TWAIN Data Source Manager Readme

4/23/2007
TWAIN Working Group

8

Table of Contents

21
Overview

2
Information for End Users
2
3
Information for Developers
2
3.1
Source Files
2
3.1.1
dsm.h
2
3.1.2
twain.h
2
3.1.3
dsm.cpp
3
3.1.4
apps.cpp
3
3.1.5
log.cpp
3
3.1.6
dsm.rc
3
3.2
Build Files
3
3.2.1
CMakeLists.txt
3
3.2.2
sources
3
3.2.3
sources32
3
3.2.4
makefile.wdk
4
3.2.5
dsm.def
4
3.3
Output Files
4
3.3.1
twaindsm32.so.x.x.x.x
4
3.3.2
twaindsm64.so.x.x.x.x
4
3.3.3
twaindsm32.dll
4
3.3.4
twaindsm64.dll
5
4
Design
6
4.1
os_cosfile.h
6

1 Overview
The TWAIN Data Source Manager (DSM) is the glue between TWAIN Applications and TWAIN Drivers (also known as Data Sources). This document contains information of interest to developers and end users.
Version 1.x of the DSM runs on a variety of platforms, but it was always offered as binaries, either by the TWAIN Working Group, or automatically included with the operating system. These binaries have been frozen in time; the last major release occurred around 1996. At the time it was felt that the DSM should be a robust black box, and that developers should not be allowed access to the code so that TWAIN Applications and Drivers could be guaranteed a common experience.

Beginning with version 2.0 the DSM is Open Source (LGPL). The code has been completely rewritten, but it is still backwards compatible with all TWAIN 1.x Applications and Drivers.

2 Information for End Users
The TWAIN Working Group does not develop TWAIN Applications, Drivers or Devices. It does provide a forum for discussion about problems, which can be accessed from http://www.twain.org, but this area is visited by people who volunteer their free time to help others. It is always recommended that end users attempt to get help from their Application, Driver or Device vendor first.

3 Information for Developers
The DSM is not intended to be complex. Its main purpose is to help a TWAIN Application find a TWAIN Driver. It helps with the DAT_NULL operation. Otherwise, it’s just a pass through, shuttling data back and forth without looking at it.
There are two things that make the DSM look more complex. First, a single TWAIN Application can open more than one TWAIN Driver at the same time. Few do it, but it’s a valid action.
Second, the DSM supports multiple Applications. This one is harder to justify. The TWAIN DSM was developed on systems that forced it to share its data structures across programs. The current DSM maintains this ability, supporting multiple applications, even though that kind of sharing is no longer easily possible or desirable on modern operating systems. There was a lot of temptation to remove this, since no single TWAIN application should ever use it. But backwards compatibility is a central tenet of TWAIN, and with Open Source the code may find its way to a system that needs it, so the feature remains.

The breakdown of files reflects the way the code is organized, so the discussion of how things work is part of the following manifest.
3.1 Source Files

These files are code.

3.1.1 dsm.h

The DSM is written in C++, this is its header file. It figures out what compiler is being run, and tries to figure out what operating system it is being built on. Ideally, all conditional compilation takes place in this file only, as it selects what libraries need to be included.

3.1.2 twain.h

This is the exact same header file used by TWAIN Applications and TWAIN Drivers. It maps the TWAIN namespace to their numerical values, defines portable datatypes and function prototypes.
3.1.3 dsm.cpp

CTwnDsm is defined in this file. This is the core content of the DSM. Its interface and behavior is driven by the TWAIN Specification. In fact, the sole exposed interface is the DSM_Entry function. This is the main reason that the class isn’t written with an implementation pointer like the other classes. Implementation pointers enhance encapsulation, but the DSM is already very well hidden behind its one function.
The class does use a “piece of data” or pod system, though. This is intended to make it trivial to initialize member variables to zero. One might argue that there aren’t many members, so why bother, since this is Open Source best practices are used wherever possible.
3.1.4 apps.cpp

The complexity that comes with supporting multiple TWAIN Applications and Drivers is hidden in the CTwnDsmApps class defined in this module. There are probably better implementations, but this one works. It’s fast and it doesn’t take a lot of memory.
An implementation pointer is used so we can hide all evidence of what this class is doing from CTwnDsm.
3.1.5 log.cpp

Logging is of most use to developers, especially Application developers if the TWAIN Driver doesn’t support a logging mechanism (which they should). It’s also useful to end users, insomuch as they can provide these logs upon request to help diagnose problems. Logging is activated by setting the TWAINDSM_LOG environment variable to the full path of the log file to be used.

