help.text" msgid "<image id=\"img_id3165877\" src=\"res/helpimg/starmath/fu21516.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3165877\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3165877\" src=\"res/helpimg/starmath/fu21516.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3165877\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8794,7 +8794,7 @@ msgctxt "" "par_id3157074\n" "help.text" msgid "<image id=\"img_id3157080\" src=\"res/helpimg/starmath/fu21507.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3157080\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3157080\" src=\"res/helpimg/starmath/fu21507.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3157080\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8811,7 +8811,7 @@ msgctxt "" "par_id3143577\n" "help.text" msgid "<image id=\"img_id3143584\" src=\"res/helpimg/starmath/fu21502.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3143584\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3143584\" src=\"res/helpimg/starmath/fu21502.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3143584\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8828,7 +8828,7 @@ msgctxt "" "par_id3156780\n" "help.text" msgid "<image id=\"img_id3156786\" src=\"res/helpimg/starmath/fu21505.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3156786\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3156786\" src=\"res/helpimg/starmath/fu21505.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3156786\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8845,7 +8845,7 @@ msgctxt "" "par_id3156927\n" "help.text" msgid "<image id=\"img_id3156934\" src=\"res/helpimg/starmath/fu21506.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3156934\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3156934\" src=\"res/helpimg/starmath/fu21506.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3156934\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8862,7 +8862,7 @@ msgctxt "" "par_id3157220\n" "help.text" msgid "<image id=\"img_id3157227\" src=\"res/helpimg/starmath/fu21508.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3157227\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3157227\" src=\"res/helpimg/starmath/fu21508.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3157227\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8879,7 +8879,7 @@ msgctxt "" "par_id3165282\n" "help.text" msgid "<image id=\"img_id3165288\" src=\"res/helpimg/starmath/fu21504.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3165288\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3165288\" src=\"res/helpimg/starmath/fu21504.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3165288\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8896,7 +8896,7 @@ msgctxt "" "par_id3151502\n" "help.text" msgid "<image id=\"img_id3151509\" src=\"res/helpimg/starmath/fu21509.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3151509\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3151509\" src=\"res/helpimg/starmath/fu21509.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3151509\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8913,7 +8913,7 @@ msgctxt "" "par_id3165429\n" "help.text" msgid "<image id=\"img_id3165436\" src=\"res/helpimg/starmath/fu21513.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3165436\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3165436\" src=\"res/helpimg/starmath/fu21513.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3165436\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8930,7 +8930,7 @@ msgctxt "" "par_id3152091\n" "help.text" msgid "<image id=\"img_id3152097\" src=\"res/helpimg/starmath/fu21503.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3152097\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3152097\" src=\"res/helpimg/starmath/fu21503.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3152097\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8956,7 +8956,7 @@ msgctxt "" "par_id3157368\n" "help.text" msgid "<image id=\"img_id3157375\" src=\"res/helpimg/starmath/fu21908.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3157375\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3157375\" src=\"res/helpimg/starmath/fu21908.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3157375\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8973,7 +8973,7 @@ msgctxt "" "par_id3151796\n" "help.text" msgid "<image id=\"img_id3151803\" src=\"res/helpimg/starmath/fu21511.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3151803\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3151803\" src=\"res/helpimg/starmath/fu21511.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3151803\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -8990,7 +8990,7 @@ msgctxt "" "par_id3165723\n" "help.text" msgid "<image id=\"img_id3165730\" src=\"res/helpimg/starmath/fu21515.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3165730\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3165730\" src=\"res/helpimg/starmath/fu21515.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3165730\">Icon</alt></image>" #: 03091504.xhp msgctxt "" @@ -9039,7 +9039,7 @@ msgctxt "" "par_id3143994\n" "help.text" msgid "Symbol in Elements pane" -msgstr "" +msgstr "Szimbólum a Képletelemek panelen" #: 03091505.xhp msgctxt "" @@ -9056,7 +9056,7 @@ msgctxt "" "par_id3144534\n" "help.text" msgid "<image id=\"img_id3144541\" src=\"res/helpimg/starmath/fo21604.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3144541\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3144541\" src=\"res/helpimg/starmath/fo21604.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3144541\">Icon</alt></image>" #: 03091505.xhp msgctxt "" @@ -9073,7 +9073,7 @@ msgctxt "" "par_id3166611\n" "help.text" msgid "<image id=\"img_id3166618\" src=\"res/helpimg/starmath/fo21614.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3166618\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3166618\" src=\"res/helpimg/starmath/fo21614.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3166618\">Icon</alt></image>" #: 03091505.xhp msgctxt "" @@ -9090,7 +9090,7 @@ msgctxt "" "par_id3144681\n" "help.text" msgid "<image id=\"img_id3144688\" src=\"res/helpimg/starmath/fo21613.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3144688\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3144688\" src=\"res/helpimg/starmath/fo21613.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3144688\">Icon</alt></image>" #: 03091505.xhp msgctxt "" @@ -9107,7 +9107,7 @@ msgctxt "" "par_id3145083\n" "help.text" msgid "<image id=\"img_id3166470\" src=\"res/helpimg/starmath/fo21607.