And implementation pointer is used to hide the details of CTwnDsmLog from CDsmTwn. The logging facility could be substantially improved; at this point it reports what operations have occurred and little else.

3.1.6 dsm.rc

Only needed if build with the Microsoft WDK or Microsoft Visual Studio, it provides versioning information that is embedded as a resource in the finished binary.

3.2 Build Files

These files help to build the DSM with various compilers.

3.2.1 CMakeLists.txt

This is used by the CMAKE builder (http://www.cmake.org), with the DSM it’s meant for use with the g++ compiler when building the DSM for Linux systems.

3.2.2 sources

This is used by the Microsoft WDK, it’s provided for developers who can’t use Microsoft’s Visual Studio, or who want to use some of the code testing facilities that come with the WDK. This one builds the 64bit version.
3.2.3 sources32
This is used by the Microsoft WDK, it’s provided for developers who can’t use Microsoft’s Visual Studio, or who want to use some of the code testing facilities that come with the WDK. This one builds the 32bit version and must be renamed to “sources” to build with the WDK.
3.2.4 makefile.wdk

The Microsoft WDK uses a non-standard makefile. Rename this file to “makefile” if you want to build with the WDK
3.2.5 dsm.def

This is required by the Microsoft WDK and Microsoft Visual Studio, so that DSM_Entry can be exposed without any name decorating.
3.3 Output Files

The following files are output by the build process.
Please note that because the DSM does so little (normally) and because it is designed to be backwards compatible, it’s not required to have the same version number as the TWAIN Applications or Drivers that it supports. If everyone is happy with how it is performing it’s possible for the DSM version to lag far behind the ongoing versions of the TWAIN specification.
For comparison, the 1.6 DSM is in use on current 32-bit Windows platforms, even though the TWAIN Specification is up to version 1.91, and TWAIN Applications and Drivers from 1.5 to 1.91 all work with it. This is behavior that we want to preserve going forward.
3.3.1 twaindsm32.so.x.x.x.x

This is the 32-bit version of the source manager for Linux systems.
The twaindsm32 after successfully opening a DS will immediately send a DG_CONTROL/ DAT_CALLBACK/ MSG_REGISTER_CALLBACK triplet message to the DS. This message will contain the TW_CALLBACK structure with handle to the DSM_Entry function. The DS will use this to send messages back to Application.

3.3.2 twaindsm64.so.x.x.x.x

This is the 64-bit version of the source manager for Linux systems.

The twaindsm64 will register callback same as twaindsm32

3.3.3 twaindsm32.dll

This is the 32-bit version of the source manager for Windows systems.
Microsoft delivers TWAIN_32.DLL with all 32-bit versions of its Windows Operating Systems. TWAIN_32.DLL is under the Windows File Protection system, so it can’t be modified or removed. This presents a problem for developers who want to move to the new DSM.
TWAIN Drivers that want to use twaindsm32.dll need to add the flag SF_DSM2_DS to the TW_IDENTITY SupportedGroups member. This is to trigger the application that they can use twaindsm32.dll. When a TWAIN Driver is opened it can check the TW_IDENITY SupportedGroups flag. If the DSM has set SF_DSM2_DSM the TWAIN Driver knows that it has been opened by twaindsm32.dll. The twaindsm32.dll after successfully opening a DS can immediately send a DG_CONTROL/ DAT_CALLBACK/ MSG_REGISTER_CALLBACK triplet message to the DS. This message will contain the TW_CALLBACK structure with handle to the DSM_Entry function. If the DS does not receive this message it will default to the old method of LoadLibrary() and GetProcAddress() and assume it is being called by the TWAIN_32.DLL.
TWAIN Application that want to support both twaindsm32.dll and TWAIN_32.DLL should first review all the drivers by using TWAIN_32.dll using getFirst() getNext on all the drivers. By checking the TW_IDENTIY SupportedGroups flag against SF_DSM2_DS the app knows that the TWAIN Driver can use the twaindsm32.dll. The TWAIN Application can safely use the twaindsm32.dll to open this TWIAN Driver by name. The application does not set the SF_DSM2_DSM or SF_DSM2_DS flag to indicate they want to use the twaindsm32.dll the dsm will do this.
Only TWAIN Drives that support set the flag that they support
3.3.4 twaindsm64.dll

This is the 64-bit version of the source manager for Windows systems.
Since Microsoft is not installing the DSM in 64-bit versions of Windows, this is the only DSM that TWAIN Applications and TWAIN Drivers need to look for.