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3166470\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3166470\" src=\"res/helpimg/starmath/fo21607.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3166470\">Icon</alt></image>" #: 03091505.xhp msgctxt "" @@ -9124,7 +9124,7 @@ msgctxt "" "par_id3144936\n" "help.text" msgid "<image id=\"img_id3144943\" src=\"res/helpimg/starmath/fo21606.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3144943\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3144943\" src=\"res/helpimg/starmath/fo21606.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3144943\">Icon</alt></image>" #: 03091505.xhp msgctxt "" @@ -9141,7 +9141,7 @@ msgctxt "" "par_id3144789\n" "help.text" msgid "<image id=\"img_id3144796\" src=\"res/helpimg/starmath/fo21605.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3144796\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3144796\" src=\"res/helpimg/starmath/fo21605.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3144796\">Icon</alt></image>" #: 03091505.xhp msgctxt "" @@ -9176,7 +9176,7 @@ msgctxt "" "par_id3166719\n" "help.text" msgid "<image id=\"img_id3166725\" src=\"res/helpimg/starmath/fo21609.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3166725\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3166725\" src=\"res/helpimg/starmath/fo21609.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3166725\">Icon</alt></image>" #: 03091505.xhp msgctxt "" @@ -9193,7 +9193,7 @@ msgctxt "" "par_id3166866\n" "help.text" msgid "<image id=\"img_id3166872\" src=\"res/helpimg/starmath/fo21610.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3166872\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3166872\" src=\"res/helpimg/starmath/fo21610.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3166872\">Icon</alt></image>" #: 03091505.xhp msgctxt "" @@ -9210,7 +9210,7 @@ msgctxt "" "par_id3167013\n" "help.text" msgid "<image id=\"img_id3167020\" src=\"res/helpimg/starmath/fo21611.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3167020\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3167020\" src=\"res/helpimg/starmath/fo21611.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3167020\">Icon</alt></image>" #: 03091505.xhp msgctxt "" @@ -9236,7 +9236,7 @@ msgctxt "" "par_id3144387\n" "help.text" msgid "<image id=\"img_id3144394\" src=\"res/helpimg/starmath/fo21603.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3144394\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3144394\" src=\"res/helpimg/starmath/fo21603.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3144394\">Icon</alt></image>" #: 03091505.xhp msgctxt "" @@ -9253,7 +9253,7 @@ msgctxt "" "par_id3144240\n" "help.text" msgid "<image id=\"img_id3144247\" src=\"res/helpimg/starmath/fo21602.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3144247\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3144247\" src=\"res/helpimg/starmath/fo21602.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3144247\">Icon</alt></image>" #: 03091505.xhp msgctxt "" @@ -9270,7 +9270,7 @@ msgctxt "" "par_id3167161\n" "help.text" msgid "<image id=\"img_id3167167\" src=\"res/helpimg/starmath/fo21615.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3167167\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3167167\" src=\"res/helpimg/starmath/fo21615.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3167167\">Icon</alt></image>" #: 03091505.xhp msgctxt "" @@ -9287,7 +9287,7 @@ msgctxt "" "par_id3144093\n" "help.text" msgid "<image id=\"img_id3144100\" src=\"res/helpimg/starmath/fo21601.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3144100\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3144100\" src=\"res/helpimg/starmath/fo21601.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3144100\">Icon</alt></image>" #: 03091505.xhp msgctxt "" @@ -9336,7 +9336,7 @@ msgctxt "" "par_id3167610\n" "help.text" msgid "Symbol in Elements pane" -msgstr "" +msgstr "Szimbólum a Képletelemek panelen" #: 03091506.xhp msgctxt "" @@ -9353,7 +9353,7 @@ msgctxt "" "par_id3167709\n" "help.text" msgid "<image id=\"img_id3167716\" src=\"res/helpimg/starmath/at21701.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3167716\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3167716\" src=\"res/helpimg/starmath/at21701.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3167716\">Icon</alt></image>" #: 03091506.xhp msgctxt "" @@ -9370,7 +9370,7 @@ msgctxt "" "par_id3159771\n" "help.text" msgid "<image id=\"img_id3159778\" src=\"res/helpimg/starmath/at21705.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3159778\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3159778\" src=\"res/helpimg/starmath/at21705.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3159778\">Icon</alt></image>" #: 03091506.xhp msgctxt "" @@ -9404,7 +9404,7 @@ msgctxt "" "par_id3168153\n" "help.text" msgid "<image id=\"img_id3168160\" src=\"res/helpimg/starmath/at21704.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3168160\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3168160\" src=\"res/helpimg/starmath/at21704.png\" width=\"0.25inch\" height=\"0.25inch\"><alt id=\"alt_id3168160\">Icon</alt></image>" #: 03091506.xhp msgctxt "" @@ -9421,7 +9421,7 @@ msgctxt "" "par_id3168006\n" "help.text" msgid "<image id=\"img_id3168012\" src=\"res/helpimg/starmath/at21703.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3168012\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3168012\" src=\"res/helpimg/starmath/at21703.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3168012\">Icon</alt></image>" #: 03091506.xhp msgctxt "" @@ -9438,7 +9438,7 @@ msgctxt "" "par_id3168303\n" "help.text" msgid "<image id=\"img_id3168309\" src=\"res/helpimg/starmath/at21709.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3168309\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3168309\" src=\"res/helpimg/starmath/at21709.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3168309\">Icon</alt></image>" #: 03091506.xhp msgctxt "" @@ -9472,7 +9472,7 @@ msgctxt "" "par_id3161104\n" "help.text" msgid "<image id=\"img_id3161111\" src=\"res/helpimg/starmath/at21712.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3161111\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3161111\" src=\"res/helpimg/starmath/at21712.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3161111\">Icon</alt></image>" #: 03091506.xhp msgctxt "" @@ -9489,7 +9489,7 @@ msgctxt "" "par_id3160512\n" "help.text" msgid "<image id=\"img_id3160519\" src=\"res/helpimg/starmath/at21711.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3160519\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3160519\" src=\"res/helpimg/starmath/at21711.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3160519\">Icon</alt></image>" #: 03091506.xhp msgctxt "" @@ -9506,7 +9506,7 @@ msgctxt "" "par_id3159919\n" "help.text" msgid "<image id=\"img_id3159926\" src=\"res/helpimg/starmath/at21710.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3159926\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3159926\" src=\"res/helpimg/starmath/at21710.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3159926\">Icon</alt></image>" #: 03091506.xhp msgctxt "" @@ -9523,7 +9523,7 @@ msgctxt "" "par_id3167857\n" "help.text" msgid "<image id=\"img_id3167864\" src=\"res/helpimg/starmath/at21702.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3167864\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3167864\" src=\"res/helpimg/starmath/at21702.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3167864\">Icon</alt></image>" #: 03091506.xhp msgctxt "" @@ -9540,7 +9540,7 @@ msgctxt "" "par_id3159622\n" "help.text" msgid "<image id=\"img_id3159628\" src=\"res/helpimg/starmath/at21707.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3159628\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3159628\" src=\"res/helpimg/starmath/at21707.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3159628\">Icon</alt></image>" #: 03091506.xhp msgctxt "" @@ -9592,7 +9592,7 @@ msgctxt "" "par_id3160659\n" "help.text" msgid "<image id=\"img_id3160666\" src=\"res/helpimg/starmath/at21713.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3160666\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3160666\" src=\"res/helpimg/starmath/at21713.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3160666\">Icon</alt></image>" #: 03091506.xhp msgctxt "" @@ -9609,7 +9609,7 @@ msgctxt "" "par_id3160956\n" "help.text" msgid "<image id=\"img_id3160962\" src=\"res/helpimg/starmath/at21715.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3160962\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3160962\" src=\"res/helpimg/starmath/at21715.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3160962\">Icon</alt></image>" #: 03091506.xhp msgctxt "" @@ -9626,7 +9626,7 @@ msgctxt "" "par_id3161252\n" "help.text" msgid "<image id=\"img_id3161259\" src=\"res/helpimg/starmath/at21716.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3161259\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3161259\" src=\"res/helpimg/starmath/at21716.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3161259\">Icon</alt></image>" #: 03091506.xhp msgctxt "" @@ -9643,7 +9643,7 @@ msgctxt "" "par_id3168599\n" "help.text" msgid "<image id=\"img_id3168605\" src=\"res/helpimg/starmath/at21708.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3168605\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3168605\" src=\"res/helpimg/starmath/at21708.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3168605\">Icon</alt></image>" #: 03091506.xhp msgctxt "" @@ -9660,7 +9660,7 @@ msgctxt "" "par_id3160808\n" "help.text" msgid "<image id=\"img_id3160814\" src=\"res/helpimg/starmath/at21714.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3160814\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3160814\" src=\"res/helpimg/starmath/at21714.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3160814\">Icon</alt></image>" #: 03091506.xhp msgctxt "" @@ -9677,7 +9677,7 @@ msgctxt "" "par_id3168451\n" "help.text" msgid "<image id=\"img_id3168457\" src=\"res/helpimg/starmath/im21106.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3168457\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3168457\" src=\"res/helpimg/starmath/im21106.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3168457\">Icon</alt></image>" #: 03091506.xhp msgctxt "" @@ -9694,7 +9694,7 @@ msgctxt "" "par_id3160364\n" "help.text" msgid "<image id=\"img_id3160370\" src=\"res/helpimg/starmath/at21722.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3160370\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3160370\" src=\"res/helpimg/starmath/at21722.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3160370\">Icon</alt></image>" #: 03091506.xhp msgctxt "" @@ -9711,7 +9711,7 @@ msgctxt "" "par_id3160215\n" "help.text" msgid "<image id=\"img_id3160222\" src=\"res/helpimg/starmath/at21723.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3160222\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3160222\" src=\"res/helpimg/starmath/at21723.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3160222\">Icon</alt></image>" #: 03091506.xhp msgctxt "" @@ -9728,7 +9728,7 @@ msgctxt "" "par_id3160067\n" "help.text" msgid "<image id=\"img_id3160074\" src=\"res/helpimg/starmath/at21724.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3160074\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3160074\" src=\"res/helpimg/starmath/at21724.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3160074\">Icon</alt></image>" #: 03091506.xhp msgctxt "" @@ -9777,7 +9777,7 @@ msgctxt "" "par_id3162086\n" "help.text" msgid "Symbol in Elements pane" -msgstr "" +msgstr "Szimbólum a Képletelemek panelen" #: 03091507.xhp msgctxt "" @@ -9803,7 +9803,7 @@ msgctxt "" "par_id3179931\n" "help.text" msgid "<image id=\"img_id3179937\" src=\"res/helpimg/starmath/mi22008.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3179937\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3179937\" src=\"res/helpimg/starmath/mi22008.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3179937\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -9820,7 +9820,7 @@ msgctxt "" "par_id3180374\n" "help.text" msgid "<image id=\"img_id3180380\" src=\"res/helpimg/starmath/mi22010.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3180380\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3180380\" src=\"res/helpimg/starmath/mi22010.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3180380\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -9837,7 +9837,7 @@ msgctxt "" "par_id3179784\n" "help.text" msgid "<image id=\"img_id3179790\" src=\"res/helpimg/starmath/mi22011.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3179790\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3179790\" src=\"res/helpimg/starmath/mi22011.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3179790\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -9862,7 +9862,7 @@ msgctxt "" "par_id3180078\n" "help.text" msgid "<image id=\"img_id3180085\" src=\"res/helpimg/starmath/mi22009.