TWAIN Drivers will receive a DG_CONTROL/ DAT_CALLBACK/ MSG_REGISTER_CALLBACK triplet message from the waindsm64 after being opened just like the twaindsm32.dll.
4 Design
4.1 os_cosfile.h
This expands on the previous OsFilePath section, which had no comments.

//

// File and directory paths typically have a couple problems:

//

// First, the path delimiters are operating system specific,

// Windows supports \ and / (we're still using \ because of

// twaingui (3/10/2007); while Linux only supports /.

// Portable code has to support both, which makes it complex.

//

// Second, it's very easy to get into situations where the

// delimiters double up (ex: /abc//xyz). And while this

// doesn't affect their use with system calls it can lead to

// traps for code that wants to do use one path as the base

// to generate a file in the same directory (ex: using

// /abc/xyx, striping the last component to make /abc/mno).

//

// Our long term goal is to shift to exclusive use of the /,

// but we shouldn't have to go through all of the code to

// accomplish this, and while that would fix point one, it

// doesn't address point two.

//

// The following functions provide a way to address these

// problems. Here's a sample of how to use them.

//

// OsFilePathSet(szFile,OsCfgGet(...,OS_CFGTAG_USERDIRECTORY));

// OsFilePathAppend(szFile,_T("firmware"));

// windows - c:\document\appdata\kds_kodak\kds_i1300\firmware

// linux - /var/lib/kds_kodak/kds_i1300/firmware

//

// Never use the \ or the / in any construction, if more than

// one directory is being added to a path, then chain append

// calls together...

//

// OsFilePathSet(szFile,OsCfgGet(...,OS_CFGTAG_USERDIRECTORY));

// OsFilePathAppend(szFile,_T("dir1"));

// OsFilePathAppend(szFile,_T("dir2"));

// OsFilePathAppend(szFile,_T("dir3"));

//

// Like the OsStr calls there are two flavors of macros, in

// most cases the OsFile form is sufficient. However, if the

// destination is a pointer to unsized memory, then the

// second form can be used to specify how big it is...

//

// All of the functions run Normalize for you. They all have

// void returns, except for OsFilePathAbsolute() which can

// fail if it can't resolve the absolute path.

//

// Use this call instead of OsStrCpy when first populating a

// string with a filename. Most of the time this is copying

// from another file or from OsCfgGet()...

#define OsFilePathSet(dest,src)

COsFile::PathSet(dest,OsStrSize(dest),src)

#define OsSFilePathSet(dest,size,src)’

COsFile::PathSet(dest,size,src)

// Append a directory or a filename to the end of the destination,

// the function takes care of adding the delimiter...

#define OsFilePathAppend(dest,src)

COsFile::PathAppend(dest,OsStrSize(dest),src)

#define OsSFilePathAppend(dest,size,src)

COsFile::PathAppend(dest,size,path)

// Finds the absolute path of the source and puts it into the

// destination. Useful with relative paths where the root is

// needed or to resolve paths that have links (hard or soft)

// in the path...

#define OsFilePathAbsolute(dest,src)

COsFile::PathAbsolute(dest,OsStrSize(dest),src)

#define OsSFilePathAbsolute(dest,size,src)

COsFile::PathAbsolute(dest,size,path)

// PathSplit locates the last delimiter, if any, in a path.

// It returns the character offset of the last delimiter in

// poffet, and a pointer to the first character of the last

// element in plast. If there is no delimiter then 0 is

// returned for poffset and plast is set to NULL. Both

// poffset and plast are optional (you can set either or both

// of them to NULL).

//

// Examples:

//

// /abc/xyz

// poffset returns 4

// plast points to "xyz"

//

// abc

// poffset returns 0

// plast is NULL

//

#define OsFilePathSplit(path,poffset,plast)
COsFile::PathSplit(path,poffset,plast)

// These functions should be needly rarely, if at all, they're

// provided for completeness. Normalize fixes a path in place,

// consider using OsFilePathSet instead. NormalizeSlash allows

// the normal delimiter to be overridden. AppendSlash adds the

// appropriate delimiter to the end of the function.

#define OsFilePathNormalize(f)

COsFile::PathNormalize(f)

#define OsFilePathNormalizeSlash(f,s)

COsFile::PathNormalize(f,s)

#define OsFilePathAppendSlash(p)

COsFile::PathAppend(p,OsStrSize(p),_T(""))

#define OsSFilePathAppendSlash(p,z)

COsFile::PathAppend(p,z,_T(""))