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3180085\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3180085\" src=\"res/helpimg/starmath/mi22009.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3180085\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -9879,7 +9879,7 @@ msgctxt "" "par_id3180226\n" "help.text" msgid "<image id=\"img_id3180233\" src=\"res/helpimg/starmath/mi22012.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3180233\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3180233\" src=\"res/helpimg/starmath/mi22012.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3180233\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -9896,7 +9896,7 @@ msgctxt "" "par_id3179636\n" "help.text" msgid "<image id=\"img_id3179643\" src=\"res/helpimg/starmath/mi22019.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3179643\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3179643\" src=\"res/helpimg/starmath/mi22019.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3179643\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -9913,7 +9913,7 @@ msgctxt "" "par_id3162627\n" "help.text" msgid "<image id=\"img_id3162633\" src=\"res/helpimg/starmath/mi21608.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3162633\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3162633\" src=\"res/helpimg/starmath/mi21608.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3162633\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -9930,7 +9930,7 @@ msgctxt "" "par_idA3162627\n" "help.text" msgid "<image id=\"img_idA3162633\" src=\"res/helpimg/starmath/mi21618.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_idA3162633\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_idA3162633\" src=\"res/helpimg/starmath/mi21618.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_idA3162633\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -9947,7 +9947,7 @@ msgctxt "" "par_id3162775\n" "help.text" msgid "<image id=\"img_id3162781\" src=\"res/helpimg/starmath/mi21612.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3162781\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3162781\" src=\"res/helpimg/starmath/mi21612.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3162781\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -9964,7 +9964,7 @@ msgctxt "" "par_id3162922\n" "help.text" msgid "<image id=\"img_id3178464\" src=\"res/helpimg/starmath/mi22014.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3178464\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3178464\" src=\"res/helpimg/starmath/mi22014.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3178464\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -9981,7 +9981,7 @@ msgctxt "" "par_id3178900\n" "help.text" msgid "<image id=\"img_id3178906\" src=\"res/helpimg/starmath/mi22004.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3178906\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3178906\" src=\"res/helpimg/starmath/mi22004.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3178906\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -10006,7 +10006,7 @@ msgctxt "" "par_id3162185\n" "help.text" msgid "<image id=\"img_id3162192\" src=\"res/helpimg/starmath/mi22005.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3162192\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3162192\" src=\"res/helpimg/starmath/mi22005.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3162192\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -10023,7 +10023,7 @@ msgctxt "" "par_id3178604\n" "help.text" msgid "<image id=\"img_id3178611\" src=\"res/helpimg/starmath/mi22015.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3178611\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3178611\" src=\"res/helpimg/starmath/mi22015.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3178611\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -10040,7 +10040,7 @@ msgctxt "" "par_id3179195\n" "help.text" msgid "<image id=\"img_id3179201\" src=\"res/helpimg/starmath/mi22016.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3179201\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3179201\" src=\"res/helpimg/starmath/mi22016.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3179201\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -10057,7 +10057,7 @@ msgctxt "" "par_id3162480\n" "help.text" msgid "<image id=\"img_id3162486\" src=\"res/helpimg/starmath/mi22013.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3162486\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3162486\" src=\"res/helpimg/starmath/mi22013.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3162486\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -10074,7 +10074,7 @@ msgctxt "" "par_id3162332\n" "help.text" msgid "<image id=\"img_id3162339\" src=\"res/helpimg/starmath/mi22006.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3162339\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3162339\" src=\"res/helpimg/starmath/mi22006.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3162339\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -10091,7 +10091,7 @@ msgctxt "" "par_id3178752\n" "help.text" msgid "<image id=\"img_id3178759\" src=\"res/helpimg/starmath/mi22003.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3178759\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3178759\" src=\"res/helpimg/starmath/mi22003.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3178759\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -10108,7 +10108,7 @@ msgctxt "" "par_id3179342\n" "help.text" msgid "<image id=\"img_id3179349\" src=\"res/helpimg/starmath/mi22017.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3179349\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3179349\" src=\"res/helpimg/starmath/mi22017.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3179349\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -10125,7 +10125,7 @@ msgctxt "" "par_id3179489\n" "help.text" msgid "<image id=\"img_id3179496\" src=\"res/helpimg/starmath/mi22018.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3179496\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3179496\" src=\"res/helpimg/starmath/mi22018.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3179496\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -10142,7 +10142,7 @@ msgctxt "" "par_id3179047\n" "help.text" msgid "<image id=\"img_id3179054\" src=\"res/helpimg/starmath/mi22007.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3179054\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3179054\" src=\"res/helpimg/starmath/mi22007.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3179054\">Icon</alt></image>" #: 03091507.xhp msgctxt "" @@ -10191,7 +10191,7 @@ msgctxt "" "par_id3180684\n" "help.text" msgid "Symbol in Elements pane" -msgstr "" +msgstr "Szimbólum a Képletelemek panelen" #: 03091508.xhp msgctxt "" @@ -10207,7 +10207,7 @@ msgctxt "" "par_id3180783\n" "help.text" msgid "<image id=\"img_id3180789\" src=\"res/helpimg/starmath/al21801.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3180789\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3180789\" src=\"res/helpimg/starmath/al21801.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3180789\">Icon</alt></image>" #: 03091508.xhp msgctxt "" @@ -10223,7 +10223,7 @@ msgctxt "" "par_id3180930\n" "help.text" msgid "<image id=\"img_id3180936\" src=\"res/helpimg/starmath/al21802.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3180936\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3180936\" src=\"res/helpimg/starmath/al21802.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3180936\">Icon</alt></image>" #: 03091508.xhp msgctxt "" @@ -10239,7 +10239,7 @@ msgctxt "" "par_id3181078\n" "help.text" msgid "<image id=\"img_id3181084\" src=\"res/helpimg/starmath/al21823.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3181084\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3181084\" src=\"res/helpimg/starmath/al21823.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3181084\">Icon</alt></image>" #: 03091508.xhp msgctxt "" @@ -10255,7 +10255,7 @@ msgctxt "" "par_id3181229\n" "help.text" msgid "<image id=\"img_id3181235\" src=\"res/helpimg/starmath/al21805.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3181235\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3181235\" src=\"res/helpimg/starmath/al21805.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3181235\">Icon</alt></image>" #: 03091508.xhp msgctxt "" @@ -10271,7 +10271,7 @@ msgctxt "" "par_id3181377\n" "help.text" msgid "<image id=\"img_id3181384\" src=\"res/helpimg/starmath/al21806.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3181384\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3181384\" src=\"res/helpimg/starmath/al21806.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3181384\">Icon</alt></image>" #: 03091508.xhp msgctxt "" @@ -10287,7 +10287,7 @@ msgctxt "" "par_id3181525\n" "help.text" msgid "<image id=\"img_id3181532\" src=\"res/helpimg/starmath/al21804.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3181532\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3181532\" src=\"res/helpimg/starmath/al21804.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3181532\">Icon</alt></image>" #: 03091508.xhp msgctxt "" @@ -10303,7 +10303,7 @@ msgctxt "" "par_id3181674\n" "help.text" msgid "<image id=\"img_id3181680\" src=\"res/helpimg/starmath/al21803.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3181680\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3181680\" src=\"res/helpimg/starmath/al21803.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3181680\">Icon</alt></image>" #: 03091508.xhp msgctxt "" @@ -10319,7 +10319,7 @@ msgctxt "" "par_id3181822\n" "help.text" msgid "<image id=\"img_id3181828\" src=\"res/helpimg/starmath/al21821.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3181828\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3181828\" src=\"res/helpimg/starmath/al21821.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3181828\">Icon</alt></image>" #: 03091508.xhp msgctxt "" @@ -10335,7 +10335,7 @@ msgctxt "" "par_id3181973\n" "help.text" msgid "<image id=\"img_id3181980\" src=\"res/helpimg/starmath/al21808.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3181980\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3181980\" src=\"res/helpimg/starmath/al21808.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3181980\">Icon</alt></image>" #: 03091508.xhp msgctxt "" @@ -10351,7 +10351,7 @@ msgctxt "" "par_id3182083\n" "help.text" msgid "<image id=\"img_id3182090\" src=\"res/helpimg/starmath/al21809.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3182090\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3182090\" src=\"res/helpimg/starmath/al21809.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3182090\">Icon</alt></image>" #: 03091508.xhp msgctxt "" @@ -10367,7 +10367,7 @@ msgctxt "" "par_id3182210\n" "help.text" msgid "<image id=\"img_id3182216\" src=\"res/helpimg/starmath/al21810.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3182216\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3182216\" src=\"res/helpimg/starmath/al21810.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3182216\">Icon</alt></image>" #: 03091508.xhp msgctxt "" @@ -10383,7 +10383,7 @@ msgctxt "" "par_id3182332\n" "help.text" msgid "<image id=\"img_id3182339\" src=\"res/helpimg/starmath/al21824.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3182339\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3182339\" src=\"res/helpimg/starmath/al21824.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3182339\">Icon</alt></image>" #: 03091508.xhp msgctxt "" @@ -10399,7 +10399,7 @@ msgctxt "" "par_id3182456\n" "help.text" msgid "<image id=\"img_id3182463\" src=\"res/helpimg/starmath/al21812.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3182463\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3182463\" src=\"res/helpimg/starmath/al21812.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3182463\">Icon</alt></image>" #: 03091508.xhp msgctxt "" @@ -10415,7 +10415,7 @@ msgctxt "" "par_id3182579\n" "help.text" msgid "<image id=\"img_id3182586\" src=\"res/helpimg/starmath/al21813.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3182586\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3182586\" src=\"res/helpimg/starmath/al21813.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3182586\">Icon</alt></image>" #: 03091508.xhp msgctxt "" @@ -10431,7 +10431,7 @@ msgctxt "" "par_id3182702\n" "help.text" msgid "<image id=\"img_id3182709\" src=\"res/helpimg/starmath/al21814.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3182709\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3182709\" src=\"res/helpimg/starmath/al21814.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3182709\">Icon</alt></image>" #: 03091508.xhp msgctxt "" @@ -10447,7 +10447,7 @@ msgctxt "" "par_id3182825\n" "help.text" msgid "<image id=\"img_id3182832\" src=\"res/helpimg/starmath/al21811.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3182832\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3182832\" src=\"res/helpimg/starmath/al21811.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3182832\">Icon</alt></image>" #: 03091508.xhp msgctxt "" @@ -10463,7 +10463,7 @@ msgctxt "" "par_id3182948\n" "help.text" msgid "<image id=\"img_id3182955\" src=\"res/helpimg/starmath/al21822.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3182955\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3182955\" src=\"res/helpimg/starmath/al21822.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3182955\">Icon</alt></image>" #: 03091508.xhp msgctxt "" @@ -10479,7 +10479,7 @@ msgctxt "" "par_id3183072\n" "help.text" msgid "<image id=\"img_id3183078\" src=\"res/helpimg/starmath/al21825.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3183078\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3183078\" src=\"res/helpimg/starmath/al21825.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3183078\">Icon</alt></image>" #: 03091508.xhp msgctxt "" @@ -10495,7 +10495,7 @@ msgctxt "" "par_id3183223\n" "help.text" msgid "<image id=\"img_id3183230\" src=\"res/helpimg/starmath/al21826.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3183230\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3183230\" src=\"res/helpimg/starmath/al21826.png\" width=\"0.566cm\" height=\"0.566cm\"><alt id=\"alt_id3183230\">Icon</alt></image>" #: 03091508.xhp msgctxt "" @@ -10647,7 +10647,7 @@ msgctxt "" "par_id3184320\n" "help.text" msgid "Symbol in Elements pane" -msgstr "" +msgstr "Szimbólum a Képletelemek panelen" #: 03091509.xhp msgctxt "" @@ -10664,7 +10664,7 @@ msgctxt "" "par_id3184418\n" "help.text" msgid "<image id=\"img_id3184425\" src=\"res/helpimg/starmath/co21916.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3184425\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3184425\" src=\"res/helpimg/starmath/co21916.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3184425\">Icon</alt></image>" #: 03091509.xhp msgctxt "" @@ -10681,7 +10681,7 @@ msgctxt "" "par_id3184566\n" "help.text" msgid "<image id=\"img_id3184572\" src=\"res/helpimg/starmath/co21918.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3184572\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3184572\" src=\"res/helpimg/starmath/co21918.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3184572\">Icon</alt></image>" #: 03091509.xhp msgctxt "" @@ -10706,7 +10706,7 @@ msgctxt "" "par_id3184717\n" "help.text" msgid "<image id=\"img_id3184724\" src=\"res/helpimg/starmath/co21908.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3184724\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3184724\" src=\"res/helpimg/starmath/co21908.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3184724\">Icon</alt></image>" #: 03091509.xhp msgctxt "" @@ -10723,7 +10723,7 @@ msgctxt "" "par_id3184864\n" "help.text" msgid "<image id=\"img_id3184871\" src=\"res/helpimg/starmath/co21905.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3184871\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3184871\" src=\"res/helpimg/starmath/co21905.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3184871\">Icon</alt></image>" #: 03091509.xhp msgctxt "" @@ -10740,7 +10740,7 @@ msgctxt "" "par_id3185011\n" "help.text" msgid "<image id=\"img_id3185018\" src=\"res/helpimg/starmath/co21901.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3185018\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3185018\" src=\"res/helpimg/starmath/co21901.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3185018\">Icon</alt></image>" #: 03091509.xhp msgctxt "" @@ -10757,7 +10757,7 @@ msgctxt "" "par_id3185119\n" "help.text" msgid "<image id=\"img_id3185126\" src=\"res/helpimg/starmath/co21912.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3185126\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3185126\" src=\"res/helpimg/starmath/co21912.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3185126\">Icon</alt></image>" #: 03091509.xhp msgctxt "" @@ -10774,7 +10774,7 @@ msgctxt "" "par_id3185267\n" "help.text" msgid "<image id=\"img_id3185274\" src=\"res/helpimg/starmath/co21917.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3185274\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3185274\" src=\"res/helpimg/starmath/co21917.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3185274\">Icon</alt></image>" #: 03091509.xhp msgctxt "" @@ -10799,7 +10799,7 @@ msgctxt "" "par_id3185418\n" "help.text" msgid "<image id=\"img_id3185425\" src=\"res/helpimg/starmath/co21904.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3185425\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3185425\" src=\"res/helpimg/starmath/co21904.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3185425\">Icon</alt></image>" #: 03091509.xhp msgctxt "" @@ -10816,7 +10816,7 @@ msgctxt "" "par_id3185566\n" "help.text" msgid "<image id=\"img_id3185573\" src=\"res/helpimg/starmath/co21906.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3185573\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3185573\" src=\"res/helpimg/starmath/co21906.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3185573\">Icon</alt></image>" #: 03091509.xhp msgctxt "" @@ -10833,7 +10833,7 @@ msgctxt "" "par_id3185714\n" "help.text" msgid "<image id=\"img_id3185721\" src=\"res/helpimg/starmath/co21902.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3185721\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3185721\" src=\"res/helpimg/starmath/co21902.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3185721\">Icon</alt></image>" #: 03091509.xhp msgctxt "" @@ -10850,7 +10850,7 @@ msgctxt "" "par_id3185823\n" "help.text" msgid "<image id=\"img_id3185829\" src=\"res/helpimg/starmath/co21909.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3185829\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3185829\" src=\"res/helpimg/starmath/co21909.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3185829\">Icon</alt></image>" #: 03091509.xhp msgctxt "" @@ -10867,7 +10867,7 @@ msgctxt "" "par_id3185931\n" "help.text" msgid "<image id=\"img_id3185937\" src=\"res/helpimg/starmath/co21910.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3185937\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3185937\" src=\"res/helpimg/starmath/co21910.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3185937\">Icon</alt></image>" #: 03091509.xhp msgctxt "" @@ -10884,7 +10884,7 @@ msgctxt "" "par_id3186039\n" "help.text" msgid "<image id=\"img_id3186046\" src=\"res/helpimg/starmath/co21911.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3186046\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3186046\" src=\"res/helpimg/starmath/co21911.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3186046\">Icon</alt></image>" #: 03091509.xhp msgctxt "" @@ -10901,7 +10901,7 @@ msgctxt "" "par_id3186147\n" "help.text" msgid "<image id=\"img_id3186154\" src=\"res/helpimg/starmath/co21907.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3186154\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3186154\" src=\"res/helpimg/starmath/co21907.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3186154\">Icon</alt></image>" #: 03091509.xhp msgctxt "" @@ -10918,7 +10918,7 @@ msgctxt "" "par_id3186295\n" "help.text" msgid "<image id=\"img_id3186302\" src=\"res/helpimg/starmath/co21903.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3186302\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3186302\" src=\"res/helpimg/starmath/co21903.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3186302\">Icon</alt></image>" #: 03091509.xhp msgctxt "" @@ -10986,7 +10986,7 @@ msgctxt "" "par_id3145171\n" "help.text" msgid "<image id=\"img_id3145177\" src=\"res/helpimg/starmath/mi22006.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3145177\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3145177\" src=\"res/helpimg/starmath/mi22006.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3145177\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11012,7 +11012,7 @@ msgctxt "" "par_id3152782\n" "help.text" msgid "<image id=\"img_id3152788\" src=\"res/helpimg/starmath/mi22005.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3152788\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3152788\" src=\"res/helpimg/starmath/mi22005.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3152788\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11038,7 +11038,7 @@ msgctxt "" "par_id3150217\n" "help.text" msgid "<image id=\"img_id3150223\" src=\"res/helpimg/starmath/mi22013.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150223\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3150223\" src=\"res/helpimg/starmath/mi22013.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3150223\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11064,7 +11064,7 @@ msgctxt "" "par_id3155330\n" "help.text" msgid "<image id=\"img_id3155336\" src=\"res/helpimg/starmath/mi21608.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155336\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155336\" src=\"res/helpimg/starmath/mi21608.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155336\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11082,7 +11082,7 @@ msgctxt "" "41\n" "help.text" msgid "<ahelp hid=\"HID_SMA_EXISTS\">Inserts the symbol for an Existence quantor.</ahelp> Command for the <emph>Commands</emph> window: <emph>exists</emph>" -msgstr "<ahelp hid=\"HID_SMA_EXISTS\">Beszúrja az egzisztenciális kvantort (\"létezik\").</ahelp> A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph>exists</emph>." +msgstr "<ahelp hid=\"HID_SMA_EXISTS\">Beszúrja az egzisztenciális kvantort („létezik”).</ahelp> A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph>exists</emph>." #: 03091600.xhp msgctxt "" @@ -11090,7 +11090,7 @@ msgctxt "" "par_idA3155330\n" "help.text" msgid "<image id=\"img_idA3155336\" src=\"res/helpimg/starmath/mi21618.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_idA3155336\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_idA3155336\" src=\"res/helpimg/starmath/mi21618.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_idA3155336\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11116,7 +11116,7 @@ msgctxt "" "par_id3151296\n" "help.text" msgid "<image id=\"img_id3151302\" src=\"res/helpimg/starmath/mi21612.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3151302\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3151302\" src=\"res/helpimg/starmath/mi21612.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3151302\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11134,7 +11134,7 @@ msgctxt "" "69\n" "help.text" msgid "<ahelp hid=\"HID_SMA_FORALL\">Inserts the symbol for a universal quantifier \"for all\".</ahelp> Command for the <emph>Commands</emph> window: <emph>forall</emph>" -msgstr "<ahelp hid=\"HID_SMA_FORALL\">Beszúrja az univerzális kvantort (\"minden\").</ahelp> A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph>forall</emph>." +msgstr "<ahelp hid=\"HID_SMA_FORALL\">Beszúrja az univerzális kvantort („minden”).</ahelp> A <emph>Parancsok</emph> ablakba közvetlenül beírható forma: <emph>forall</emph>." #: 03091600.xhp msgctxt "" @@ -11142,7 +11142,7 @@ msgctxt "" "par_id3153023\n" "help.text" msgid "<image id=\"img_id3153030\" src=\"res/helpimg/starmath/mi22014.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153030\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153030\" src=\"res/helpimg/starmath/mi22014.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153030\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11168,7 +11168,7 @@ msgctxt "" "par_id3153908\n" "help.text" msgid "<image id=\"img_id3153256\" src=\"res/helpimg/starmath/mi22015.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153256\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3153256\" src=\"res/helpimg/starmath/mi22015.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3153256\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11194,7 +11194,7 @@ msgctxt "" "par_id3150651\n" "help.text" msgid "<image id=\"img_id3154285\" src=\"res/helpimg/starmath/mi22003.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154285\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154285\" src=\"res/helpimg/starmath/mi22003.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154285\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11220,7 +11220,7 @@ msgctxt "" "par_id3154543\n" "help.text" msgid "<image id=\"img_id3154553\" src=\"res/helpimg/starmath/mi22004.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154553\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154553\" src=\"res/helpimg/starmath/mi22004.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154553\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11246,7 +11246,7 @@ msgctxt "" "par_id3154156\n" "help.text" msgid "<image id=\"img_id3154162\" src=\"res/helpimg/starmath/mi22007.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154162\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3154162\" src=\"res/helpimg/starmath/mi22007.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3154162\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11272,7 +11272,7 @@ msgctxt "" "par_id3155267\n" "help.text" msgid "<image id=\"img_id3155273\" src=\"res/helpimg/starmath/mi22016.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155273\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155273\" src=\"res/helpimg/starmath/mi22016.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155273\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11298,7 +11298,7 @@ msgctxt "" "par_id3149923\n" "help.text" msgid "<image id=\"img_id3149929\" src=\"res/helpimg/starmath/mi22017.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149929\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3149929\" src=\"res/helpimg/starmath/mi22017.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3149929\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11324,7 +11324,7 @@ msgctxt "" "par_id3148506\n" "help.text" msgid "<image id=\"img_id3148512\" src=\"res/helpimg/starmath/mi22018.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3148512\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3148512\" src=\"res/helpimg/starmath/mi22018.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3148512\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11350,7 +11350,7 @@ msgctxt "" "par_id3157946\n" "help.text" msgid "<image id=\"img_id3157951\" src=\"res/helpimg/starmath/mi22019.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3157951\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3157951\" src=\"res/helpimg/starmath/mi22019.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3157951\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11376,7 +11376,7 @@ msgctxt "" "par_id3154997\n" "help.text" msgid "<image id=\"img_id3155003\" src=\"res/helpimg/starmath/mi22011.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155003\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3155003\" src=\"res/helpimg/starmath/mi22011.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3155003\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11402,7 +11402,7 @@ msgctxt "" "par_id3163719\n" "help.text" msgid "<image id=\"img_id3163726\" src=\"res/helpimg/starmath/mi22008.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3163726\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3163726\" src=\"res/helpimg/starmath/mi22008.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3163726\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11428,7 +11428,7 @@ msgctxt "" "par_id3146829\n" "help.text" msgid "<image id=\"img_id3146835\" src=\"res/helpimg/starmath/mi22012.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3146835\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3146835\" src=\"res/helpimg/starmath/mi22012.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3146835\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11454,7 +11454,7 @@ msgctxt "" "par_id3109675\n" "help.text" msgid "<image id=\"img_id3109681\" src=\"res/helpimg/starmath/mi22009.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3109681\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3109681\" src=\"res/helpimg/starmath/mi22009.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3109681\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11480,7 +11480,7 @@ msgctxt "" "par_id3158234\n" "help.text" msgid "<image id=\"img_id3158240\" src=\"res/helpimg/starmath/mi22010.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3158240\">Icon</alt></image>" -msgstr "" +msgstr "<image id=\"img_id3158240\" src=\"res/helpimg/starmath/mi22010.png\" width=\"0.3335inch\" height=\"0.3335inch\"><alt id=\"alt_id3158240\">Icon</alt></image>" #: 03091600.xhp msgctxt "" @@ -11703,7 +11703,7 @@ msgctxt "" "23\n" "help.text" msgid "<ahelp hid=\"modules/smath/ui/fonttypedialog/serifCB\">You can specify the font to be used for the <emph>font serif</emph> format.</ahelp> Serifs are the small \"guides\" that can be seen, for example, at the bottom of a capital A when the Times serif font is used. Using serifs is quite helpful since it guides a reader's eye in a straight line and can speed up reading." -msgstr "<ahelp hid=\"modules/smath/ui/fonttypedialog/serifCB\">Itt adható meg a <emph>talpas</emph> betűformához használandó betűkészlet.</ahelp> A betűtípus a nevét a kis \"talpakról\" kapta, amelyek például a Times betűtípus nagy A betűjén a szárak alján látható. A talpas betűtípusok segítséget jelentenek az olvasó számára, mert a talpak egyenes vonalban vezetik a szemet, így gyorsítják az olvasást." +msgstr "<ahelp hid=\"modules/smath/ui/fonttypedialog/serifCB\">Itt adható meg a <emph>talpas</emph> betűformához használandó betűkészlet.</ahelp> A betűtípus a nevét a kis „talpakról” kapta, amelyek például a Times betűtípus nagy A betűjén a szárak alján látható. A talpas betűtípusok segítséget jelentenek az olvasó számára, mert a talpak egyenes vonalban vezetik a szemet, így gyorsítják az olvasást." #: 05010000.xhp msgctxt "" @@ -13302,7 +13302,7 @@ msgctxt "" "27\n" "help.text" msgid "As an example, to transfer the large ALPHA from the \"Greek\" set to the \"Special\" set, select the old set (Greek) and then the ALPHA symbol using the two top list boxes. The symbol appears in the left preview window. In the <emph>Symbol set</emph> list box, select the \"Special\" set. Click <emph>Modify</emph> and then <emph>OK</emph>. The ALPHA symbol is now only in the \"Special\" symbol set." -msgstr "Ha például a nagy ALFA szimbólumot szeretné áthelyezni a \"Görög\" szimbólumkészletből a \"Speciális\" szimbólumkészletbe, akkor először a felső két listamező segítségével válassza ki a régi szimbólumkészletet (Görög) és az ALFA szimbólumot. A szimbólum megjelenik a bal oldali előnézetben. A <emph>Szimbólumkészlet</emph> listából válassza ki a \"Speciális\" elemet. Kattintson a <emph>Módosítás</emph>, majd az <emph>OK</emph> gombra. Az ALFA szimbólum átkerült a \"Speciális\" szimbólumkészletbe." +msgstr "Ha például a nagy ALFA szimbólumot szeretné áthelyezni a „Görög” szimbólumkészletből a „Speciális” szimbólumkészletbe, akkor először a felső két listamező segítségével válassza ki a régi szimbólumkészletet (Görög) és az ALFA szimbólumot. A szimbólum megjelenik a bal oldali előnézetben. A <emph>Szimbólumkészlet</emph> listából válassza ki a „Speciális” elemet. Kattintson a <emph>Módosítás</emph>, majd az <emph>OK</emph> gombra. Az ALFA szimbólum átkerült a „Speciális” szimbólumkészletbe." #: 06010100.xhp msgctxt "" |